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Summary
A simple solution for the uniqueness problem of the wave superposition method is proposed in this paper. Many
authors have pointed out the discrete set of wavenumbers for which the solution of the underlying integral equa-
tions is not unique. So far, the usual solutions are theoretically sophisticated and/or numerically disadvantageous.
Here, by adding some sources interior to the virtual surface defined by the wave superposition method, the unique-
ness problem can be easily removed with low computational effort. Furthermore, dealing with simple monopoles,
this method is well-suited for practical applications.

PACS no. 43.20.Rz, 43.40.Rj

Introduction

The boundary integral equations have been thoroughly
studied since the 1960s for analyzing acoustic radiation
and scattering from any arbitrary vibrating body. Ap-
plied in an infinite domain, Boundary Element Methods
(BEMs) are recognized to be more efficient than Finite El-
ement Methods (FEMs), especially through the reduction
of the computational dimension of the problem by one.
Furthermore, the Sommerfeld condition is automatically
satisfied so that the external domain doesn’t need to be
bounded. The two m

ajor drawbacks of the BEMs lie on numerical compu-
tation of the Helmholtz integral equation: the treatment
of singular integrals and the non-uniqueness solutions at
the eigenfrequencies of the corresponding Dirichlet inte-
rior problem. The latter problem is of primary influence
on BEM results as fictitious eigenvalues density raises
quickly with the frequency. Several approachs have been
proposed in order to eliminate the non-uniqueness prob-
lem. Three typical ones are the CHIEF method presented
by Shenck [1], the Burton-Miller method [2] and the Null-
field method [3]. The CHIEF method is based on the
Helmholtz integral equation on the surface of the radiating
body combined with Helmholtz equation for some interior
points. The resulting overdetermined set of equations is
usually solved by the least-square approach. The Burton-
Miller approach, inspired by Panich formulation [4], forms
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a linear combination of the Helmholtz boundary integral
equation and its normal derivative, providing also a valid
solution at any frequency but leading to hyper-singular
integrals which can be handle following Guiggani algo-
rithm [5, 6]. The Null-field method, which is combined
with the Helmholtz integral surface equation [7], uses the
known bilinear expansion for the simple wave source to
express the integral relation in a set of equations leading
to a unique solution.

Another BEM related approach is the Wave Superpo-
sition Method (WSM): a simple numerical technique for
free-field radiation and scattering problems, originally for-
malized by Koopmann [8]. The principle of the WSM
can be found in the literature under various denomina-
tions as the Method of Fundamental Solutions [9] (MFS),
the sources simulation method [10], the auxiliary [11] or
equivalent [12] sources method. The main aspects of the
most usual methods dealing with sound source reconstruc-
tion can be found in a recent review [13]. While differ-
ent in theoretical aspects, all theses formulations are based
on the idea that the real body is substituted by a set of
elementary sources located in its interior, so the global
acoustic field of interest can be approximated by the sum
of the fields due to each sources. Being a straightforward
direct method, the WSM offers several advantages. First,
computational cost is lower than BEM or FEM. Second,
the WSM constitutes an efficient and economical simula-
tion technique for practical applications. As a setback to
the simplicity of this principle, the determination of the
source strengths leads to numerical and analytical diffi-
culties, extensively discussed over the past two decades.
Following the first WSM stability analysis [14], numerous
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alternatives have emerged to overcome one of the major
drawbacks of the method: the non-uniqueness of solutions
at fictitious resonant frequencies [15]. To solve this issue,
one elegant solution is to use a hybrid combination of sin-
gle and double layer potentials [16] as the Burton-Miller
formulation. This method still one of the most reliable [17]
even for high frequencies, but the use of such an analyti-
cal sophistication may compromise practical applications.
Aside the optimal sources placements studies [18, 14], nu-
merical schemes as Tikhonov regulation or Singular Val-
ues Decomposition (SVD) were also successfully applied
[19, 20] to improve WSM results, but also somewhat over-
looked as a solution for the non-uniqueness problem. In-
deed, only a severe regulation or high SVD truncation al-
lows to smoothen enough the resonant responses. Thus,
and as a counterpart of this significant change in sources
to field positions dependencies, the WSM error rises to an
unacceptable level. Another attempt was to add an appro-
priate damping to the virtual source system by the mean
of a complex radius vector [21]. Though this technique can
insure the unique solutions for all wave numbers if enough
damping is introduced, choosing the complex radius vec-
tor is a difficult task, as too much damping will deteriorate
the method accuracy.

The aim of this paper is to present a merged formula-
tion of the two conceptions behind the superposition meth-
ods. The first is the discretization of the interior form of
Helmholtz integral equation and the second is the search
of fundamental solutions for randomly placed sources. The
performance of the proposed method at critical wave num-
bers and its application in accurate free-field radiation pre-
diction are then evaluated through numerical experiments.

1. General theory

Figure 1 shows the geometry of the radiation problem. the
well-known Helmholtz differential equation governs the
propagation in finite fluid domain Σ,

∇p (r) + k2p (r) = 0 r ∈ Σ, (1)

where p is the pressure at point r in the surrounded fluid Σ
(assuming an implicit e−jωt dependence). This equation is
associated with Neumann boundary condition on the sur-
face Γ,

∂p (r)
∂n

= jωρvn (r) r ∈ Γ, (2)

in which ∂n denotes normal differentiation at the point r
in the direction from the interior region Ω toward Γ, vn (r)
is the normal component of the velocity at point r and ρ is
the fluid density modulus. The pressure must also satisfy
the radiation condition

lim
R→∞

∫

SR

∣

∣

∣

∣

∂p (r)
∂r0

− jkp (r)
∣

∣

∣

∣

2

r=R

dS = 0, (3)

where r0 is the radial distance from the origin of coordi-
nates and SR is a sphere of radius R centered at the origin
and surrounding r and Γ.

n

Σ

Γ

Ω
WSM sources

MFS sources

Γ′

Ω′

Σ′ = Ω − Ω′

Figure 1. Vibrating body and the virtual sources.

The single-layer potential seeks to represent p as

p (r) =
∫

Γ
σ (rs)G (r, rs) dΓrs r ∈ Σ, (4)

where G is the free-space Green’s function and σ is a den-
sity function on Γ. Applying the boundary condition of a
given normal pressure on Γ, leads to the boundary integral
equation

−
1
2
σ (r) +

∫

Γ
σ (rs)

∂G (r, rs)
∂n

dΓrs =
∂p (r)
∂n

r ∈ Γ. (5)

1.1. The Wave Superposition Method

The simple idea behind this method is that the acoustic
field of a complex radiator (cf. Figure 1) can be recon-
structed as a superposition of individual simple sources.
The equivalency of the WSM to the Helmholtz integral
formulation has been shown by Koopman [8], thus vali-
dating the superposition integral:

p (r) = jωρ
∫

Ω
q (rs)G (r, rs) dΩ (rs) r ∈ Γ ∪ Σ, (6)

ρ is the density of the medium, ω is the angular frequency
of the harmonic vibration of the surface Γ defining the in-
terior region Ω. The source strength is denoted by q (rs),
evaluated at rs inside Ω.

To reduce equation (6) to a numerical form, it’s conve-
nient to assume the sources distributed on Γ′ inside Ω. If
this surface is divided into N sufficiently small elements,
we can approximate the normal velocity on the surface of
the radiator,

un (r) ≈
N
∑

i=1

Qi
∂G (r, rs)
∂nr

r ∈ Γ rs ∈ Γ′, (7)

where Qi is the volume velocity of the simple source.
Since un (r) is known, Qi is given in matrix form by

Q = [D]−1un. (8)
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After finding the source strength vector Q, the pressure
field is calculated from

p (r) = jωρ
N
∑

i=1

G (r, rs)Qi r ∈ Γ ∪ Σ rs ∈ Γ′, (9)

thanks to the linearized Euler equation

jωρun(r) =
∂p(r)
∂nr

. (10)

While there is much scope for discussion on the number
and location of the interior sources for optimum accuracy,
the method is claimed to be superior to the usual bound-
ary integral formulation of the exterior acoustic problem
since the source and collocation points never coincide,
there are no problems associated with singularity. How-
ever, the superposition integral exhibits non-uniqueness at
critical wave numbers, revealed by the layer potential for-
mulations of the WSM principle.

1.2. The Method of Fundamental Solutions

For this method, equation (6) is still satisfied, because the
sources can be placed anywhere inside the radiator. So,
on numerical aspect, the MFS is an another version of
the WSM as the source intensities satisfy the same equa-
tion ([22]),

un (r) =
M
∑

i=1

Ai
∂G (r, rs′ )

∂nr
r ∈ Γ rs′ ∈ Ω, (11)

Here, a least-square functional of this equation can be min-
imized [9], to obtain the best positions for the fictitious
sources providing the optimal solutions. Another optimal
MFS positioning has been recently proposed using the im-
age method [23].

The difference between these the WSM and the MFS
approaches is that the randomly distributed sources lead
to higher condition number, unsuitable for effective nu-
merical calculation, but the MFS does not exhibit criti-
cal wave numbers, except for some special sources posi-
tioning [24]. Thus, and apart from these particular cases,
this method cannot be written in terms of a layer potential
because these sources do not respect the Helmholtz inte-
gral positioning requirements. However, the MFS allows
the system of equation to be overdetermined by a greater
number of collocation points.

1.3. Non-uniqueness

Considering the vibration cavity of the Figure 1, the three
main types of the WSM established on a virtual surface
Γ′ placed in Ω (with interior region Ω′ and exterior region
Σ′), are as follows:
(1) Single-layer potential integral

p (r) =
∫

Γ′
σ (rs)G (r, rs) dΓ′rs , r ∈ Γ ∪ Σ. (12)

2.5 3 3.5 4
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WSM−SLP
WSM−DLP
WSM−H

Figure 2. Critical wave numbers for three WSM formulations and
the MFS.

(2) Double-layer potential integral

∫

Γ′
µ (rs)

∂G (r, rs)
∂nrs

dΓ′rs =

{

p (r) , if r ∈ Σ

p (r) + µ(r)
2 , if r ∈ Γ

(13)

(3) Hybrid combination
∫

Γ′
γ (rs)

(

G (r, rs) + α
∂G (r, rs)
∂nrs

)

dΓ′rs (14)

=

{

p (r) , if r ∈ Σ

p (r) + γ(r)
2 , if r ∈ Γ

in whichG (r, rs) is the free-space Green’s function evalu-
ated between the observation point and the source, located
respectively at r and rs. On the virtual surface Γ′, Green’s
theorem leads to the Helmholtz boundary integral equation
for interior region and its differentiated form.

Considering the case of the Single Layer Potential for-
mulation (WSM-SLP), Jeans [16] shows that if the ex-
cited wave number k equals or is close to an interior
Dirichlet eigenvalue, equation (12) has a non-unique solu-
tion. For the Double Layer Potential formulation (WSM-
DLP), non-uniqueness for equation (13) occur at interior
Neumann eigenvalues. The Hybrid combination (WSM-
H, equation 14) insure an unique solution imaginary α be-
cause a real coefficient define an interior Robin eigenprob-
lem.

Figure 2 shows the Mean Squared Error (MSE) ob-
tained with the previous formulations and for an infinite
cylinder (radius R). This estimator is defined as

MSE =

√

√

√

√

∑N
i=1 |P2i − P1i|2
∑N
i=1 |P1i|2

, (15)

where P2 is the reconstructed pressure and P1 its known
values. The velocity distribution on the surface is gen-
erated by a point source located at 1.1a of the center
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(a = 0.1R). This figure highlights the fictitious frequen-
cies arising from the classic WSMs, and the solution ob-
tained by the WSM-H and with the MFS where the sources
(N = M = 100) are located randomly on the inscribed
circle (radius a). These eigenfrequencies for single-layer
potential formulation are such that

Jn (ka) = 0, n = 0, 1, 2, . . . (16)

and for double-layer-potential

J ′n (ka) = 0, n = 0, 1, 2, . . . (17)

where J is the Bessel function and J ′ its derivative. With
the WSM approach, a direct determination of the sources
strength is made, it thus differs from the minimization pro-
cess usually employed in fundamental solutions determi-
nation.

1.4. Combined Wave Superposition Method

To achieve uniqueness, we propose to merge the rigorous
formalism underlying the WSM with the ease of choice for
MFS sources locations. From the numerical formulation of
WSM and MFS, we can write

[

[DWSM] [DMFS→WSM]
[DWSM→MFS] [DMFS]

] [

{Q}
{A}

]

=
[

{un}WSM

{un}MFS

]

, (18)

where [DWSM ] is the classic WSM dipole, [DMFS] the
MFS coefficient matrix, [DMFS→WSM] the coefficient ma-
trix between MFS sources and WSM collocation points
and [DWSM→MFS] the coefficient matrix between WSM
sources and the MFS collocation points.

The basic idea here is to keep a sufficient but small MFS
terms number because those sources (refereed for the rest
of the paper as the complementary sources) are incorpo-
rated in WSM formulation only for achieving uniqueness
at critical wave numbers and not for improving the global
accuracy. The resulting formulation of equation (18) is
named the Combined WSM (CWSM) as it combines MFS
sources with the WSM formulation. The main difficulty
with this method is, as for CHIEF, the selection of

erior points away from the internal standing waves
nodes of the corresponding Dirichlet problem. The step-
by-step method proposed by Petrov [25] for the source
coordinates calculation could be an efficient algorithm to
solve this particular problem.

2. Numerical investigations

2.1. Ill-conditionning and regularization

Basic rank-revealing decompositions show the rank-
deficient nature of numerical problems defined by super-
position methods. For the previous defined problem, the
Figure 3 shows that only the first singular values (zone I)

20 40 60 80 100
10

−15

10
−10

10
−5

10
0

10
5

Singular values index

V
al

ue
s

II IIII

Figure 3. Singular Value Decomposition of influence matrix.
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Figure 4. Truncated SVD influence on precision.

of the influence matrix ([D] in equation 8) are clearly rel-
evant while additional values improved slightly the results
(zone II) and others add numerical noise (zone III).

Thus, one common way to improve sources methods
is to perform a Truncated SVD [26]. Applied to the for-
mulations previously presented, results of Figure 4, with
a factor of 104 between the max and min singular values
taken into account, exhibit a real improvement for the MFS
but can be of consequence for the WSM results, without
improving the solutions at eigenfrequencies. It must be
remembered here that these critical wave numbers have
nothing to do with ill-conditioning bu

are due to the nature of WSM method. Nevertheless,
the number of singular value to take into account is not
a trivial task, as optimal WSM solutions (Figure 2) are
recover in this case with only two more singular values.

Other direct regularization methods like Tikhonov reg-
ularization have also been tested on superposition formu-
lations, producing comparable or higher errors [19].

2.2. Fictitious eigenfrequencies

In order to demonstrate the accuracy of the proposed
method (equation 18), the cylinder of the section 1.3 is
reused, with 20 sources subtracted from the primary WSM

4
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Figure 5. Complementary CWSM sources uniformly disposed.
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Figure 6. Random disposition of the complementary sources.

sources network (N = 80) and disposed on an inner circle
of radius b = 0.95a = 0.095R to form the complemen-
tary sources network (M = 20). Simple SVD inversion
scheme is used to solve equation (18). Figure 5 shows the
improvement brought by the CWSM (applied to the SLP
form at the critical wave numbers. However, with this con-
figuration, the improvement is not optimal.

One efficient solution is to dispatch the complementary
sources randomly, as any basic MFS do. Figure 6 high-
lights the benefits of this configuration for a wider band
of frequencies. Here, the CWSM matches the hybrid for-
mulation accuracy, while saving a third of the computation
time [27].

Theoretically, it is sufficient to have a complementary
source on a non-zero nodal line to overcome the unique-
ness problem. But usually, this task is non-trivial because
of non-regular geometry or while computing at high fre-
quencies. As a consequence, the randomization of comple-
mentary sources appears to be good compromise between
the computational cost of CWSM and its accuracy. Fol-
lowing the usual rule of discretization of four subdivisions
per wavelength [27], experiments have shown satisfying

(a) Geometry and CWSM configuration

 

 

WSM sources
complementary sources 22 22.5 23

10
−2

10
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(b) Results
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Figure 7. Reliability of the CWSM at high frequencies.
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Figure 8. CWSM application on sphere.

results for a number of complementary sources approxi-
mately equal to a tenth of the WSM sources.

A last 2D application is performed on an infinite cylin-
der of rectangular section (cf. Figure 7a) to investigate the
reliability of the CWSM at high frequencies.

Figure 7b shows the results for ka from 22 to 23.5, the
CWSM performed as well as the previous cases. Thus, its
accuracy depends solely of the classic frequency criterion,
setting the maximum recommended distance between two
WSM sources.

2.3. 3D Application

The method is now applied to a sphere of radius R. Su-
perposition surface is set on a interior centered sphere of
radius a = 0.1R. Figure 8 shows the MSE for the surface
pressure reconstruction with classic WSM and with the
CWSM, for a velocity distribution generated by a single
point source at 1.1a of the center. As for the planar exam-
ples, uniqueness of solutions is achieved with M ≈ N/10
internal sources at random position (N = 2450).

More sophisticated geometries and surface velocity dis-
tributions can be carried out using this approach. Never-
theless, as the classical WSM, the accuracy of the CWSM
can be altered for geometries with corners (difficulties to
take into account the discontinuity at tangent n).

5



un
co

rr
ec

te
d

ga
lle

y
pr

oo
fs

—
fo

ri
nt

er
na

lu
se

on
ly

ACTA ACUSTICA UNITED WITH ACUSTICA Leblanc et al.: Wave superposition method
Vol. 96 (2010)

3. Conclusion

The proposed combination of the wave superposition
method and some internal sources provides a unique so-
lution at any frequency with simple radiating monopoles.
The computational cost for this Combined Wave Super-
position Method is almost equivalent to the single layer
potential formulation of the WSM. The positions of the
superposition sources remain subject to the usual rules
of thumb and the added source are preferentially placed
at random positions. This distribution is the easiest way
to avoid source placements at nodal lines, and to achieve
uniqueness solutions for low to mid frequencies. As a con-
sequence, if these nodal lines are known, the number of
complementary sources can be optimized.
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