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An Efficient Galerkin BEM to
Compute High Acoustic
Eigenfrequencies
An efficient numerical method, using integral equations, is developed to calculate pre-
cisely the acoustic eigenfrequencies and their associated eigenvectors, located in a given
high frequency interval. It is currently known that the real symmetric matrices are well
adapted to numerical treatment. However, we show that this is not the case when using
integral representations to determine with high accuracy the spectrum of elliptic, and
other related operators. Functions are evaluated only in the boundary of the domain, so
very fine discretizations may be chosen to obtain high eigenfrequencies. We discuss the
stability and convergence of the proposed method. Finally we show some examples.
�DOI: 10.1115/1.3085894�
Introduction
It is well known that the computation of eigenfrequencies is one

f the most approached topics of the past decades, due to the need
o determine the response of physical systems submitted to
tresses. The existing literature is numerous and delivers valuable
odels to solve a wide number of spectral problems. From these
orks, for the finite elements methods, we may mention works by
abuška and Osborn �1�, Zienkiewicz �2,3�, Strang and Fix �4�,
den and Reddy �5�, Wait and Mitchell �6�, Mercier et al. �7�,
aviart and Thomas �8�, Kolata �9�, Brezzi and Fortin �10�, Ran-
acher �11�, and Grégoire et al. �12,13�. Other useful bibliography
ncludes works by Bernardi and Maday �14�, Gottlieb and Orszag
15�, Vandeven �16�, Forsythe and Wasow �17�, and related works
f Banerjee et al. �18�, Coyette and Fyfe �19�, Ali et al. �20�, and
irkup and Amini �21�. Finally we may mention more recent

elated works by Chen and co-workers �22,23� and Alves et al.
24�.

The motivation for this study is the computation of high fre-
uencies in acoustics in two- or three-dimensional spaces. That is,
e deal with very small wavelengths compared with the diameters
f the propagation medium, which in practical applications means
avelengths that are 500 or more times smaller than the diameter
f the domain. Such a problem is most difficult to solve by using
echniques developed in the references above. We may neverthe-
ess overcome this difficulty by using potential theory to reformu-
ate the differential problem and then making use of the standard
alerkin method to obtain the discrete problem. This procedure
ives us an effective numerical method, which is capable of find-
ng the eigenfrequencies with great precision, without computing
he nonuseful ones. The eigenfunctions can then be easily deter-

ined.
In architectural acoustics there are no step by step rules in de-

igning rooms, since the physical phenomena involved are com-
lex. Therefore, we have to settle for some approximate model,
hich best fits our particular case. The engineer’s experience and

ntuition are often the best tools at hand.
There are many ways of evaluating room acoustic characteris-

ics. We concentrate on the determination of normal frequencies or
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eigenfrequencies of the rooms whose wavelengths are such that
stationary waves may appear. Once we determine the normal fre-
quencies, along with the reverberation time, we obtain an almost
full description of the room acoustic properties. A room will re-
spond strongly to those sounds whose frequencies neighbor the
normal ones. In fact, the room behaves as a resonator that has
many vibration modes allowed. If there is a monofrequencial
sound source present, we observe a forced oscillation. Thus the
sound pressure amplitude at a given point will depend on the
relation between the source frequency and the room normal fre-
quencies. Other factors that affect this amplitude are the source
output power, the damping factor �given by the absorption of the
walls�, the location of the source in the room, and, of course, the
position where we wish to know the sound pressure amplitude.

We immediately note the importance of knowing these vibra-
tion modes, since we can deduce many acoustical properties from
them, such as the normal frequency density and spacing, the
Schroeder cut-off frequency, Borello’s criterion, and the position
of nodes and antinodes.

Unfortunately, we may determine the normal frequencies ex-
actly or analytically only when we deal with certain regularly
shaped rooms, such as rectangular or cylindrical ones. That is why
most theoretical work has been done with rectangular rooms �see
Refs. �25–27��. When we deal with irregularly shaped enclosures,
we have to make use of other theories to describe the room, such
as ray acoustics or statistical room acoustics. The drawback of
these theories is that they only apply to limited frequency ranges
or make use of experimental formulas. To find the normal fre-
quencies of irregularly shaped rooms, we must use numerical
methods. The problem is that most numerical methods cannot cal-
culate high normal frequencies, since they are limited by the fre-
quency wavelength. The shorter the wavelength, the finer the grid
must be. In our test example �see Sec. 3.1� we use a two-
dimensional domain of 2�1 �m2�, and we calculate eigenfrequen-
cies with wavelengths close to 0.018 �m�. Other methods fail to
calculate such eigenfrequencies.

In Sec. 2 we present the model problem and its equivalent
integral formulation. Section 3 is devoted to obtaining the discrete
variational formulation, also called energy formulation, and to
finding the matrix system associated with it. The numerical analy-
sis, the discussion about the stability using integral representations

�in acoustic and electromagnetic problems�, and the results are
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iven in Sec. 4. In Sec. 6 we give the conclusions and the discus-
ion of the application of this technique to other problems of high
omplexity.

The Model Spectral Problem and the Integral Rep-
esentation

Let � denote a bounded domain in RN �N=2 or 3�, and let ��
enote its boundary, which we suppose to be smooth �in practice,
he solid body represents the wave propagation medium �see Fig.
��. We are interested in solving the following differential prob-
em: Find ��R and a non-null complex valued function u :�

C, which is a solution of

− �u = �u in � �1a�

u = 0 on � � �1b�
t is well known that Eq. �1a� is nothing but the acoustic wave
ropagation equation in periodic time dependence, as well as in
bsence of external sources. Relation �1b� is a Dirichlet homoge-
eous boundary condition. We are also interested in considering a
eumann homogeneous boundary condition, that is,

�u

�n
= 0 on � � �1c�

here the normal derivative is defined by �u /�n=�u ·n.
The parameter � is the wave number, which is associated with

he frequency f by the relation

�� =
2�f

c
�2�

here the real number c denotes the wave propagation speed. We
all � the eigenfrequency and u�·� the eigenfunction.

The only non-null solutions of Eqs. �1a� and �1b� are a count-
ble sequence of pairs ��n ,un�, n�N that satisfy the following
roperties:

0 � �1 � �2 � �3 . . . � �l → + � as l → + �

�
�

unumdx = �0 n � m

1 n = m
�

�
�

�un · �umdx = 0 ∀ n � m

herefore, if ���n, ∀n	1, then u�·�=0 is the unique solution of
qs. �1a� and �1b�. The set of solutions associated with the Neu-
ann homogeneous problem Eqs. �1a� and �1c� has the same

roperties.
The spectral problem �Eqs. �1a�–�1c�� is a classical elliptic one

nd the calculation of the first eigenfrequencies presents no prob-
ems. For this, efficient numerical methods already exist; among
he most popular we have finite elements, finite differences, point
ollocation methods, and, recently, multiparameter extrapolation
lgorithms. Moreover, most of them have very good rate of con-
ergence estimates for the spectral approximation. A particular
ase is the superconvergence phenomenon associated with several

Ω

∂Ω
�n

Ωe = R
N\Ω

Fig. 1 Domain of wave propagation
nite �7�. All of these numerical methods fail when we wish to
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obtain eigenfrequencies and eigenvectors linked to vibratory
states produced by small wavelengths. In this case, discretized
problems lead to huge matrices that are not adapted to numerical
simulation producing instabilities and outlayer values.

To avoid this difficulty we propose the use of the potential
theory. It is well known that in this theory, a function that satisfies
Eq. �1a� may be written using integral representation �28–30�. In
fact, u�·� satisfies Eq. �1a� if and only if

u�x�

=	���

�u

�n
�y�G��x,y�ds�y� −�

��

u�y�
�G�

�ny
�x,y�ds�y� ∀x � �

2�
��

�u

�n
�y�G��x,y�ds�y� − 2�

��

u�y�
�G�

�ny
�x,y�ds�y� ∀x � ��


�3�

where the integrals are defined on the boundary of �. Their asso-
ciated integration variable is y, the symbol ny gives the depen-
dence of the unit normal vector on the variable y, and the function
G��· , ·� is the well known Green’s function associated with the
Helmholtz operator �see the references of above� which, for N
=2 or 3, is given by

G��x,y� = 	
i

4
H0

�1�����x − y�� if N = 2

ei���x−y�

4��x − y�
if N = 3
 �4�

Here, the function H0
�1� is the classical Hankel function of order

zero and of the first kind �31�. It is worth remarking that Eq. �3�
yields the non-null solution u�·� defined in all �. In order to use
these formulas, it suffices to know the values of u�·� and �u

�n �·� on
��.

From a mathematical point of view, notice that we have con-
sidered a non-null function u�·�, which vanishes outside �, that is

u�x� = �u�x� if x � �

0 if x � �e
� �5�

where �e=RN \� is the exterior domain.
Introducing the boundary condition �1b� and substituting in Eq.

�3�, it is easy to see that u�·� actually has an integral representa-
tion, namely, simple-layer potential, given by

u�x� =�
��

�u

�n
�y�G��x,y�ds�y� ∀ x � � �6�

Since G��· , ·� is given �see Eq. �4��, solving Eq. �6� is equivalent
to finding u�·� in � or, alternatively finding �u

�n �·� on ��. However,
if we want to solve Eqs. �1a� and �1b�, then �u

�n �·� should satisfy
the integral equation

�
��

�u

�n
�y�G��x,y�ds�y� = 0 ∀ x � ��, ∀ � � R �7�

Thus, our method consists of computing a high accuracy approxi-
mation of the function �u /�n�·� and, next, searching for values of
� for which formula �7� is singular, that is, for those values such
that Eq. �7� has at least one non-null solution.

Similarly, problem �1a� together with Neumann’s homogeneous
boundary condition �1c� may be formulated equivalently by inte-
gral representations. For this, the main idea is to consider an ex-
tension of u�·� other than Eq. �5�. More precisely, if we denote the
solution of the problem by ue :�e→C,
− �ue = �ue in �
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ue = u on � �e

�u�x�� → 0 as �x� goes to infinity

��u�x�� → 0 as �x� goes to infinity �8�

hen the function uT�·�, defined by

uT�x� = �u�x� if x � �

ue�x� if x � �e
� �9�

atisfies the transmission problem

− �uT = �uT in � � �e �10a�

�uT� = 0 on � � �10b�

� �uT

�n

 = q on � � �10c�

ere we have considered the jumps of the function as well as its
ormal derivative along the boundary ��. We denote the jumps
y

�uT��x� = u�x� − ue�x� �11a�

� �uT

�n

�x� =

�u

�n
�x� −

�ue

�n
�x� �11b�

t is straightforward to see that uT�·� restricted to � is none other
han u�·�. Also, it is easy to see that uT�·� has an integral repre-
entation given by

uT�x� =�
��

� �uT

�n

�y�G��x,y�ds�y� −�

��

�uT�

��y�
�G�

�ny
�x,y�ds�y� ∀ x � �e �12a�

1

2
�u�x� + ue�x�� =�

��

� �uT

�n

�y�G��x,y�ds�y� −�

��

�uT�

��y�
�G�

�ny
�x,y�ds�y� ∀ x � �� �12b�

y introducing the transmission conditions �10b� and �10c�, this
epresentation actually reads

uT�x� =�
��

q�y�G��x,y�ds�y� ∀ x � RN �12c�

aking into account the Neumann boundary condition �1c�, we
ompute the interior normal derivative of expression �12c� on ��.
t yields

� �uT

�n
�

int

�x� =
1

2
q�x� +�

��

q�y�
�G�

�nx
�x,y�ds�y� ∀ x � ��

�13�

ut

� �uT

�n
�

int

�x� =
�u

�n
�x� = 0 on � �

rom which we deduce the integral equation

1

2
q�x� +�

��

q�y�
�G�

�nx
�x,y�ds�y� = 0 ∀ x � �� �14�

gain, high accuracy in computing q�·� leads to those values of

0 for which Eq. �14� is singular, and, as we said before, it has

on-null solutions.
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It is thinking about extension on �e of the function u�·� in a
different way of �1.5� and �1.9�, respectively. In fact, we can con-
sider ue�·� such that

�uT��x� = ��x� on � � �15a�

� �uT

�n

�x� = 0 on � � �15b�

In that case, and for the Dirichlet boundary condition, the equation
given by the values of the double-layer potential on the surface
�� is

−
1

2
��x� +�

��

��y�
�G�

�ny
�x,y�ds�y� = 0 ∀ x � �� �16a�

which is very analogous to Eq. �14�. A more difficult expression is
obtained in the Neumann case, because a not usual Lebesgue in-
tegral appears. More precisely, the hypersingular integral equation
is given by

�

�nx
�

��

��y�
�G�

�ny
�x,y�ds�y� = 0 ∀ x � �� �16b�

It makes sense as finite part of a distribution �see Refs.
�32,33,28��, which is much more complex to implement and com-
pute.

3 The Variational Formulation and its Discretization
We are interested in dealing with the following type of integral

equation: Find q :��→C such that

�
��

q�y�G��x,y�ds�y� = u0�x� ∀ x � �� �17�

where u0 :��→C is a given function. It is clear that in our case
�7�, the corresponding data is u0=0. To tackle Eq. �17�, we use the
variational formulation, also called energy formulation. It is ob-
tained by multiplying Eq. �17� by ��·� and integrating on ��. This
leads to the variational problem: Find

q:�� → C

such that

�
��

�
��

q�y��̄�x�G��x,y�ds�y�ds�x� =�
��

u0�x��̄�x�ds�x� ∀ x

� �� �18�

for all regular function ��·�. Linear system �18� has only one
solution, except for the cases �=�n, n	1. It means that �18�
becomes singular for these special values, and the associated ho-
mogeneous problem �7� has at least one non-null solution. Thus
we approach by a finite discretization q�·� and look for those
positive real values of � for which the operator, the matrix in the
discrete case, is singular.

As we have a variational formulation �Eq. �18��, it is quite
natural to approximate the problem using the Galerkin method.
For the sake of simplicity, in what follows, we expound on the
discretization method by using P0-Lagrange finite element on ��.
However, this procedure could be adopted with any other degree
of polynomial approximation or, another discrete scheme.

Let Th be a regular surface mesh discretizing �� in classical
sense �34�. Then we have

��h = �
Mh

Tj Tj � Th

j=1

JUNE 2009, Vol. 131 / 031001-3
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Ti � Tj = � ∀ i � j

he real positive parameter h measures the finesse of the discreti-
ation Th. Defining functions I j as follows

I j�x� = �1 if x � Tj

0 if not
�

e can approach q�·� by

qh�y� = �
j=1

Mh


 jI j�y� ∀ y � ��

hich is equivalent to consider constant approximations on each
lement Tj. The discrete equation associated to Eq. �18� becomes

�
j=1

Mh


 j�
��h

�
��h

I j�y��̄h�x�G��x,y�ds�y�ds�x�

=�
��h

u0�x��̄h�x�ds�x� �19a�

or all regular discrete function �h�·�. In particular, taking �h�x�
Ii�x�, for all i=1, . . . ,Mh, we obtain

�
j=1

Mh


 j�
Ti

�
Tj

G��x,y�ds�y�ds�x� =�
Ti

u0�x�ds�x� �19b�

e define the complex matrix and the complex vectors

A��� = �aij���� 1 � i, j � Mh �20a�

� = �
i� 1 � i � Mh �20b�

b = �bi� 1 � i � Mh �20c�

here the terms aij and bi are computed as follows:

aij��� =�
Ti

�
Tj

G��x,y�ds�y�ds�x� �21a�

bi =�
Ti

u0�x�ds�x� �21b�

f we adopt these notations, then Eq. �19b� reads

A���� = b �22�

t is important to remark that matrix A��� is symmetric and it has
erms that must be computed carefully, because they include sin-
ularities. Making the calculation of qh�·� with high accuracy im-
lies: �i� taking Mh big enough �h
0 small�, and, �ii� determining
ij��� with adequate numerical integration formulas. The first
uestion �i� is solved by comparing the diameter of � and the
avelengths corresponding to the values of the desired frequen-

ies. The other question �ii� is much more complicated, despite it
as a trivial part. If the distances between the centers of mass of Ti
nd Tj are greater or equal than five times the wavelength, then we
se classical numerical integration techniques �for example, dif-
erent Gauss’ points on Ti and Tj�. Otherwise, the elements Ti and
j are too close and we use analytical development coupled to a
ne numerical integration formula.
Under the above considerations, we can prove �35,28� that

�
��

�q�y� − qh�y��2ds�y� � Chs �23a�

or some s
0, which implies that

lim��lh − �l� = 0 ∀ l 	 1 �23b�

h→0

31001-4 / Vol. 131, JUNE 2009
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Convergence rate estimates for spectral problems are much
more difficult to derive. In this case, we refer to Ref. �35�. The
general framework may be found in Refs. �1,7�.

We finish this section by remarking that the discrete version of
Eq. �14� is as follows: Find

qh:�� → C

such that

1

2�
��h

qh�x��̄h�x�ds�x�

+�
��h

�
��h

qh�y��̄h�x�
�G�

�nx
�x,y�ds�y�ds�x� = 0 ∀ x � ��

�24�

or in matrix notation,

�1

2
D + B����� = 0 �25�

where D is a diagonal matrix, having the i-diagonal term equal to
the measure of Ti�Th, whereas B��� is computed similarly to
A��� as follows:

bij��� =�
Ti

�
Tj

�G�

�nx
�x,y�ds�y�ds�x� �26�

4 Numerical Results
To compute the terms of the matrix defined in Eq. �20a� �or the

singular part B��� of the matrix in �25��, we use the following
rule:

aij��� = 	�
k,l

G��xk,yl��k�l if dist�Ti,Tj� 	 5�

�
k

F�k,���k if not 
 �27�

where xk ,yl are the points of some numerical integration rule,
�k ,�l are their corresponding weights, and � is the wavelength
considered. The complex function F�k ,�� is given by

F�k,�� =�
Tj

G��xk,y�ds�y� �28�

and it must be determined very carefully. It seems that the best
way to compute it is the analytical development. For the two-
dimensional case, it is well known that F�k ,�� can be computed
exactly �32�. The three-dimensional case may be consulted in the
works of Hamdi �33,36� and the references therein.

Factorizing matrix A��� in the LU-form, �it is also possible to
factorize the matrix A��� in the QR-form� we may define the
real-valued function as follows:

g��� =
max1�i�Mh

�uii����

min1�i�Mh
�uii����

�29�

where uii is the ith diagonal element of matrix U, for i
=1, . . . ,Mh. This function has a countable number of singularities,
which correspond to the eigenfrequencies we are looking for.

4.1 The Test Example. We consider �= �0,2�� �0,1��R2.
It is well known that the solutions of Eqs. �1a� and �1b�, ∀n ,m
	1, are given by

un,m�x1,x2� = sin�n�x1�sin�m�x2� �30a�

2
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�n,m = �n�

2
�2

+ �m��2 �30b�

igure 2 �which resolution of increment of � is 0.001� shows the
owest calculated eigenvalues of Eqs. �1a� and �1b�, obtained for
6 degrees of freedom. All the measures are in meters and sec-
nds. We verified the concordance and preciseness with the theo-
etical ones and are given in Table 1.

It is worth remarking that we have obtained relative errors of
rder 10−4 by computing with a low number of freedom degrees.
For the case of small wavelengths, we show Fig. 3 �whose

esolution of increment of � is 0.00001�. As mentioned in Sec. 1,
his corresponds to wavelengths closes to 0.018 �m� and it was
btained for 3336 freedom degrees. Table 2 shows the relative
rrors obtained.

4.2 About the Stability Using Integral Representations.
ince the spectrum is real, in order to calculate the function g���
efined in Eq. �29�, it is natural to think of working only with the
eal parts of matrices defined in Eq. �22� or �25�. In fact, on one
and we must compute a real spectrum, and on the other hand no

40200
0

10

20

30

40

50

60

g
(λ

)

Fig. 2 The lowest eigenfrequ

Table 1 Theoretical and approximated eigenfrequencies

n m
Theoretical

eigenfrequencies
Calculated

eigenfrequencies
Relative

error

1 1 12.3370055 12.33 0.0005678
1 2 19.7392088 19.73 0.0004665
1 3 32.0762143 32.06 0.0005055
2 1 41.9458187 41.94 0.0001387
2 2 49.3480220 49.34 0.0001626
2 3 61.6850275 61.65 0.0005678
1 5 71.5546319 71.54 0.0002045
2 4 78.9568352 78.92 0.0004665
3 1 91.2938407 91.29 0.00004207
3 2 98.6960440 98.69 0.00006124
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radiation conditions are essentially needed. As it is tested numeri-
cally in Ref. �37�, this choice is very inadequate because the dis-
crete operator becomes very singular. We can compare Fig. 2 with
Fig. 4 for the same number of degrees of freedom.

It is well known, for the Helmholtz problem, that the boundary
integral equations for solving exterior �and interior� problems re-
sult in spurious eigenvalues �or eigenfrequencies�. This phenom-
enon of instability is well explained by Chen and co-workers
�22,23� and it is mainly due to the singularity of the kernel �asso-
ciated to the integral equations� combined with the specified
integral formulation used. Let us notice that this phenomenon of
instability also appears while computing the Maxwell’s eigenfre-
quencies by using integral equations. We will see this in Sec. 5.

5 Instabilities in the Calculation of Maxwell’s Eigen-
frequencies

We compute the solution of 3D Maxwell equations for the case
of a perfect conducting sphere illuminated by an incident plane
wave. Thus, we search the solution of the following exterior prob-
lem:

rot E − i��H = 0 in �e

rot H + i��E = 0 in �e

E ∧ n = − Einc ∧ n on � �

���E − ��H ∧ n� �
c

r2 as r goes to infinity �31�

where �e�R3 \B�0,1�, Einc is a given incident wave with angular
frequency �, E is the electric field, H is the magnetic field, � is the
dielectric permittivity, and � is the magnetic permeability.

Using an integral representation it is quite easy to obtain the

1201008060

λ

cies of the test example „3.4…
following variational formulation �28�: Find
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q � Hdiv
−1/2�����q:�� → C�

uch that

i���
��

�
��

G��x,y�q�x� · qt�y�ds�x�ds�y�

−
i

��
�

��

�
��

G��x,y�div q�x�div qt�y�ds�x�ds�y� =

−�
��

Einc�y� · qt�y�ds�y�, ∀ qt � Hdiv
−1/2���� �32�

here the function G��· , ·� is Green’s function defined in Eq. �4�
or N=3 and �=�2��. Actually, we deal with the wave number
=�2 instead of �. Furthermore, the electric current q�x� on the
urface �� is defined as the trace of the tangential component of
he magnetic field intensity inside the cavity, that is,

q�x� = �H ∧ n��x�, x � �� �33�
For the computation of these terms, we have used the discreti-

ation techniques given in Refs. �38,28�.
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Fig. 3 The eigenfrequencies of the test ex

able 2 Theoretical and approximated eigenfrequencies for
he case of small wavelengths

n m
Theoretical

eigenfrequencies
Calculated

eigenfrequencies
Relative

error

10 111 121850.1359 121850.1179 1.4772�10−7

217 24 121872.3425 121872.3429 3.2821�10−9

60 107 121879.7447 121879.4929 2.0660�10−6
31001-6 / Vol. 131, JUNE 2009
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It is well known that the eigenfrequencies of the Maxwell sys-
tem of equations on the unit ball are none other but the zeros of
the following functions:

jl�k�

k
d

dk
jl�k� + jl�k� �34�

where jl denotes the spherical Bessel function of order l	1. The
zeros of such functions are denoted by kl,s

� for the first one, and by
kl,s� for the second one �1�. These zeros are specified in Table 3.

These values agree well with the approached eigenfrequencies
or singularities obtained by computing the function g��� using the
whole Galerkin complex matrix A��� �see Fig. 5�. We considered
1440DOF. Considering the wave propagation speed of an electro-
magnetic field in vacuum and the number of degrees of freedom
used, we can obtain good precision only for frequencies lower
than 400 MHz, or equivalently, k�8.377 �at least five discrete
triangles per wavelength�. A very different situation occurs when
computing the eigenfrequencies using only the real symmetric
Galerkin matrix AR��� �see Fig. 6�.

5.1 Preconditioners for the Numerical Solution of Bound-
ary Integral Equations. If the Garlerkin matrix A��� of Eq. �21a�
or B��� of Eq. �26� is associated with an adequate preconditioning
matrix Zh���, such that Zh���A��� �or Zh���B���� models a com-
pact perturbation of the identity operator and such that the speed
of convergence of the preconditioned system is larger than the
speed of convergence of the nonpreconditioned system, then we
can expect to have a very efficient algorithm for the calculated
eigenvalues of Eqs. �1a� and �1b� or Eqs. �1a� and �1c�. The ap-

187 1.2187 1.2188 1.2188 1.2189

×106

ple „3.4… for the case of small wavelengths
1.2

λ

plication and the numerical evidence of the efficiency of the pre-
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Fig. 4 The lowest eigenfrequencies computed by using real Galerkin matrices
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Table 3 First eigenvalues for the spherical cavity of unitary radius

k1,1
� k2,1

� k1,1� k3,1
� k2,1� k4,1

� k1,2
� k3,1� k5,1

� k2,2
� k1,2� k4,1� k6,1

� k3,2
� k2,2� k7,1

� k1,3
� k5,1�

.74 3.87 4.49 4.97 5.76 6.06 6.11 6.98 7.14 7.44 7.72 8.18 8.21 8.72 9.09 9.27 9.31 9.35
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Fig. 5 Computed eigenfrequencies for the sphere using matrix A„�…

ournal of Vibration and Acoustics JUNE 2009, Vol. 131 / 031001-7

ded 15 May 2009 to 140.121.146.148. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



c
t
C

6

v
h
i
t
i
s
a

c
r
o
l

A

A
T
a

R

s f

0

Downloa
onditioning technique for the numerical solution of boundary in-
egral equations from acoustics may be consulted in the work of
hristiansen and Nédélec �39�.

Conclusions
In this work, we have presented a method that has several ad-

antages on the previous ones. It is capable of finding much
igher eigenfrequencies �associated with very small wavelengths�,
t may be applied to unbounded domains and it gives an important
ool to treat the three-dimensional domain case. We have shown
ts precision, which may be improved. It suffices to choose a finer
tep once we know approximately where the eigenfrequency lies,
nd search only in the surroundings of the peak.

One of the major improvements of this method is the use of
omplex matrices instead of real ones, which give us much more
eliable results. Although simple, this fact is not quite known. The
nly drawback of this method may be that the computation time is
onger, since matrices are dense than in other ones.
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