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Abstract 

   A meshless numerical model for fully nonlinear water waves by the 
method of fundamental solutions is presented in this chapter. An 
approach of handling the moving free surface boundary is proposed. 
Using the method of fundamental solutions of the Laplace equation 
as the radial basis functions and locating the source points outside 
the computational domain, we solved the problem by collocating 
only a few boundary points since governing equation is satisfied 
automatically. Very good agreement is observed for three examples 
for the heights of a wavemaker; the generation of periodic 
finite –amplitude steep waves; and modulation of monochromatic 
waves over a submerged obstacle as comparing with analytical, 
experimental and other numerical works.  

1. Introduction 

Nonlinear water waves are of paramount importance to the coastal, 
offshore and ocean engineering but are very difficult to deal with due to 
the nature of moving free surfaces and involved nonlinear phenomena. 
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The study of fully nonlinear water wave problems in general uses either 
the fully nonlinear potential theory or Euler or Navier-Stokes equations. 
They are usually handicapped or prohibited by the nonlinear features of 
the kinematic and dynamic free surface boundary conditions plus the 
quasi-linear advection effects for the Euler and Navier-Stokes equations. 
To overcome the difficulty of the moving and nonlinear free surfaces and 
governing equations, extensive works to simulate the propagation of 
surface gravity water waves have been carried out analytically or 
numerically or experimentally over the decades. Analytical and 
numerical solutions are sought in the fully nonlinear potential theory, 
while most Euler and Navier-Stokes models have to rely on the 
numerical schemes or experimental studies. Non-fixed (deforming) 
meshes are needed for traditional numerical methods; such as finite 
element method (FEM) or finite difference method (FDM) or finite 
volume method (FVM) for examples see Glauss,1 Lo and Young.2 If one 
tries to solve the problem by conventionally numerical methods such as 
mixed Eulerian-Lagrangian (MEL) or arbitrary Lagrangian-Eulerian 
methods (ALE), an excessive number of nodes (moving and fixed) and a 
huge size of matrix usually accompany with the formulation. Besides, 
these mesh-based methods will encounter the over-distorted mesh and 
re-meshing problems during the simulation of water wave evolutions. 
Another popular numerical scheme to simulate the nonlinear water 
waves is the boundary element method (BEM), or named as boundary 
integral equation method (BIEM). Time-domain boundary element 
method has been employed for its applicability to compute steep water 
wave propagation since nonlinear free surface conditions were fully 
incorporated (Longuet-Higgins and Cokelet;3 Issacson;4 Dommermuth 
and Yue;5 Grilli et al;6 Cooker et al;7 Ohyama and Nadaoka;8 Grilli et al9 
Particle trajectories and the nonlinear boundary conditions on the free 
surface can be predicted by the MEL or ALE time marching scheme 
through the numerical integration in the time domain. The velocity 
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potential of linear boundary value problem can then be solved directly at 
the further time step. The review paper of Tsai and Yue10 explained the 
MEL approach in detail. Lo and Young

2
 work concentrated on the ALE 

method. Dual BEM has also been introduced to simulate the degenerated 
linear water wave problems in wave-structure interaction by Chen et al.11, 

12 As BEM is based on solving integral equations, numerical integration 
along the boundaries is always inevitable. Evaluating these integrals is a 
tedious and non-economic task since there are singularities on the 
boundaries, either fixed or moving ones. Furthermore, BEM produces 
full dense matrices, which is time consuming when solving the linear 
algebraic system, although BEM is a mesh-reduction and 
dimension-reduction mesh-based method. Though the dense matrices can 
be efficiently compressed to some sparse ones and the computation may 
be speeded up by some means of approximation such as fast multipole 
method: Rokhlin,13 panel clustering: Hackbusch and Nowak14 or wavelet 
compression: Beylkin et al,15 the need of computing tedious singular 
integrals still remains in BEM with some difficulties for implementing 
free surface water wave problems. Beck, Schultz and their coworkers: 
Cao et al;16,17 Celebi and Beck;18 Scorpio and Beck,19 and Young et al20 
alternatively proposed an approach by moving the singularities away 
from the boundaries and outside the computational domain to 
desingularize the integral equations. The surface integrals can be 
evaluated by simpler techniques as a result of the desingularization, thus 
efficiently reducing the computational time. The approach has been 
successfully applied

16 19−
 to simulate both steady and time-dependent 

water wave problems. However mesh generation and connectivity and 
numerical integration are still imperative in this desingularized BEM 
scheme as comparing to the present proposed meshless scheme such as 
the method of fundamental solutions (MFS). 
An innovative class of methods has appeared in the past decade, which 
attempts to overcome the requirement of computational grids or meshes 
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of mesh-based methods. These schemes have several names, such as 
meshless, mesh-free, grid-free, element-free, mesh-reduction, particle or 
finite point methods, including the Galerkin and collocation methods. All 
of them share the common characteristics of no need of mesh and 
associated explicit connectivity information, which is built by the method 
in a process designated by the users.  The connectivity includes 
node-to-node distances, azimuths and the sequential relations among 
these nodes. The basic idea of meshless method is the construction of 
radial basis functions (RBFs) that only states the relationship between the 
two-point distances which are very easily extended to the 
multi-dimensional problems. The RBFs were first developed for 
interpolating scattered data: Hardy;21 Franke,22 and later became a kind 
of artificial neural network kernels: Moody and Darken.23 The 
applications of the concepts of RBFs to solve partial differential 
equations (PDEs) have been introduced for years: Kansa.24 Many 
meshless methods have been reported in the recent literature, such as 
element free Galerkin method: Belytschko et al25, diffusion element 
method: Nayroles at el26, reproducing kernel particle method: Liu et al27, 
smoothed particle hydrodynamics (SPH) method: Monaghan,28 particle 
finite element method: Onate et al,29 meshless local Petrov-Galerkin 
(MLPG) method: Atluri;30 Ma,31 method of fundamental solutions 
(MFS) : Kupradze and Aleksidze;32  Fairweather and Aarageorghis;33 
Wu et al34 and so on. Among them, the SPH, MLPG and MFS have been 
widely used to simulate water wave problems. Generally speaking, there 
are two kinds of meshless methods, namely the domain-type and the 
boundary-type methods. In the domain-type meshless method, any single 
RBF does not satisfy the governing equations, and there must be a large 
number of collocation points in both the computational domain as well as 
the boundary to obtain a better solution. Thus neither the number of 
nodes nor the size of matrix is reduced too much, and the advantages of 
domain meshless approach are just for easy programming and avoiding 



 5

the chore of mesh generation. There are many works in the literature on 
solving fluid dynamics problems with domain-type meshless methods 
such as: Du;35-36 Zhou et al;37 Young et al;38 Ata and Soulaimani;39 Ma.31 
On the other hand, in the boundary meshless method in some PDEs (such 
as Laplace, Helmholtz, etc. for example), one can choose the 
fundamental solutions of the linear operators to be the RBFs: Golberg 
and Chen;40 Young et al,41 which will automatically satisfy the governing 
equations except at the centers of RBFs. If all the source points (centers 
of RBF) are set outside the computational domain, there will be no 
singularity in the computational domain at all and only collocation on the 
boundary points is needed to solve the problems. One kind of these 
meshless methods is named as the method of fundamental solutions 
(MFS). The idea of MFS is similar to the desingularized BEM, while the 
difference is that desingularized BEM still needs some numerical 
integration along boundary meshes (or elements) one by one, but MFS 
only employs collocation about the boundary points without needing any 
mesh generation and numerical integration. Therefore the MFS is more 
simple and efficient than the desingularized BEM to model nonlinear 
water wave problems. 
Among the works of investigation of the nonlinear water wave problems 
governed by the fully nonlinear potential theory, perturbation techniques 
to linearize the system to become linear or higher order theories are 
usually employed to deal with the moving and fully nonlinear free 
surface boundary conditions. After perturbation work is undertaken, the 
difficulty of free surface boundary conditions is circumvented by a fixed 
boundary which becomes weakly nonlinear or even linear in the time 
domain such as: Peregrine;42 Fenton and Rienecker;43 West et al;44 
Dommermuth and Yue;45 Issacson and Cheung;46 Nwogu;47 Zhu et al48 as 
well as in the frequency domain for example: Massel;49 Vada;50 Palm;51 
Sulisz52. Perturbation approaches, always accompanying with 
complicated, prolix and tedious equations and scheme formulations, 
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might lose some degrees of accuracy and fail to properly treat the fully 
nonlinear wave problems. Without simplification through perturbation 
procedure, solving the fully nonlinear water wave problems directly will 
encounter the severe situation that the boundary at the free surface is 
moving, nonlinear and not known a periori.  
For the meshless modeling on the linear and nonlinear water wave 
problems, Young et al

53
solved the simple linear water wave problem 

with a semi-infinite domain of normal incident water wave past a 
submerged breakwater using the hypersingular meshless method (HMM) 
which is a further improvement of the MFS in selecting the source 
positions. Wu et al34, 54 used the MFS to solve the two-dimensional fully 
nonlinear water wave problems governed by the fully nonlinear potential 
theory. Ma33, 55, 56 employed the meshless local Petrov-Galerkin (MLPG) 
methods to simulate the two-dimensional nonlinear water wave problems 
for an incompressible and inviscid fluid based on the Euler equations. 
Hon et al57 first used the multiquadrics (MQ) method to study the 
two-dimensional shallow water wave equations and applied to the Hong 
Kong harbor. They used the partial derivatives of RBFs and scattered 
collocation points to solve the shallow water equations problems in 
irregular topographic water bodies. However we are going to limit 
ourselves in this chapter to review the investigation of fully nonlinear 
water wave problems governed by the fully nonlinear potential theory 
using the meshless MFS methods only, since this topic is still in its 
infancy as far as meshless numerical modeling of linear and nonlinear 
water waves is concerned.  

2. Governing Equations and Boundary Conditions 

The problem of a free surface water wave propagating in a flume can be 
considered as a 2-D hydrodynamic problem for the inviscid, irrotational 
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and incompressible fluids with free surface boundary. Thus, there exists 
a velocity potential satisfying the Laplace equation 

 
2 2

2 2 0
x z
φ φ∂ ∂
+ =

∂ ∂
 (1) 

where ( , , )x z tφ  is the velocity potential.  
At the free surface, the boundary conditions are specified by the 
following equations 

 
z zz t x xη η

φ η φ η

= =

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
 (2) 

 2 21 (( ) ( ) )
2z z
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∂ ∂ ∂
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∂ ∂ ∂
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where ( , )x tη  is the free surface displacement. The above two 
equations are called the kinematic and dynamic free surface boundary 
conditions (KFSBC and DFSBC), respectively. 
At the bottom, the boundary condition is the no flux condition. That is  

 
z h z h

dh
z x dx
φ φ

=− =−

∂ ∂
= −

∂ ∂
 (4) 

where ( )h x  is the water depth.  
The boundary condition at the wave generator is 

 
xx tξ

φ ξ

=

∂ ∂
=

∂ ∂
 (5) 

where ( , )z tξ  is the displacement of the wave paddle. 
The boundary condition at the end of the flume is treated as the radiation 
boundary condition which means waves are always outgoing. It is shown 
as: 

 
1

r rx x x xx C t
φ φ

= =

∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠
 (6) 

where C  is the wave speed.  
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Now that we have governing equation and boundary conditions, the 
problem is well posed and can be solved analytically or numerically. 

3. Numerical Implementation - MFS 

The numerical solution at each time step is assumed as the linear 
combination of N  radial basis functions. That is 

 
1

( , , ) ( ) ( , )
N

i i
i

x z t t q x zφ α
=

= ∑  (7) 

where ( , )iq x z  is the radial basis function (RBF) whose center (also 
named source point) is at ( , )i ix z , and ( )i tα  is its weight or intensity 
of source. The type of RBF chosen for φ  in water wave problems can 
be the fundamental solution of a 2-D Laplacian operator. That is 

 ( , ) ( )i iq x z ln r=  (8) 

where 2 2( ) ( )i i ir x x z z= − + −  is the distance from any position in 
the computational domain to that specific source point. The solution 
form satisfies the governing equation automatically throughout the 
computational domain if all the RBF centers are chosen outside the 
computational domain. From this point, we can discretize the time 
domain by using the symbol ( )n  to denote the n-th time step. The 
solution can be obtained by solving ( )n

iα  from the matrix collocated 
from the boundary conditions only. At each time step, there are N  
unknowns ( ( ) ,  1, ,n

i i Nα = ) to be solved. Thus, N  boundary points 
are needed for the method of collocation. Based on the solution form in 
Eq. 7, the partial derivatives of the velocity potential are shown as 
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Then the collocation of surface boundary points is 

 ( )( 1)
( 1)

1
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n
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η

α φ
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+
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where ( 1)nφ + at z η=  is obtained from the KFSBC and DFSBC. The 
time marching schemes for the KFSBC of Eq. 2 and DFSBC of Eq. 3 can 
be obtained from the second-order finite difference in time. That is: 
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The collocation of bottom boundary points of Eq. 4 and wave paddle 
boundary points of Eq. 5 are 

 ( 1)

1

0
N
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i
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where ( 1)n
bu +  is the known velocity of wave paddle. 

Furthermore, the boundary condition at the end of the flume of Eq. 6 can 
also be applied as 
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i
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=
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Apart from the above description, the gradient of free surface in Eq. 12 is 
needed for solving the problem. Wu et al34 proposed the second-order 
finite difference in space to approximate the gradient of free surface. 
Boundary points at the free surface were coded in sequence from 1 to 

sN , which is the count of surface boundary points. The subscript “s” 
denotes the free surface. The gradient of free surface displacement at any 
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specific boundary point can be approximated by a second-order finite 
difference scheme as 
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Since boundary points on the free surface must be coded in sequence and 
arranged in equal space, this method still needs meshes on the free 
surface. To establish a really meshless model, Wu et al54 adopt another 
interpolating method of RBF type artificial neural network and choose 
the Gaussian function to be the RBF to fit the free surface. That is 

 
1

( , ) ( ) ( )
sN

i i
i

x t t p xη β
=

= ∑  (18) 

 
2

2
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i
i
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σ

− −
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where ( )ip x  is the RBF whose center is at ( )s ix , and ( )i tβ  is its 
weight. Following the above-mentioned discretization in the time domain, 

( )i tβ  can be written as ( )n
iβ  at the n-th time step. The values of iσ  

are the shape parameters denoting the range of influence of these RBFs. 
The reason for choosing the Gaussian RBFs to fit the free surface 
displacements is that when solving the weights of these RBFs the matrix 
will become sparse and banded and can be solved rapidly by iterating 
solvers, if the values of the iσ  are small. However, as iσ  approach to 
zero, the Gaussian RBFs perform like the delta functions and the value of 

( , )x tη  is always zero except when x  is at one of the RBF centers. 
The value of iσ  should be chosen properly to avoid this kind of 
singular condition and to solve the problem quickly. According to our 
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experiences, the value of the shape parameter should be greater than half 
of nodal spacing to keep off the singularity. As the free surface at the 
n-th time step ( )nη  is known, the weights ( )n

iβ  can be solved from the 
linear algebraic system, and then the gradient of free surface can be 
obtained as 

 
( )

( )

1

( )
s

n N
n

i i
i

d p x
x dx
η β

=

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
∑  (20) 

The procedures of numerical implementation are illustrated as follows:  
Step 1: The velocity potential in the entire domain φ  and the particle 
displacement at the free surface η  are all set equal to zero initially (at 

1n = −  and 0n = ). 
Step 2: The positions of collocation points at the wave paddle for the 
( 1)thn +  step are updated. 
Step 3: The free surface displacement and the velocity potential at the 
free surface are calculated by Eqs. 12 and 13, respectively. The positions 
of collocation points at the free surface for the ( 1)thn +  step are then 
updated. 
Step 4: Calculating the partial derivatives of the RBFs at all collocation 
points, the boundary conditions at the free surface, the bottom and the 
two ends of the flume are then applied. And the solution of the velocity 
potential in the entire domain at the ( 1)thn +  step can thus be obtained. 
Step 5: The number of time steps proceeded is checked. If the 
requirement of time steps is not achieved, step 2 for the next time step is 
then processed. 

4. Model Applications 

4.1 Wave Heights of a Piston-type Wavemaker  

Ursell et al58 observed and discussed the waves generated by a 
finite-amplitude harmonically oscillating paddle of a piston-type 
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wavemaker. The wave heights were less than predicted by the small 
amplitude wave theory because of the finite-amplitude effects. Ursell et 
al58 carried out 20 test runs for small amplitude waves, and 4 test runs for 
high steep waves. The experimental works were to test the validation of 
the small-amplitude wave theory and also to find the finite-amplitude 
effects on the wave characteristics. The wave conditions included the 
wave period T , water depth h , wave height H , and the wavemaker 
stroke S . Table 1 lists the wave conditions for high wave-steepness 
cases. The paddle position of the piston-type wavemaker in the 
numerical model is a function of time as follows: 

 0( ) cos  t tξ ξ ω= −  (21) 

where ω  is the radian frequency and 0( / 2)Sξ =  is the amplitude of 
the harmonically oscillating paddle. 
The arrangement of source points and boundary points is shown in Fig.1. 
Horizontal spacing of adjacent boundary points along the free surface is 
0.1 m (about 1/10 ~ 1/13 wave length). The interval of numerical time 
step is with the order of 1/50 wave period. When simulation time 
achieves several wave periods, quasi-steady solution nearby the wave 
paddle can be obtained, and then the wave height at each specific 
position will be calculated by subtracting the lowest water level from the 
highest during the time interval of one wave period. The wave height 
distributions near the wave paddle are shown in Fig.2. For short wave 
cases one can find the evanescent waves are significant nearby the wave 
paddle. Since the actual position of wave gage was not mentioned by 
Ursell et al58, we calculate the average wave height in the range of 

1.0 ~ 3.0x m m=  in order to compare with experimental data and the 
small amplitude wave theory. This distance is far enough to avoid taking 
the evanescent waves into account in these cases. The comparisons are 
illustrated in Fig.3. For the case of deep water wave ( / 0.5h L > ), the 
numerical result matches to the experimental data quite well. While for 
the other cases, the wave heights generated by present model is slightly 
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higher than experimental data, but still much lower than predicted by the 
small amplitude wave theory. This demonstrates that the wave heights by 
the small amplitude wave theory are generally over predicted. As far as 
wave heights are concerned, the nonlinearity plays a vital role for the 
finite-amplitude waves.  
 
 
 

Table 1 List of Ursell et al’s58 finite amplitude wave generation conditions 

run T(sec) S(cm) h(ft) H measured (cm) 

21 0.79 2.54 2.00 4.77 

22 0.85 3.15 1.50 5.25 

23 0.95 4.50 1.00 5.47 

24 0.96 5.73 0.66 5.14 
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Fig.1 The arrangement of source points and boundary points 

 

Fig.2 Wave height distributions near the wave paddle 
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Fig.3 Comparison with the experimental data about the deviation from wave 
maker theory due to finite wave steepness 

 

4.2 Second Harmonic Wave Components Generated by a 
High-stroke Wavemaker 

As the stroke of the wave paddle of piston-type wavemaker gets higher, 
the nonlinearity becomes more dominant. While solving the 
second-order equations for the wave making problem, Madsen59 found 
that if the motion of the wave paddle was prescribed as Eq.21, the 
generated surface profile would have this form 

 2 2cos(  ) cos2(  ) cos( 2  )p p p f fa k x t a k x t a k x tη ω ω ω= − − − − + −  (22) 
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2 sinh 2

f

f

k h
n

k h
⎛ ⎞
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 (27) 

In Eqs. 22-27 kp and kf denote the wave number of the fundamental wave 
and the free wave, respectively. The wave numbers can be obtained from 
the following dispersion relations  

 2 tanhp pgk k hω =  (28) 

 24 tanhf fgk k hω =  (29) 

The first term on the right hand side of Eq. 22 is the first-order wave 
component. The second term represents the Stokes second-order waves 
traveling at the same speed as the first-order wave. The third term is the 
second-order free wave, which travels at its own speed. 
Madsen59 performed some experiments to verify the above theories. One 
of the experiments was conducted in a wave channel with a water depth 

38h = cm and a period of the first harmonic 2.75T =  sec. The motion 
of the piston-type wavemaker was taken to be sinusoidal with an 
amplitude 0 6.1ξ = cm. This case was numerically simulated by Dong 
and Huang60 using a finite-analytic model directly solving the continuity 
equation and the Navier-Stokes equations. The length of our numerical 
wave flume is 40 m. A moderate horizontal nodal spacing for simulating 
nonlinear free surface waves is empirically taken less than 1/20 local 
wave length. We choose the horizontal spacing of adjacent boundary 
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points on the free surface to be 0.25 m as a constant, about 1/21 local 
wave length. For convenience, we also set the horizontal spacing of 
adjacent boundary points at the flume bottom to be a constant of 0.25 m. 
The horizontal spacing of source points above the free surface and 
beneath the bottom boundary is also 0.25 m. There are 324 source points 
outside the computational domain. We tested our model and found that 
numerical instability may occur if the offset distance to the sources from 
the boundary is less than the nodal spacing. The interval of numerical 
time step is taken to be 0.04 sec. The numerical results of free surface 
displacement at two stations, x = 4.9 m and 8.7 m, are illustrated in Fig. 
4a and Fig. 4b, respectively. The comparisons show that the numerical 
results coincide with the experimental data and the analytical results as 
well as the results of the other numerical models. The numerical results 
of free surface profile at t = 21.8 sec along the wave flume are shown in 
Fig. 5. Our potential results compared well with those of Dong and 
Huang

60
although they used the viscous and rotational Navier-Stokes 

model. From the shape of the wave profile, one can find that the 
sinusoidally moving wave paddle does generate second-order free waves, 
which disrupt the permanent wave form. Observations from Figs. 4 and 5 
indicate that the inertia force dominates the wave motion and ignoring 
the viscous effect is a reasonable assertion when solving such kind of 
water wave problems.  
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Fig. 4. Comparison between observed, predicted, and numerical surface displacements generated by 

sinusoidally moving wavemaker: ( ) experimental data (Madsen59); (○) analytical solution from Eq. 
(22); ( ) numerical results of Dong and Huang60; ( ) results from present numerical model 
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Fig. 5 Numerical results of free surface profile at t = 21.8 s along the wave flume: ( ) 
numerical results of Dong and Huang60; ( ) results from present numerical model 
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4.3 Monochromatic Waves Passing Over a Submerged Obstacle 

Ohyama and Nadaoka8 developed a BEM model to solve the Laplace 
equation for the irrotational flow of an inviscid liquid. In order to verify 
their numerical model and to analyze the modulation of the frequency 
spectrum for waves traveling over a submerged structure, Ohyama et al61 
carried out near breaking wave generation experiments in a physical 
wave flume, both monochromatic waves and random ones were 
generated. The layout of the physical wave flume is shown in Fig. 6. 
Present model is applied to two monochromatic wave tests, with two 
different frequencies (0.5 Hz and 0.8 Hz, referred to as the “long” and 
“short” waves respectively). The wave heights for the two experiments 
are respectively 0.02 cm and 0.025 cm. Data for comparison were 
digitized from the paper of Ohyama et al61  We applied the radiation 
boundary condition on the slope at the position of 0.15 m water depth in 
the rear part of the flume. For the long wave test, horizontal spacing of 
adjacent boundary points in front of the shelf varies from 0.1 m to 0.2 m, 
about 1/20 local wave length. We set the horizontal spacing above the 
shelf and in the lee region as a constant of 0.1 m, to obtain fine resolution 
for strong nonlinear waves. There are 398 source points outside the 
computational domain. For the short wave test, the boundary points are 
arranged in a similar regulation, while the horizontal spacing of adjacent 
boundary points is in the range from 0.08 m to 0.125 m, and the number 
of source points is 552. We also simulate these cases by arranging the 
free surface nodes in constant space, with 508 and 634 source points for 
long and short wave cases respectively. The numerical results of the free 
surface displacements for long and short monochromatic waves are 
shown in Figs. 7 and 8, respectively. The comparison shows that present 
model performs very well as the other experimental or numerical results. 
It is worthwhile to observe how the initially sinusoidal wave form 
evolves as it travels over the obstacle. In the upslope region, saw-toothed 
shape waves with the slight forward pitch can be observed. On the top of 
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the shelf, both short and long waves are reminiscent of the soliton 
formation behind a solitary wave propagating into a shallow depth. In the 
deepening region, because the higher harmonic free components travel at 
their own speeds, no permanent wave shape can be formed. One can 
discover that the evolution of the short waves is less appreciable. This is 
because the short waves are less obstructed by the seabed than the long 
waves. 
 
 
 

 

 

 

 

 

 

Fig. 6 Wave flume and locations of wave gages (Ohyama et al61) 
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Fig. 7 Free surface displacements for long monochromatic waves at stations 1-7: ( ) 
experimental data (Ohyama et al61); ( ) numerical results of Ohyama et al;61 ( ) present 
results with constant nodal spacing; ( ) present results with varying nodal spacing 
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Fig. 8 Free surface displacements for short monochromatic waves at stations 1, 3, 5, and 
7: ( ) experimental data (Ohyama et al; 61) ( ) numerical results of Ohyama et 
al; 61 ( ) present results with constant nodal spacing; ( ) present results with 
varying nodal spacing 

5. Conclusions 

This boundary-type meshless method requiring neither domain nor 
surface meshing is suitable for solving problems with deforming and/or 
moving boundaries. In free surface water wave problems, fundamental 
solution of the Laplace operator is chosen to be the form of the radial 
basis function so that only collocation points along the boundary are 
needed. By fitting the free surface displacement with Gaussian radial 
basis function, a truly meshless model is established. The MFS is an 
alternative method with neither prolix scheme formulation nor tediously 
iterating procedures for simulating fully nonlinear free surface gravity 
water wave problems.  

The MFS has been successfully applied to calculate the following 
three nonlinear water wave problems: 1. Wave heights of a piston-type 
wavemaker, 2. Second harmonic wave components generated by a high 
stroke wavemaker, and 3. Monochromatic waves passing over a 
submerged obstacle. Very good agreement of these three case studies is 
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observed as comparing with analytical solutions, experimental data and 
other numerical results. This demonstrates that the MFS is a simple and 
powerful meshless numerical method to simulate the nonlinear water 
wave problems. 
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