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ABSTRACT The boundary knot method (BKM) is a truly meshless boundary-type radial basis
function (RBF) collocation scheme, where the general solution is employed instead of the fun-
damental solution to avoid the fictitious outside boundary of the physical domain of interest. In
this study, the BKM is first used to calculate the free vibration of free and simply-supported thin
plates. Compared with the analytical solution and ANSYS (a commercial FEM code) results, the
present BKM is highly accurate and fast convergent.
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I. INTRODUCTION
Nowadays numerical simulation has been playing an important role in engineering and scienctific

applications. And the dominant numerical techniques have long been of the mesh-based numerical
methods, such as finite element method (FEM), finite volume method, finite difference method, and
boundary element method etc. However, the high-quality mesh generation of high-dimensional com-
plicated geometry and moving boundary is still computationally very expensive and challenging[1,2].
Much effort has been devoted to the developing of meshless methods to cure this problem. Literally,
the methods of this type avoid the mesh generation. The smooth particle hydrodynamics method[3]

is one of the pioneering meshless techniques, which was originally developed to solve difficult astro-
physical problems. Inspired by the work, recently quite a few meshless methods have been reported in
the literature, for example, element-free Galerkin method[4], reproducing kernel method[5], method of
fundamental solution (MFS)[6], boundary collocation method[7], boundary node method[8], boundary
knots method (BKM)[9], and radial basis function (RBF) based methods[10–12].

Among various meshless methods, the MFS and the BKM are the two boundary-type RBF-based
methods, which do not employ the moving least square at all and instead use the one-dimensional
distance variable irrespective of the dimensionality of the problems. Therefore, these two methods
are independent of dimensionality and complexity of the geometry and have distinct merits including
being truly inherent meshless, easy-to-program, mathematically very simple, highly accurate, and fast
convergent. However, the MFS, which employs the singular fundamental solution, was not yet a popular
numerical method because it involves a controversial artificial boundary outside the physical domain.
In general, the fictitious boundary is difficult to choose for a high-dimensional complicated geometry.
This weakens the efficiency of the MFS to practical engineering problems[13,14]. The BKM, an improved
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approach, employs non-singular general solution instead of singular fundamental solution to evaluate the
homogenous solution, and removes the controversial artificial boundary in the MFS. Some preliminary
numerical experiments[15] show that the BKM can produce excellent results with a relatively small
number of knots for various differential equation problems. However, the tested cases are mostly the
second order systems.

Kang[16,17] and Chen[18–20] used the BKM to find the eigensolutions of free vibration membranes
and plates with clamped boundary, and Kang[21] applies this method to the free vibration of membranes
with cavity. However, the BKM has not be tested with free vibration plates of arbitrary shapes with
complex and high order boundary conditions. In this study, the BKM is first employed to simulate
the transverse vibration of arbitrary shaped plates subjected to free and simply-supported boundary
conditions.

The remainder of this paper is organized as follows. §II introduces the governing equation of a
free vibrating thin plate, the boundary conditions and the discretization method. §III presents some
numerical examples, and compares the results with the analytical solution or ANSYS results. Based
on the results reported here, §IV concludes this paper with remarks.

II. GOVERNING EQUATION OF FREE VIBRATION
OF PLATES AND BOUNDARY CONDITIONS

2.1. Governing Equation of Free Vibration Plate

The governing equation for a free flexural vibration of a uniform thin plate can be expressed as

∇4w + m̄
∂2w

∂t2
= 0 (1)

where w = w(r, t) is the transverse deflection, m̄ is the surface density, t represents the time, D is the
flexural rigidity expressed as D = Eh3/[12(1− ν2)] in terms of Young’s modulus E, the Poisson’s ratio
ν and the plate thickness h. Assuming harmonic motion w(r, t) = eiωtW (r), in which ω denotes the
circular frequency and W (r) represents the function of vibration mode, Eq.(1) can be rewritten as

∇4W − k4W = 0 (2)

where

k =
4

√
m̄ω2

D
(3)

is the frequency parameter of the thin plate.
The zero-order 2D non-singular general solution of Eq.(2) is known as

W (r) = J0 (kr) + I0 (kr) (4)

where J0(r), I0(r) represent the zero-order Bessel and modified Bessel functions of the first kind, r is
the Euclidean distance of the domain knots, respectively.

Fig. 1. The geometry configuration of an arbitrary shaped plate with N boundary knots distributed along the contour,
nix, niy , τix, τiy are the horizontal and vertical components corresponding to the normal and tangential vectors ni, τi

of the ith knot, respectively.
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Dividing the boundary into N installments and discretizing the zero-order general solution on the
boundary, the vibration mode of the ith boundary knot is then determined by the sum of all the vibration
modes relating to the ith knot (see Fig.1).

W (ri) =

N∑
j=1

[AjJ0 (k |ri − rj |) + BjI0 (k |ri − rj |)] (i, j = 1, 2, · · · , N) (5)

where Aj and Bj are unknown coefficients.

2.2. Boundary Conditions

There are the following five boundary conditions of a vibrating plate to be encountered in this study.
The displacement boundary condition is stated as

U = W (r) = 0 (6)

The slope along the normal direction on the boundary is

θ =
∂W (r)

∂n
= 0 (7)

The bending moment condition on the boundary is

M =
∂2W (r)

∂n2
+ ν

∂2W (r)

∂τ 2
= 0 (8)

The effective shear force on the free edges which parallel to the z-axis is

V =
∂3

∂n3
W (r) + (2− ν)

∂3W (r)

∂τ 2∂n
= 0 (9)

The concentrated force at the polygonal corners of free edges is

R =
∂2W (r)

∂n∂τ
= 0 (10)

where n, τ represent the outer normal and tangential direction of boundary knots, respectively. Equation
(10) is the free corner boundary condition in which the two free edge encounter.

The BKM approximate solution representation in Eq.(5) is forced to satisfy the boundary displace-
ment, slope, moment, shear force and free corner conditions, and then we get the following discretization
equations:

W (ri) =

N∑
j=1

[AjJ0 (krij) + BjI0 (krij)] =

N∑
j=1

[
AjU

J + BjU
I
]

= 0 (11)

∂W (ri)

∂ni

=

N∑
j=1

[
Aj

∂

∂ni

J0 (krij) + Bj

∂

∂ni

I0 (krij)

]
=

N∑
j=1

[
Ajθ

J + Bjθ
I
]

= 0 (12)

(
∂2

∂n2
i

+ ν
∂2

∂τ 2
i

)
W (ri) =

N∑
j=1

[
Aj

(
∂2

∂n2
i

+ ν
∂2

∂τ 2
i

)
J0 (krij) + Bj

(
∂2

∂n2
i

+ ν
∂2

∂τ 2
i

)
I0 (krij)

]

=

N∑
j=1

[
AjM

J + BjM
I
]

= 0 (13)

[
∂3

∂n3
i

+
(2− ν)∂3

∂τ 2
i ∂ni

]
W (ri) =

N∑
j=1

{
Aj

[
∂3

∂n3
i

+
(2− ν)∂3

∂τ 2
i ∂ni

]
J0 (krij) + Bj

[
∂3

∂n3
i

+
(2− ν)∂3

∂τ 2
i ∂ni

]
I0 (krij)

}

=

N∑
j=1

[
AjV

J + BjV
I
]

= 0 (14)

∂2W (ri)

∂ni∂τ i

=

N∑
j=1

[
Aj

∂2

∂ni∂τ i

J0 (krij) + Bj

∂2

∂ni∂τ i

I0 (krij)

]

=

N∑
j=1

[
AjR

J + BjR
I
]

= 0 (15)
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where rij = |ri − rj |, ni, τ i respectively represent the outer normal and tangential vectors of the ith
boundary knot shown as Fig.1, (i = 1, 2, · · · , N).

For simplicity, Eqs.(11-15) can be rewritten in matrix form as shown below:

⎡
⎢⎢⎢⎢⎣

UJ U I

θJ θI

MJ M I

V
J

V
I

RJ RI

⎤
⎥⎥⎥⎥⎦

[
A

B

]
= 0 (16)

The expression of each item in the coefficient matrix of Eq.(16) can be easily derived with details given
in the Appendix.

Without the loss of generality, consider arbitrary shaped plates with simply supported boundaries
as an example. The boundary conditions of arbitrary shaped plates with simply supported boundaries
can be expressed as

U
J
A + U

I
B = 0, M

J
A + M

I
B = 0 (17)

Since the coefficients A and B have non-trivial solutions, by transforming the first formula in Eq.(17),
the coefficient B can be stated as

B = −[U I ]−1
U

J
A (18)

and then substituting Eq.(18) into the second formula in Eq.(17), we can reduce the influence matrix
from 2N order to N order shown as follows:

[
M

J −M
I [U I ]−1

U
J
]
A = [SS]A = 0 (19)

where [SS] = MJ −M I [U I ]−1UJ represents the influence matrix of a simply supported plate.
Due to the existence of non-trivial solution of [A], the determinants of the influence matrix corre-

sponding to the eigenvalues must be zeros, namely,

det[SS(k)] = 0 (20)

The frequency parameter k of a simply supported plate can be obtained from Eq.(20) through the
iterative computation, and then substituting k into Eq.(3) to gain the natural frequency. In the following
paragraphs, [S-SSSF(k)] represents the influence matrix of the unit square plate with three simply
supported boundaries and one the free boundary, [A-SSSS(k)] denotes the influence matrix of arbitrary
shaped plates with simply supported boundaries.

III. NUMERICAL RESULTS AND DISCUSSIONS
3.1. Arbitrary Shaped Simply Supported Plate

Figure 2(a) shows the configuration of an arbitrary shaped plate, where the boundary is divided into
4N -4 nodes. Figure 2(b) illustrates the normal and tangential directions of boundary knots. The nor-

Fig. 2. (a) Geometry configuration of the arbitrary shaped plate, [S-S] denotes the simply supported edge. (b) The location
of some discrete boundary knots and the corresponding normal and tangential directions, where each edge is divided into
N installments, and ni, τi denote the normal and tangential direction of the ith knot.



· 332 · ACTA MECHANICA SOLIDA SINICA 2009

mal and tangential directions at polygonal corners
are approximately determined by the sum of the
two normal and tangential vectors at the adjacent
edges respectively.

The eigenvalues of the simply supported plate
shown as Fig.1(a) are given in the logarithm curve
for det[A-SSSS(k)] = 0 shown as Fig.3. The
troughs indicated by SK in the Fig.3 are the eigen-
values of the arbitrary shaped simply supported
plate, and the crests indicated by MK are the
eigenvalues of the corresponding shaped membrane
which are actually spurious eigenvalues.

The reasons of the spurious eigenvalues may be
that the ∂2J0(kr)/∂n2, ∂2J0(kr)/∂τ2, ∂2I0(kr)
/∂n2 and ∂2I0(kr)/∂τ 2 become singular at partic-
ular values of eigensolutions due to the fact that it
is obtained via differentiating J0(kr), I0(kr) twice

Fig. 3 Logarithm curves of the [A-SSSS] plate with 20
(N = 6) boundary knots, ν = 0.3, where SK denotes the fre-
quency parameter of the [A-SSSS] plate, and MK represents
the frequency parameter of corresponding shaped membrane.

respectively to normal and tangential directions[16]. Therefore, the 2N×2N influence matrix of arbitrary
simply supported plate must be reduced to N × N in order to eliminate the spurious eigenvalues of
the corresponding shaped membrane in §2.2. However, this treatment will cause the influence matrix
singular or close to singular.

It should be emphasized that it doesn’t need to reduce the dimensions of the influence matrix of
the square plate with simply supported edges since there is no spurious eigenvalues. However, we still
cannot explain why this happens.

Table 1 displays the numerical eigenvalues of the arbitrary shaped simply supported plate (see Fig.2)
obtained by BKM method and ANSYS FEM package. It is obvious that the numerical results obtained
by the BKM agree well with the ANSYS solutions, and the highest relative discrepancy is less than
1.015%. Here ANSYS results serve as the comparative basis since the analytical solution of this case is
not available.

Table 1. Eigenvalues of the [A-SSSS] plate obtained with the BKM

Parameters
Present solutions ANSYS

20 nodes Relative 24 nodes Relative 997 5419
(N=6) difference (N=7) difference nodes nodes

SS1 2.647 1.015% - - 2.619 2.620
SS2 4.167 −0.091% 4.17 −0.019% 4.168 4.171
SS3 4.331 0.473% 4.332 0.496% 4.310 4.311
SS4 5.523 −0.087% 5.535 0.130% 5.523 5.528
SS5 5.902 0.075% 5.902 0.075% 5.895 5.898
SS6 6.082 0.012% 6.085 0.061% 6.079 6.081
SS7 6.954 −0.297% 6.971 −0.053% 6.967 6.975

‘-’ means that the influence matrix become too ill-conditioned to be calculated.

3.2. Cases with Mixed Boundary Conditions

A unit square plate with three simply supported boundaries and one free boundary [SSSF] is shown
as Fig.4(a), whose boundary is divided into 4N -4 installments. Here N is the knot number on each
boundary. The location of some demonstrative knots and the corresponding normal directions are
illustrated in Fig.4(b).

The eigenvalues of a unit square [SSSF] plate and a unit [SSSS] plate can be obtained from the
logarithm curve of det[S-SSSF(k)] = 0. The troughs indicated by [SF] in the Fig.5 are the eigenvalues of
the unit square [SSSF] plate, and the crests indicated by [SS] are the eigenvalues of the corresponding
shaped simply supported plate which are spurious eigenvalues in this case.
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Fig. 4. (a) Geometry configuration of a unit square [SSSF]
plate, [S-S] denotes the simply supported edge, [F-F] repre-
sents the free edge. (b) The location of some discrete bound-
ary knots and the corresponding normal directions, ni de-
notes the normal direction of the ith knot.

Fig. 5. Logarithm curves of the unit square [SSSF] plate with
20 (N = 6) boundary knots, ν = 0.3, [SF] denotes the fre-
quency parameter of the unit square [SSSF] plate; [SS] rep-
resents the frequency parameter of unit square simply sup-
ported plate.

Tables 2 and 3 respectively display the numerical and analytical eigenvalues of the unit square simply
supported and [SSSF] plates. It is observed that the numerical solutions agree well with the analytical
solution. It means that this numerical scheme produces very accurate solutions with small number of
boundary knots. It should be mentioned that as the increase of frequency parameters, more boundary
knots are required to get accurate solutions.

Table 2. Eigenvalues of the unit [SSSS] square plate obtained with the BKM

Present solutions
Analytical

Parameters 20 nodes Relative 24 nodes Relative 28 nodes Relative
Solution[22]

(N = 6) Error (N = 7) Error (N = 8) Error

SS1 4.443 0.000% - - - - 4.443
SS2 7.025 0.000% 7.025 0.000% 7.025 0.000% 7.025
SS3 8.886 0.000% 8.886 0.000% 8.886 0.000% 8.886
SS4 9.934 −0.006% 9.935 0.000% 9.935 0.000% 9.935

Table 3. Eigenvalues of the [SSSF] square plate obtained with the BKM

Present solutions
Analytical

Parameters 20 nodes Relative 24 nodes Relative 28 nodes Relative
Solution[22]

(N = 6) Error (N = 7) Error (N = 8) Error

SF1 3.419 0.029% - - - - 3.418
SF2 5.266 −0.040% 5.269 0.019% - - 5.268
SF3 6.405 −0.218% 6.421 0.031% - - 6.419
SF4 7.638 −0.618% 7.671 −0.182% 7.686 0.016% 7.685
SF5 7.858 −0.089% 7.866 0.013% 7.865 0.003% 7.865
SF6 9.624 1.279% 9.415 −0.916% 9.533 0.326% 9.502

IV. CONCLUSIONS
This paper tested the BKM to the free vibration plates of complex shape subjected to different

boundary conditions. The numerical solutions are observed to agree well with the analytical solutions
or the ANSYS FEM solutions. The BKM is found to be a simple but useful scheme[23] to simulate the
free vibration problems.
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One of the major findings in this study is that the method proposed by Kang[16,17] in calculating the
eigenvalues of plates by reducing the influence matrix from dimension 2N×2N to N ×N is not always
efficient and its influence matrix may become singular or close to singular. Moreover, the accuracy of
the BKM deteriorates in the solution of the simply-supported plate. We find that the culprit??? is the
approach[16] to implement derivative boundary conditions at polygonal corners, in which the normal
direction at polygonal corners of the plate is approximately determined by the sum of the two normal
vectors for the adjacent edges. This study finds that this drawback can be easily remedied to guarantee
the unit modal value of the normal vector.

On the other hand, it is noted that the present BKM scheme is not computationally cheap. Thus,
the fast multipole method (FMM)[24], which has been developed to handle full matrix coefficient matrix
as in the BKM case, can be employed to significantly improve the computational efficiency. The fast
BKM is a subject currently under study and will be reported in a subsequent report.
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in this research.
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APPENDIX: DERIVATION OF MATRIX EQUATION (16)
The first normal directional derivative of the zero-order Bessel and modified Bessel function of the

first kind are applied to clamped plates, and the detailed derivations are respectively shown as in
expressions (21) and (22)

∂

∂ni

J0(krij) = −kJ1(krij)(nix cos θij + niy sin θij) (21)

∂

∂ni

I0(krij) = kI1(krij)(nix cos θij + niy sin θij) (22)

The second normal and tangential derivative of the zero-order Bessel and modified Bessel function
of the first kind, which are used in simply free and supported plates, are deduced in Eqs.(23-26),
respectively

∂2

∂n2
i

J0 (krij) = −k2J0(krij)(nix cos θij + niy sin θij)
2

+
k

r
J1(krij)

(
n2

ix − n2
iy

) (
cos2 θij − sin2 θij

)
(23)

∂2

∂n2
i

I0 (krij) = k2I0(krij)(nix cos θij + niy sin θij)
2

−k

r
I1(krij)

(
n2

ix − n2
iy

) (
cos2 θij − sin2 θij

)
(24)

∂2

∂τ2
i

J0 (krij) = −k2J0(krij)(τix cos θij + τiy sin θij)
2

+
k

r
J1(krij)

(
τ2
ix − τ2

iy

) (
cos2 θij − sin2 θij

)
(25)

∂2

∂τ2
i

I0 (krij) = k2I0(krij)(τix cos θij + τiy sin θij)
2

−k

r
I1(krij)

(
τ2
ix − τ2

iy

) (
cos2 θij − sin2 θij

)
(26)

The expressions in Eqs.(27-30) are the effective shear force on the free boundary; the detailed
deductions are as follows:

∂3

∂n3
i

J0 (krij) =

[(
k3 − 2k

r2

)
J1(krij) +

k2

r
J0(krij)

]
(nix cos θij + niy sin θij)

3

+

[
6k

r2
J1(krij)− 3k2

r
J0(krij)

] (
n3

ix sin θij + n3
iy cos θij

)
sin θij cos θij (27)

∂3

∂τ2
i ∂ni

J0 (krij) =

[(
k3 − 2k

r2

)
J1(kr) +

k2

r
J0(kr)

] (
nixτ2

ix cos3 θij + niyτ2
iy sin3 θij

)

+

[
6k

r2
J1(kr) − 3k2

r
J0(kr)

] (
nixτ2

ix sin θij + niyτ2
iy cos θij

)
cos θij sin θij (28)
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∂3

∂n3
i

I0 (krij) =

[(
k3 +

2k

r2

)
I1(krij)− k2

r
I0(krij)

]
(nix cos θij + niy sin θij)

3

−
[
6k

r2
I1(krij)− 3k2

r
I0(krij)

] (
n3

ix sin θij + n3
iy cos θij

)
sin θij cos θij (29)

∂3I0 (krij)

∂τ2
i ∂ni

=

[(
k3 +

2k

r2

)
I1(kr) − k2

r
I0(kr)

] (
nixτ2

ix cos3 θij + niyτ2
iy sin3 θij

)

−
[
6k

r2
I1(kr) − 3k2

r
I0(kr)

] (
nixτ2

ix sin θij + niyτ2
iy cos θij

)
cos θij sin2 θij (30)

In expressions (21-30), nix, niy and τix, τiy , respectively, represent the horizontal and vertical
components, corresponding to the unit outer normal vector ni = nix +niy and the unit outer tangential
vector τi = τix + τiy defined at the ith boundary knot. θij denotes the angle between the x-axis of
Cartesian coordinate and the vector (ri − rj).

However, some particular processes are required in the evaluation of cos θij , sin θij , J1(kr) and
I1(kr), when the source and collocation points coincide each other. By using the L’Hôpital’s rule, we
find cos θij = sin θij = 1/

√
2 when i = j.

On the other hand, by using the mathematics symbol software, Maple, we reduce J1(kr) and I1(kr)
as a series expansion:

J1(kr) =
1

2
kr − 1

16
k3r3 +

1

384
k5r5 + O(r6) (31)

I1(kr) =
1

2
kr +

1

16
k3r3 +

1

384
k5r5 + O(r6) (32)

In the practical calculation, the items 1
16k3r3, 1

384k5r5, O(r6) are both omitted when r approaches zero.


