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Abstract

In this paper, a numerical method is presented to calculate sound radiant efficiency and radiant modes of arbitrary shape structures.
Some methods have been proposed to compute sound radiant efficiencies and sound radiant modes of plates and beams. However, there
is not a valid method to calculate for arbitrary shape structures except for measurement at the present time. The method proposed can
predicate the sound radiant efficiencies and the sound radiant modes for arbitrary shape structures by boundary element method (BEM)
and general eigenvalue decomposition. The validity of this method is demonstrated by two numerical examples of pulsating sphere and
radiation cube.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Sound radiation; Sound radiant mode; Boundary element method; Sound radiant efficiency
1. Introduction

The prediction and control of acoustic radiation become
a more and more important issue in new product design
process. The sound radiant efficiency and sound power
are important parameters to describe the radiant character-
istic of structures. However, it is well known that the total
sound power can not be directly calculated by the modal
efficiencies when radiant efficiencies are described by struc-
tural modes shape function. The main reason is that the
radiation of structures modes is strongly coupled each
other, which is also the main difficulty of controlling and
computing sound radiation. Many scholars have studied
the sound radiation behavior and tried to find the connec-
tion between the sound radiation and vibration, and to find
an approach to decouple the sound radiation.
0003-682X/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Photiadis [1], Cunefare et al. [2,3], Currey and Cunefare
[4] and Elliott [5] presented the concept of the acoustical
radiant modes during early 1990s. The advantage of this
approach is the elimination of the complexity of the struc-
ture mode’s coupling terms. The sound power of structures
can be expanded as the sum of sound radiant modes. For
plate and beam, Photiadis [1], Cunefare et al. [2,3], Currey
and Cunefare [4] have studied their radiant modes and
radiant efficiencies using the concept of the acoustical radi-
ant modes. Snyder and Tanaka [6] clarified the coupling
reason of sound radiation by structures modes calculation.
As an example, he analyzed the radiation characteristic of
radiant modes of thin plates. Oppenheimer and Dubowsky
[7] tested the radiant efficiency of plates by experiment.
Elliott [5] and Koorosh et al. [8,9] applied this idea to study
the active control of the sound radiation. The results
showed that this method could obtain notable effect.

However, for complex structures, such as arbitrary
enclosing shape structures, there is not a valid method to
compute the sound radiant efficiency and sound radiant
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modes except for measurement. Hashimoto [10] have pre-
sented a method to measure sound radiant efficiency.

In this paper, a numerical approach is proposed to cal-
culate the sound radiant efficiency and sound radiant
modes of arbitrary shape structures by boundary element
method and general eigenvalue decomposition.

Boundary element method (BEM) is a validity method
to compute structure-born acoustical radiation of com-
plex structures [11–15]. In this paper, the surface pressure
of structures is computed via BEM, and then the sound
power can be expressed as a Hermitian quadratic form,
and the equivalent sound power can be expressed as a
quadratic form. As the impedance matrix of sound
power of a structures is positive definite, and the cou-
pling matrix of mean square of the equivalent sound
power is real symmetrical and positive definite, the sound
radiation can be decoupled via general eigenvalue decom-
position, the radiant modes of structures are the eigen-
vectors of eigenvalues. The sound radiant efficiencies
and sound radiant power can be expanded as the sum
of the sound radiant modes if radiant modes are taken
as a basis.
2. Basic boundary element formulation

Consider the acoustic pressure field in the exterior
unbound domain. The governing differential equation of
the exterior acoustic domain in steady-state linear acoustics
is the classical Helmholtz equation [11] as follows

r2p þ k2p ¼ 0 ð1Þ
where p is the sound pressure, k = x/c is the wavenumber,
x and c are the angular frequency and speed of sound,
respectively.

The Neumann boundary condition and the Sommerfeld
radiation condition at infinity can be expressed as

op
on
¼ �iqxvn ð2Þ

lim
r!1

r
op
or
� ikp

� �� �
¼ 0 ð3Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

, and q is the density of the fluid.
For arbitrary enclosed structures, including those with

corners and edges, the form of Helmholtz integral equation
[11,13] is given by

CðP ÞpðPÞ ¼
Z

S
p
oG
on
þ iqxvnG

� �
dS ð4Þ

where n is the unit normal vector pointing into the acoustic
domain, and G is the fundamental solution of the inhomo-
geneous Helmholtz equation, namely the Green’s function
of free space, and oG/on is derivative of G with respect to n.
They can be written as follows:

GðrÞ ¼ e�ikr

r
oG
on ¼ � ik þ 1

r

� �
G or
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(
ð5Þ
where r ¼j �xP � �xQ j, and xQ is any point in space. For any
point P in space, the value of coefficient C(P) can be ex-
pressed as [13]

CðP Þ ¼
1 P 2 V

4pþ
R
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The evaluation of Eq. (4) was performed using isoparamet-
ric element and numerical quadrature. For isoparametric
element, interpolation of the pressure and velocity at the
nodes determines the pressure and velocity distributions
over entire element [16]

p ¼
P4
l¼1

Nlpl

v ¼
P4
l¼1

N lvl

8>>><
>>>:

ð7Þ

where pl = (p1,p2,p3,p4)T, vl = (v1,v2,v3,v4)T,pl and vl repre-
sent the pressure and velocity of nodes of element, respec-
tively, and Nl is an interpolation shape function

Nl ¼
1

4
ð1þ nlnÞð1þ glgÞ l ¼ 1; 2; 3; 4 ð8:1Þ

The exactly formula of the shape function is

N 1 ¼
1

4
ð1þ nÞð1þ gÞ ð8:2Þ

N 2 ¼
1

4
ð1� nÞð1þ gÞ ð8:3Þ

N 3 ¼
1

4
ð1� nÞð1� gÞ ð8:4Þ

N 4 ¼
1

4
ð1þ nÞð1� gÞ ð8:5Þ

where n and g is local coordinate.
The numerical evaluation of Eq. (4) for the nodes of

each element ultimately yields a system of algebraic equa-
tion [16]

HH P ¼ GH V ð9Þ
so

P ¼ ðH�1
H GH ÞV ¼ ZV ð10Þ

where P = (p1,p2, . . . ,pn)T,V = (v1,v2, . . . ,vn)T, Z ¼ H�1
H GH .

It is well known that the classical boundary element
method for exterior acoustical problem fails to provide a
unique solution at certain frequency. Several modified inte-
gral formulations have been developed to overcome the
problem. By far, the CHIEF method [11,15] is the most
popular method, and it is adopted in this study.

For exterior sound radiation problem, if one chooses
some CHIEF points out of domain V and S, these points,
according to Eq. (6), satisfy the Helmholtz equation [11]Z

S
ðp oG

on
þ iqxvnGÞdS ¼ 0 ð11Þ

Introduce Eq. (7) into Eq. (11), one may get
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HcP þ GcV ¼ 0 ð12Þ
Eq. (12) and Eq. (9) form the following simultaneous
equations

H H

HC

� �
P �

GH

�GC

� �
V ¼ 0) DðNþMÞ�N P N�1 ¼ BðNþMÞ�N V N�1

ð13Þ
Eq. (13) is an over determinate equation. Since D�1

N�ðMþNÞ is
the Moore–Penrose pseudoinverse of matrix D(M+N)·N, the
following equation can be got

P N�1 ¼ D�1
N�ðNþMÞBðNþMÞ�N V N�1 ¼ AN�N V N�1 ð14Þ

where AN�N ¼ D�1
N�ðNþMÞBðNþMÞ�N , P = (p1,p2, . . . ,pn)T,

V = (v1,v2, . . . ,vn)T.

3. Sound power of arbitrary shape structures

For an arbitrary shape structures, its whole sound
power can be expressed as

W ¼
Z

S
I s dS ð15Þ

Especially, for simple harmonic vibration

I s ¼
1

2
Re P TðQÞV �nðQÞ
	 


ð16Þ

where Q are the element nodes of enclosing structures, IS

and P are the sound intensity and pressure of nodes,
respectively, Vn(Q) is the normal velocity of node Q. *
(asterisk) indicates complex conjugation of the quantity.
P = (p1,p2, . . .,pN)T, V = (v1,v2, . . . ,vN)T.

If the structure is divided into Ne elements, the sound
power can be rewritten as

W ¼ 1

2
Re
XN e

i¼1

Z
Si

ðpV �ÞdSi ð17Þ

Introduce a notation

W i ¼
Z

Si

ðpV �ÞdSi ð18Þ

According to the Eq. (7), the sound pressure and the
velocity on each element is approximated by a linear com-
bination of shape function via four nodes, leads Eq. (7)
into Eq. (18), the following equation can be get

W i ¼
Z

Si

X4

l¼1

ðN lplÞ
T
X4

l¼1

ðNlv�l ÞdSi

¼
Z

Si

P T
elN

TNV �el dSi ð19Þ

where Pel and Vel denote the sound pressure and the nor-
mal velocity of the four nodes of element Si, and
P el ¼ pi1 pi2 pi3 pi4½ �T, V el ¼ vi1 vi2 vi3 vi4½ �T; N is
shape function, and N ¼ N 1 N 2 N 3 N 4½ �.

According to Eq. (14), the sound pressure of node j can
be written as
P j ¼ P T
j ¼ ðAjV ÞT ¼ V TAT

j ð20Þ

where Aj is the jth column of matrix A.
Substitute Eq. (20) into Eq. (19), one may get

W i ¼ V T

Z
Si

ðAT
elN

TNÞdSiV �el ð21Þ

where Ael ¼ Ai1 Ai2 Ai3 Ai4½ �, and Ai1 denotes the jth
column of matrix A corresponding the node number of
sound pressure pj in global coordinate.

Introduce a notation

Ci ¼
Z

Si

ðAT
elN

TNÞdSi ð22Þ

Eq. (21) can be rewritten as

W i ¼ V TCiV �el ð23Þ
Introduce Eq. (23) into Eq. (17), one may get

W ¼ 1

2
Re
XN e

i¼1

W i ¼
1

2
Re
XN e

i¼1

ðV TCiV �elÞ

¼ 1

2
ReðV TCV �Þ ð24Þ

According to the fact that VTCV* is a factor, the sound
power can be rewritten as

W ¼ 1

4
½ðV TCV �Þ þ ðV TCV �Þ�� ð25Þ

So

W ¼ 1

4
fðV TCV �ÞT þ ðV TCV �Þ�g ¼ V H CT þ C�

4

� �
V

¼ V HMV ð26Þ

where M ¼ C�þCT

4
, superscript H denotes conjugation

transpose.
It is obvious that

MH ¼ C� þ CT

4

� �H

¼ CT þ C�

4
¼ M ð27Þ

where M is an impedance matrix. From Eq. (27), the ma-
trix M is a Hermitian matrix. For arbitrary velocity vector,
the sound power is positive, and matrix M is positive def-
inite and Hermitian matrix M is nice because the follow
reasons

1. It has n positive eigenvalues.
2. The eigenvectors of it form a basis of n dimensional

space.

4. General eigenvalue decomposition and sound radiation

decoupling

According to the definition of sound radiant efficiency, it
can be described as follows [10]



Fig. 1. Model of a pulsating sphere of 96 elements, radius a = 1 m.

Fig. 2. The results of numerical and theoretical acoustical power and
acoustical efficiency.
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rrad ¼
W rad

q0chv2iS ð28Þ

where Wrad is total sound power of structures, rrad is sound
radiant efficiency, q0c is characteristic impedance of media,
Æv2æ is the spatial mean-square velocity of the surface of en-
closed structures, S is the equivalent area of structures. The
definition of spatial mean-square velocity is

hv2i ¼ 1

2S

Z
S

vj j2dS ð29Þ

Introduce Eq. (7) into Eq. (29), one may get

hv2i ¼ 1

2S

Z
S

vj j2dS ¼ 1

2S

Z
S

vHvdS

¼ 1

2S

XN e
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NTN dSivi ð30Þ

Therefore

hv2i ¼ 1

2S

XN e

i¼1

vH
i Mivi ¼

1

2S
V HM0V ð31Þ

where Ne is the nodes number of each element, and N is
shape functions, Mi ¼

R
Si

N TN dSi.
Introduce a notation

q0chv2iS ¼ q0c
1

2S
V HM0VS ¼ V H q0c

2
M0V

¼ V HM stV ð32Þ

where M st ¼ q0c
2

M0.
According to Eqs. (26), (28) and (32), the sound radiant

efficiency can be expressed as

rrad ¼
V HMV

V HM stV
ð33Þ

From the definition of spatial mean-square velocity, it can
be drawn that the matrix Mst is real symmetric and positive
definite. Now the sound radiation can be decoupled via
general eigenvalue decomposition. According to the char-
acteristic of matrix Mst, one can find a nonsingular matrix
L which satisfies

LTM stL ¼ I ð34Þ
For M matrix is positive definition, it can be concluded
that LTML is also positive definition matrix. Therefore,
one can find a U matrix which satisfies

U HLHMLU ¼ K ð35Þ
At the same time

U HLHM stLU ¼ I ð36Þ
Introduce a notation

q ¼ LU ð37Þ
The row vectors of matrix q are the sound radiant modes,
which can make matrix M and Mst diagonal together

qHMq ¼ K ¼ diagðk1; k1; . . . ; kN Þ ð38Þ
qHM stq ¼ I ð39Þ
For any velocity distribute V, it can be expressed as

V ¼ qa ð40Þ
where a is the coordinate of velocity distribution V in vec-
tor space composed of sound radiant modes.

Introduce Eq. (38) and Eq. (39) into Eq. (33), rrad can be
expressed below

rrad ¼
V HMV

V HM stV
¼ aTqHMqa

aTqHM stqa
¼
PN

i¼1kiaTa
aTa

ð41Þ
5. Numerical examples

In order to test the accuracy and efficiency of the pre-
sented method in the paper, two cases of acoustic radiation
problems, pulsating sphere and radiating cube, are tested.
The sound power and radiant efficiency are compared to
the theoretical results. The sound radiant modes and the
radiation efficiencies of the two cases are also showed.
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5.1. A pulsating sphere

The analytical solution of sound pressure p(r), and the
radiant efficiency r, of a pulsating sphere of radius a with
an uniform radial velocity, vn, are given by [11]:
Fig. 3. The former 20 acoustical efficiencies of a pulsating sphere with
different mesh when k = 1.

Fig. 4. The first acoustical mode of pulsating sphere.
pðrÞ ¼ qc0vn
a
r

ika
1þ ika

e�ikðr�aÞ ð42Þ

r ¼ ðkaÞ2=½1þ ðkaÞ2� ð43Þ
Fig. 5. The second acoustical mode of pulsating sphere.

Fig. 6. Mesh model of a radiating cube.



Table 1
Normalized pressure magnitude on the surface of radiating cube for ka = 1 with different element size le = 0.5 m and le = 0.25 m

Node 1 Node 2 Nodes 3 and 7 Nodes 4 and 6 Node 5 W r

Analytical solution 0.40825 0.47140 0.70711 0.63646 0.5 3.1416 –
le = 0.5 m 0.39866 0.46200 0.69229 0.62308 0.49011 2.9697 0.7114
le = 0.25 m 0.40581 0.46900 0.70246 0.62980 0.49747 3.0979 0.7026
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The surface of the sphere is modeled using 96 curvilinear
quadrilateral isoparametric elements, as depicted in
Fig. 1. A few parameters are introduced below for conve-
nience. Radius of the sphere a = 1 m, air density
q = 1 kg/m3, and sound velocity c0 = 1 m/s.

Assume that the pulsating sphere has vibrational ampli-
tude of 1. According to the method presented in the paper,
the comparison between numerical sound power and sound
radiant efficiency with corresponding theoretical solutions
is shown in Fig. 2. The computational results is very closed
to theoretical result, therefore, it shows that the method
Fig. 7. The former 20 acoustical efficiencies of radiation modes with
different element size where k = 1.

Fig. 8. Sound radiation efficiencies of the former 4 sound radiation modes
with different wavenumber.
presented in this paper can be utilized to solve both the
sound radiation power and sound radiant efficiency by
numerical method for the structure with curve surface.

Fig. 3 depicts the former 20 sound radiant efficiencies of
radiant modes with k = 1. The results show that the first
radiant mode can radiate sound power effectively. Because
the sphere has three symmetrical directions, the radiant effi-
ciencies from second to fourth radiant modes are equiva-
lent. It can be drawn from Fig. 3 that different velocity
distribution maybe has the same sound radiant efficiency.

Figs. 4 and 5 show the former two radiant modes with
k = 5, respectively. The results show that the sound power
mainly comes from the real part, and the different color
indicate the different velocity amplitude distribute of the
sphere surface. Those results illiterates the sound power
mainly comes from the former sound radiant modes.
Fig. 9. The first acoustical mode of radiating cube for k = 1.



Fig. 10. The second acoustical mode of radiating cube for k = 1.
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5.2. A radiating cube

The problem of a pulsating cube is formulated by pre-
scribing the normal velocity on a cubical surface produced
by a pulsating sphere of radius r0 circumscribed by the
Table 2
The former 16 sound efficiencies of sound radiation modes

k = 0.5 k = 1 k = 1.5 k = 2 k =

1 0.3447 0.7539 0.9764 1.3742 1.42
2 0.0465 0.4839 0.9741 1.3742 1.42
3 0.0464 0.4829 0.9741 1.2085 1.37
4 0.0464 0.4829 0.9725 1.2062 1.37
5 0.0017 0.0637 0.6340 1.2062 1.37
6 0.0016 0.0637 0.6340 1.0988 1.22
7 0.0016 0.0473 0.3393 0.8079 1.09
8 0.0015 0.0470 0.3381 0.8057 1.09
9 0.0015 0.0470 0.3381 0.8057 1.09

10 0.0015 0.0039 0.0488 0.3128 0.89
11 0.0015 0.0032 0.0408 0.3128 0.89
12 0.0015 0.0031 0.0408 0.3097 0.89
13 0.0013 0.0031 0.0403 0.2980 0.86
14 0.0013 0.0030 0.0403 0.2980 0.86
15 0.0012 0.0030 0.0403 0.2980 0.85
16 0.0011 0.0030 0.0377 0.2800 0.70
cube, depicted in Fig. 6. The boundary condition pre-
scribed on the cube is given by

vnðrÞ ¼
r0

r
vðrÞ ¼ r0

r
ð� 1

ixq
opðrÞ
or
Þ ð44Þ

where the sound pressure p(r) can be obtain by Eq. (42).
Radius r0 = 1 m, air density q = 1 kg/m3, sound velocity
c0 = 1 m/s, and the length of cube L = 2 m, respectively.

Fig. 6 shows the results of radiation cube at selected
points with two separate discretization schemes using
quadrilateral isoparametric elements. In Table 1, the results
at selected points are compared with the theoretical results
calculated from Eq. (42).

Fig. 7 gives the former 20 sound radiant efficiencies of
acoustical modes with different element sizes when k = 1,
the results show that the element size has a limit influence
on the sound radiant efficiency. As the cube is symmetric in
space, the sound radiant efficiencies are also same in three
directions. The results also show that sound radiation of
cube is concentrated on the former four radiant modes
under the condition of low frequency.

Fig. 8 shows the sound radiation efficiencies of former
four sound radiant modes. The results show that the sound
radiation mainly comes from the first acoustical mode
when wavenumber is less than 1. The sound radiation effi-
ciencies have a little difference when wavenumber is more
than 1.5. Figs. 9 and 10 plot the former two radiant modes,
the results also test that the sound power is concentrated
on real part, and the first sound radiant mode is the most
efficient one, and the different color indicate the different
velocity amplitude distribute of the radiating cube surface.
Table 2 lists the sound radiation efficiencies of former 16
sound radiant modes of different wavenumber, the results
show that sound efficiencies have a slightly change of for-
mer 16 sound radiant modes when wavenumber is more
than 3.
2.5 k = 3 k = 3.5 k = 4 k = 4.5 k = 5

80 1.4801 1.6514 1.6495 1.7192 1.9010
80 1.4757 1.6514 1.6495 1.7046 1.9010
83 1.4757 1.6514 1.6495 1.7046 1.6665
31 1.3571 1.4875 1.5199 1.6379 1.6636
31 1.3571 1.4873 1.5199 1.6379 1.6338
52 1.2992 1.4873 1.5199 1.6203 1.6338
91 1.2992 1.4282 1.4999 1.6203 1.6324
91 1.2992 1.4282 1.4368 1.6203 1.6252
31 1.2494 1.4282 1.4368 1.5747 1.6252
20 1.2404 1.3519 1.4307 1.5747 1.6246
20 1.2404 1.3383 1.4295 1.5614 1.6246
20 1.1972 1.3352 1.4295 1.5221 1.6214
31 1.1288 1.3352 1.4233 1.5221 1.5952
31 1.1288 1.3339 1.3971 1.5221 1.5952
79 1.1228 1.3339 1.3971 1.5144 1.5952
00 1.0354 1.2707 1.3717 1.5144 1.5179
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6. Conclusion

The method to calculate sound radiant modes and
sound radiant efficiency is proposed in this paper via
boundary element method and general eigenvalue decom-
position. Sound radiation can be decoupled when using
radiant modes calculate the sound power. The radiant
mode is independent of each others, and the sound power
and radiant efficiency can be directly expanded as the
sum of the sound radiant modes.

A methodology to solve the sound pressure and sound
power by boundary element method presented in this paper.
It is should be noted that most of arbitrary structure surfaces
are composed by two main kinds of feature geometry with
corner and curve face respectively. Accordingly, two struc-
tures including the corner and curve face are selected as the
calculation examples so as to demonstrate the validity of
the method for structures having complex geometry.

The sound radiant mode is independent of the thickness
and material property of structures, and just associated
with the wavenumber and geometry size. On the condition
of the low frequency, the sound radiant power mainly
comes from the former 10 radiant modes.
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