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Abstract. This paper presents a theoretical study on the seismic response of alluvial valleys, The
considered model consists of a two-dimensional elastic inclusion of arbitrary shape embedded in
@ stiffer half-plane excited by vertically or obliquely incident SH waves. Computations are
conducted using 2 procedure based on the boundary element method. As known, this numerical
lechnique is well suited to deal with wave propagation in infinite media as it avoids the
introduction of fictitious boundaries and reduces by one the dimensions of the problem. This
‘provides significant advantages from a computational point of view. A one-dimensional closed
lorm solution is also used for comparison, and the most significant differences betwsen the
results obtained using the two methods are highlighted.

d: microzonation studies, site effects, one and two-dimensional analyses.

INTRODUCTION

roseismic observations during various historical and recent earthquakes have
that the local geological conditions can generate large amplifications and
ant spatial variations in the ground motion. Consequently, prediction of the
site effects is of great importance for the microzonation studies and the analysis
seismic response of engineering works. To this purpose, it is necessary to
understand the physical phenomena associated with the seismic wave propagation, and
at the same time to develop methods capable of predicting reasonably the ground
‘motion at a given site. In many situations, the simple shear beam model is not
ompletely appropriate, thus use of two and three dimensional solutions is generally
tory. In this context, both analytical and numerical methods are available.
analytical solutions deal with simple geometric situations, such as semi-
ical or semi-elliptical alluvial valleys subjected to incident SH-waves [1-2].
application has allowed the role of the parameters involved to be highlighted. In
they represent unfailing references against which numerical solutions can be

he numerical methods that are widely used for the analysis of seismic wave
agation can be classified into domain, boundary and asymptotic methods. The
difference method [3] and the finite element method [4] fall within the first class
numerical techniques require that the entire domain be discretized. On the
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other hand, when use is made of the methods falling within the second class such as
the boundary element method, discretization of the boundaries needs only to be
performed. In this context, two main approaches can be distinguished: one is based on
the use of complete systems of solutions [5], and the other on the boundary integral
equations [6]. Finally, the asymptotic methods are useful when the solution has an
interest in the high frequency range and the diffraction effects may be ignored [7].
These methods solve the differential equations governing wave propagation under two
or three-dimensional conditions [8-12]. However, engineering applications usually
rely on the one-dimensional analysis to predict the surface motion at a site. As a
consequence, the effects of the geometric shape and limited lateral extent of the soil
deposit under consideration are completely ignored in the analyses.

In this paper, the boundary element method is used to analyse SH wave scattering
by alluvial valley of arbitrary shape under conditions of plane strains. This numerical
technique is well suited to deal with wave propagation problems, because it avoids the
introduction of fictitious boundaries and reduces by one the dimensions of the
problem. This provides significant advantages from a computational point of view.
However, the involved materials are assumed to behave as linear elastic media. To
assess the accuracy of the proposed method, the results in terms of surface
displacement amplitude are compared with those calculated using the analytical
solution derived by Trifunac [1] for semi-cylindrical alluvial valleys. In addition, &
simple one-dimensional solution is also considered with the purpose of highlighting
the main differences between the results.

PROBLEM FORMULATION

The problem considered in this study concerns a two-dimensional alluvial valley of
arbitrary shape embedded in a half-plane excited by incident harmonic SH waves with
frequency ®, and angle of incidence y (Fig. 1). The material of the valley and that of
the half-plane is assumed to be homogeneous, isotropic and linearly elastic. It is also
assumed that the valley is perfectly bonded to the half-plane at the interface I
indicated in Fig. 1. Under conditions of plane strain, the differential equation
governing the propagation of SH waves is:
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where x and y are the spatial coordinates, / is the time, #; indicates the out-plane

displacement field of the half-plane (when j=1) or the valley (when j=2), § = (Gip)"™*
is the shear wave velocity, Gj is the shear modulus and g is the mass density of the
half-plane (j=1) or the valley (j=2). For harmonic motion (i.e. ¥ =u;e'®, with

i=+-1), Eq. 1 reduces to the Helmholtz equation, that is:
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k=alff and @ is the excitation frequency. Owing to the linearity of the
the displacement field of the half-plane can be cast in the form:

u) = uot Ug (3)

is the amplitude of the displacement field due to the incident and reflected
and ug is the displacement amplitude due to the diffracted waves caused by the
f the valley. The former represents the free-field motion amplitude and is
by the following equation, under the assumption that the displacement
due to the incident waves is equal to 1:

u, = 2coslk, ycosy)e'" =7 (4)

cement of the valley, u,, is due to the diffracted waves at the boundary Tj.
under consideration, the unknown fields are u4 and u,. Both these fields
q.2.

FIGURE 1. The problem considered

t study, the solution to Eq. 2 is achieved using the boundary element
wing Brebbia et al. [6], this method is based on the integral equation:

c(P)u(P) = j{u’(P.Q} i —uy® t(;:.e)] P Y
g

the point under consideration and ( is a point located on the boundary
<[y UL UT;, as shown in Fig. 1), ¢ is a coefficient depending on the
P, n indicates the normal direction to T, and #” is the fundamental solution
nholtz equation, which for two dimensions results in

' u = %il—l",(k,- r) (6)

ich H. is the Hankel function of first kind and zero order, and » is the distance

and Q. It is worth noting that Eq. 5 only involves boundary integrals. In
it directly accounts for the radiation condition for infinite media owing to the
of the fundamental solution. This avoids the introduction of fictitious
unlike other numerical techniques such as the finite element method or the
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finite difference method. As suggested by Kobayashi [13] and Conte et al. [14], itis
more convenient, from a computational point of view, to use the following equation
instead of Eq. 6:

«'= %n [tk 1)+ 1 K, )

where » is the distance between P and the image point of Q with respect to the
horizontal ground surface (I, and I'; in Fig. 1). Unlike Eq. (6), this latter directly
satisfies the boundary condition on I'y and I'; (i.e., du,/dn=0 at I'y, and Gu,/dn=02at
I',). As a consequence, only the interface I'; needs to be considered in Eq. 3.

The basic integral equation (Eq.5) is first applied separately to the valley (in terms
of ;) and the half-plane (in terms of ug), and then the compatibility and equilibrium
conditions are enforced at the interface I These conditions are expressed by the
equations:

iy =4 (8a)

G!(%L] = —G,[ﬁ) (8]
n on

To achieve a solution to Eq. 5, the interface [ is divided into a finite number of
one-dimensional elements. For simplicity, the values of the unknowns  and du/én
are assumed to be constant over each element and equal to the value at the mid-
element node. In this type of element, the boundary is always smooth as the node is al
the centre of the element, hence the coefficient ¢ in Eq. 5 is 0.5 [6]. After discretizing
Eq. 5 for each node, an algebraic system of equations is obtained, the solution of
which provides the nodal values of the diffracted displacement and its normal
derivative at the interface Tj. Once these quantities are known, it is possible to.
calculate the displacement field of the valley or that of the half-plane using Eq. 20
which ¢ is 1, together with Eqs. 3 and 8. It is worth noting that the resulting values are
complex. They provide the normalized amplitude of the out-plane displacements Jue
to wave propagation with respect to that due to the incident waves. As already said,
this latter amplitude is assumed equal to 1. The variation of these quantities with ime
is obtained multiplying them by the factor &'’.

To assess the accuracy of the method, comparisons were performed with he
analytical solution derived by Trifunac [1] for a semi-cylindrical alluvial valiey
excited by incident SH waves. Some results are presented in Fig. 2, in terms of the
displacement amplitude at the ground surface for different values of the incidence
angle and two values of the dimensionless frequency (7=0.5 and 1). This latter i§
defined as '

o

n= 25, ,

where a is the radius of the valley. The other data assumed in the calculations a
plp=1.5 and G\/Gz=6. As can be seen from Fig. 2, the results are in very clos

agreement.
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. Comparison between the present method and Trifunac’s solution (adapted from [1])
APPLICATIONS

engineering applications, the local site response is often evaluated using a
mensional model consisting of 2 soil deposit resting on a deformable or rigid
% excited by vertically incident shear waves. This implies that the effects of
ing due to the actual shape and the limited lateral extent of the soil deposit
Consequently, it is of interest to compare the results obtained by such a
odel with those calculated using the two-dimensional solution presented in
ious section. To this purpose, a semi-cylindrical valley embedded in a
sous half-plane is considered, and the results are compared with those

‘a soil layer with thickness equal to the radius of the valley, resting on a
bedrock. In addition, a valley with triangular cross-section is also
g. 3). This latter is characterized by a height equal to the radius of the
oylindrical valley, and a slope of ' with respect to the horizontal direction. For
soil systems, the excitation consists of a train of SH harmonic waves with

and vertical incidence. Using the same notation for the one and two-
models, o and /3, are the mass density and the shear wave velocity of the
soil layer, whereas p and f are the above material properties for the half-
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plane and bedrock. The displacement amplitude at the surface of the layer was
evaluated by the equation [15]:

TG
| R 4

FIGURE 3. Schemes considered

(10)

The calculations were carried out assuming pi/py=1.5 and two different values of
the ratio fi/f (i.e., 2 and 3). The results are presented in Figs. 4, 5 and 6, in terms of
the surface displacement amplitude of the soil layer and the valleys, versus &
dimensionless frequency, 7. In the two-dimensional models, the surface displa
amplitude was calculated at the middle point of the valley (point A in Fig. 3). As
be seen, the one-dimensional response generally results more attenuated than t
provided by the two-dimensional models, with the exception of the triangular valley
some frequencies. The ratio fi//% is higher, larger is this attenuation. In addition,
peak values of the displacement amplitude at the upper surface of the layer
attained at lower frequencies than those calculated under two-dimensional conditio
In other words, using the one-dimensional model leads to a reduction of the surf
displacement amplitude accomplished by a shifting in the fundamental frequenc
with respect to the two-dimensional case. This is due to the wave scattering effe
that are ignored when a one-dimensional solution is employed.
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FIGURE 4. Displacement amplitude at the surface of a soil layer and at the middle point of & semi
cylindrical valley versus the dimensionless frequency 7.
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&, Displacement amplitude at the surface of a soil layer and at the middle point of a semi-
il valley versus the dimensionless frequency 7.
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6. Displacement amplitude at the surface of a soil layer and at the middle point of a triangular
versus the dimensionless frequency 7.
CONCLUDING REMARKS

A numerical solution based on the boundary element method has been presented for
ic response of alluvial valleys to SH waves. Taking advantage of a special
al solution of the Helmholtz equation, the interface between the valley and

the method is based. Comparisons have been made with a well-known one-
al solution to highlight the most significant differences between the results.
been shown that the one-dimensional model in principle leads to a reduction of

ace displacement amplitude and a shifting in the fundamental frequencies
lower values than those obtained using the two-dimensional method presented
paper.
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