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Abstract

The singularity problem in Darcy flow around cutoff
walls is examined herein and a complete integral
formulation is derived, which may be regarded as the
fundamental equations of a Darcy or a potential flow
field in a domain bounded by regular boundaries and/or
boundaries of geometry degeneracy which enclose no area
or volume. The paper further explores the adoption of
the resulting formulation to the boundary element
method and thereby solves a long-standing abstrusity of
the boundary element method as is applied to the cutoff
wall problem.

INTRODUCTION

In engineering practice , sheet piles or cutoff walls
are often constructed to dstour flows. For example,
seepage 1in porous media such as soil underneath a dam
can be blocked and dramatically cut down if a sheet
pile wall is built from the dam to some depth. The flow
velocity at the tip of the wall is known to go to
infinity. This introduces singularity in the Fflow
field, which may pose difficulties in the solution
schemes, especially for problems of practical
importance where the geometrical shapes of the ranges
of the flow fields under consideration are more than
often arbitrary and which inevitably indicate numerical
treatment.
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This paper first gives a complete formulation for
Darcy flow in a finite or infinite domain where cutoff
walls may be present. The formulation consists of a
pair of dual boundary integral equations, which may be
solved analytically or numerically. Introducing the
concept of finite elements into the boundary integral
equations yields the famous boundary element method
(BEM). It 1is noted that although the BEM is well
developed 1in the study of potential flows for simply-
connected domains [1], it is no longer the case once a
cutoff wall is installed in the interior of the domain.
A cutoff wall is represented by a boundary of geometry
degeneracy which enclosesno area or volume and possesses
sharp edges or borders, where singularity is expected.
For problems of this nature there are no complete
formulations existing and no BEM's which discretize the
boundary only (without adding artificial boundaries to
divide the domain into zones) are available. The paper
by Lafe et al.[2] fully recognized the difficulty,
reading that arrangement which places the boundary
nodes on each side of the wall in the same coordinate
results in a coefficient matrix that is singular. Even
if a trick is played that the nodes of one side of the
wall are intentionally placed separately from the nodes
of the other side of the wall, it was found still of
little help. In fact, the difficulty is indeed rooted
in a fundamental point that the formulation devised for
a problem without degenerate boundaries does not
suffice to solve a problem with degenerate boundaries.
In other words, the formulation must be always complete
in order to secure a unique solution. The point is
sharpened furthermore if we recognize that on the cutoff
wall the number of the unknown is doubled and the
number of the prescribed boundary conditions is also
doubled, therefore it is obvious that the number of
independent equations should be doubled in order to
accomodate the increasing known boundary data and to
secure a unique solution. The present paper not only
derives a complete formulation of the so called dual
boundary integral equations [3,4,5] but also explores
the problem of singularity and its BEM scheme. It is
seen that physical problem investigated leads naturally
to principal values of singular integrals. The alleged
super-singularity can thus be explained by the concept
of Hadamard principal value [6]; although Hadamard [7]
didn't treat exactly the same problem; similarities do
exist, however.

DARCY FLOW AND CUTOFF WALL

From Darcy's law :
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and the continuity equation of incompressible fluids :

K mmm=te-— =0
ij o%o%

where the Einstein's indicial summation convention is
employed and kij denotes the permeability tensor of the
anisotropic porous medium considered. If the coordinate
axes are adjusted to be directed along the principal
axes of kij and an appropriate scaling is employed for
the coordinate or if the medium is isotropic in
permeability, the above governing egquation becomes

V8- o

where V’2 denotes the Laplacian operator. Consider the
problem of Darcy flow permeating through a simply-
connected region D (Fig.l), which is bounded by regular
boundaries S ( S may be the infinite Sa ), agd in which
there may exist degenerate boundaries C = C'+ (=37 of
geometry degeneracy such as sheetpiles, cutoff walls,
or thin foils or slits. The regular boundaries S and
the degenerate boundaries C comprise the total
boundaries B = § + C of the domain D. An appropriate
boundary cogdition must be prescribed on the boundaries
s + CT+ C = B, over one portion S1 of which the
boundary potential is prescribed ( Dirichlet type ).
over another portion S2 the velocity normal to the
boundary is known (Neumann type ), and over the
remainder §3 where the boundary is absorbent
with/without distributed (line or surface)sources and
sinks a boundary condition of Robin type is specified.
It is noted that on the degenerate boundaries C = C'+ -9
, boundary conditions should be imposed on both ¢t and
c™ , and the conditions imposed can be of different
types.

INTEGRAL EQUATIONS

For the aforementioned problem a boundary intergral
equation can be obtained from Green's second identity as

aPs)
b o = 4 S s
275 (x) j;T(s.x)o(s)dB(s) j;u(s.x) S2an(s), (1)
where ®(x) is the potential of a point x in the domain
D bounded by the boundaries B and, for the two-
dimensional case,

U(s,x) = In(r),



18 Advances in Boundary Elements

T(s,x) = -z=- (1n(r)),

in which r is the distance between the points s and x,
and ns is the outer unit normal to the boundary at the
point s. After applying a normal differentiation to the
above equation, the other equation emerges

0
27 = ¢‘ ‘f M(s,x)8(s)dB(s) - [L(s x jé%{ an(s), (2}
C
where, for the two-dimensional case,
Lis,x) = 25 (U(s,x)) = 55 (In(r)),
2 __?:__-
M(s,x) = anM(T(s,:-c)) ?Qpnéln(r)),

in which nx is the outer unit normal to the boundary at
the point x. Egs. 1 and 2 are called herein the dual
integral equations for the domain point Xx.

In order to get a compatible relationship for the
boundary unknowns, the point x of Egs. 1 and 2 have to
be on the boundary. This might induce the problem of
singularity. Analogous to the treatment of complex
contour integral involving poles, the boundary is
detoured circularly or spherically around the point x
of singularity and then shrunk all the way back to
the point. In this way the strong singularity which
arises in the first part of the right-hand side of Eq.
1, as well as in the second part of the right-hand side
of Eq. 2, as x approaches the boundary, leads to a sum
of an integral interpreted as its Cauchy principal
value, which is finite, and a jump term. Whereas the
super-singularity which arises in the first part of the
right-hand side of Eg.2 as x tends to the boundary
leads to an integral interpreted as its Hadamard
principal value, which is finite, too. When one pushes
the point x to the boundary, one indeed performs an
operation of extention which extends or maps the
function defined on the interior of the domain D onto a
function defined on the boundary. The operator is
sometimes called the trace operator ( of order 0 ).
Accordingly Egqs. 1 and 2 become

13
X Poo= f T(s,x)@(s)dB(s) fu(s x) —%?,-5\—’ dB(s), (3)
OK-L } M(s,x)@(s)dB(s) -fL(s.x) a@(s dB(s), (4)
8 B
upon noting the property that the 51ngu1ar integral
Ug -g%n(u(s.x)) + -%;{-(U(s x)) dB(s) (5)

is continuous when x is across the boundary and the
continuity property of the normal derivative
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-—g—i‘-‘!g‘(s.x) P(s) dB(s) (6)
of the double layer potential [8]. In Egs. 3 and 4 X(x)
measures the solid angle at x, and y and # denote
that the integrals are to be interpreted as their
Cauchy and Hadamard principal values, respectively. It
is worthwhile noting that Eq. 4 can alternatively be
derived from Eq. 3 by a normal derivative operation.
This suggests commutativity of the two operators,
normal derivative and trace.

Equations 3 and 4 are called the dual boundary
intergral equations, which give a complete formulation
of relations of compatibility of the boundary potential
and the normal derivative of the poctential at the
boundaries. For a simply-connected domain which has no
degenerate boundaries, either Egq. ool 4
individually suffices to solve the problem posed. For
illustration purposes we shall give a numerical example
later on to make the point clear. On the other hand, if
there exist degenerate boundaries Com 0% G5 7~ poth
equations 3 and 4 must be used to secure a unique
solution.

FORMULATION FOR CUTOFF WALLS

In this section we are going to derive a formulation
explicitly considering the presence of cutoff walls.
Separating each of the boundary integrals of Egqs. 1 and
2 into three portions according to B = § +C'+(C", _and
noting that the normal of C'is opposite to that of C and
letting C* and C be thought to be one with the same
rormal of C' we have

27 B (x) =f$'r(s,xm(s) dB(s) -[Su(s,x)%?”ds(s)
'fj;T(s.:':)AQ)(s) as(s) -[70s,x) 1) ()
2E—%%=J;1!(s,x)¢(s) dB (s -_/S‘L(s,x)-ag{:“dB(s)
+_£ M(s,=) Ap(s) dB(s) -ch(s,x) Z.?a-,{“dam (8)

where

b .é(-\‘c‘) ¥ ¢(’\)
Bex2) - P(x)

L.
-
]

“or T ZaiXe 2%
A28 =28 ) - 2

an an |>(€ on l 'Y:C’
Pushing x to the regular boundary S and recalling
the properties of the expressions £ and 6, Egs. 7 and 8
turn ocut to be
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a¢6)
X 2(x) =fT(s,x)0(s) aB(s) - fuls, x)——¢— dB (s)

+[ T(s,x) Ap(s) aB(s) -fu(s,x)z-a-"l‘”drs(s) (9)
X gz sM(s,x)ﬁ(s) dB(s) fL(s x)—aﬂ”ds( )
+jcn(s,x) AB(s) dB(s) fL(s x) 3 9¢BdB( ) (10)

By the same token, but the point x approaches the
degenerate boundary C, Eqgqs. 7 and 8 instead become

LE0(x) =[T(s,x)0(s) aB(s) - fLuls, x):"ji aB (s

.rffr(s x) 80(s) dB(s) fms x) z-’-"-‘”ds( ) (11)
ﬁa?fi M(s,x)®(s) dB(s) fL(s x)?f‘-’ dB(s)
+;CM(s,x)A¢(s) dB(s) -éL(s,x)ZQg’(f dB(s) (12)

if C is smooth at x. Using Eqs. 9, 11 and 12, or Egs.
10, 11 and 12, we have enough 1ngependent equations to
solve the ungnowns ofag (resp. éﬁ- ) on S, and > ® and
O¢(resp. Z- - and A ) on i s

HADAMARD PRINCIPAL VALUE
To evaluate the Hadamard principal value
]
fu(s.x) @(s) dB(s) = =~ )[T(s.x) @(s) dB(s) (13)
any
of the integrals in Egs. 4, 10 and 12, we note that the

explicit forms of M(s,x) and L(s,x) are, if ri = xi -
5. and-r = (¥ Y1/2,

3 V0 3
2 el niomed i) o
M(S;X) S F S M ev FZ+ —————————— F ey (14)
- (<)
T(s,x) = ——=-- rB;QSSE_' (15)
which simplify to
|
M(s,x) = 23:;32 ’
(a2l =. 0 :

if the boundary is taken to be straight, running from -1
to 1. Since the integration path is detoured circularly

at the neighborhood of x and that of the integral of

the right-hand side of Eq. 13 excludes the circular arc

part, the nx of the right-hand side of Eq. 13 is

therefore the normal to the very beginning of the arc,

which is just the direction x. (Fig. 2). Having this

and Egs. 14 and 15 into Eq. 13 we have
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) '
;--ﬂé__ no & SN o Fae

(X-5)* ax I, S=X
whlch using Leibnitz' rule becomes
=210 b s) o
lim { --fo— J. J- -'fté-‘f- ds |} (17)
€90 (x-3

It ‘}s understood that in the above the large constant
-Jqug— cancels the large contributions from the
integral near s = x [9]. A further manipulation of Eq.
17 is possible by integration by parts, giving formally
fregn ois btimapisglal) s
=9 93X X-£ X+
which is to exist if -1 < x < 1 and @'(s) is Holder-
Lipschitzian.

UNIFORM FLOW

For illustration purposes, a Darcy flow in a
rectangular region D, as shown in Fig. 3, of two units
long and one unit wide is considered. The upper and the
lower boundaries are solid walls such that the normal

flux is zero; that is, —%‘— =0 on Sl A . %2 =2.=20:5,:=1. %
x1 ¢ 1 and x2 = 0.5, -1 < x1 < 1 ). Along the vertical
boundaries $S2 the potentials are prescribed as @ = -1
on x1 = -1, -0.5 ¢ x2 < 0.5 and as = 1 on x1 =1, -0.5

¢ x2 ¢ 0.5. Note that B = S = S1 + S2 and that there
is no absorbent boundary S3 and no degenerate boundary
in the present example. The exact solution of this
simple problem is @(x1l, x2) = x1. In the present work
the boundary integrals are discretized into
superparametric constant elements and the collocation
points are at the centers of the elements. As mentioned
earlier this problem can be solved by either Eq. 3 or
Eq. 4 alone. Table 1 shows a comparison between the
numerical results of Eq. 3 and those of Eq. 4. Twenty
four elements of 1/4 unit long were used . It 1is
observed that the symmetry about the x1 axis and the
anti-symmetry about the x2 axis were conserved to a
great extent. The errors of the numerical solutions at
the nodes relative to the exact values were acceptable
in view of the crude discretization used.

CUTOFF WALL PROBLEM

Consider a problem as in Fig. 4 which is almost
identical to the previous problem of the last secticn
except that a cutoff wall of half a unit long is built
from the mid-point of the upper solid wall vertically
down to the center of the rectangular region. The
cutoff wall is assumed to be impermeable. Using 30
elements of 1/5 unit long on the regular boundaries and
5 elements of 1/10 unit long on the degenerate boundary
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( cutoff wall ), we obtained the numerical results of
boundary unknowns by utilizing Egqs. 9, 10 and 12,
whereas we also calculated from 10, 11 and 12. Then the
domain potential and the domain flux can be determined
frgm Egqs. 7 and 8, respectively. Fig. 5 shows the flux
”%n? along the x1 direction at x1 = 0 from the tip of
the cutoff vertically down to the mid-point of the
lower solid wall. For comparison a result obtained from
a numerical scheme of the Schwartz-Christoffel
transformation [2] is also shown in the figure. Note
that in the vicinity of the tip where singularity is
expected and most schemes suffer much the agreement
between the present solutions and the Schwartz-
Christoffel transformation solution is remarkable.

CONCLUDING REMARK

The dual boundary integral equations have been derived
to give a complete description of the relation of the
boundary potential and the normal flux at the
boundaries.The singularity problem has been solved by a
careful derivation which 1leads naturally to a
convergent formulation. The formulation can be written
in more compact form if the notions and notations of
Cauchy and Hadamard principal values are taken
advantage of, as have been done in the present work.
The adoption of the derived dual equations to the
boundary element method has resulted in a powerful
numerical scheme suitable for solution of a wide <class
of problems ( see Fig. 1 ). For illustration we have
presented twe numerical examples, the results of which
were found encouraging.
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TABLE 1. SOLUTION TO UNIFORM FLOW
Position Exact numerical solution (error %)

O S el b TR o e o e et o o v o S P10 2 S i S o g 4 S5 23 o8

the solution Solved by Solved by
node Eq. 3 Eq. 4
____________________ o i .
{1,0.375) 1 1. 047671~ (&.77) 1.081877 (8.19)
€1 ,0:.125) 1 0.979321 (2.07) 1.013894 (1.39)
(2:-0.125) 1 0.979323 (2.07) 1.013893 (1.39)
(1,-0.375) 1 1.047670 (4.77) 1.081877 (8.19)
{(-1,0.375) -1 -1.047672 (4.77) -1.081877 (8.19)
(-1,0.125) -1 -0.979321 (2.07) -1.013893 (1.39)
(=-1,=-0.125) -1 -0.979323 (2.07) -1.013893 (1.39)
(-1,-0.375) -1 -1.047671 (4.77) -1.081876 (8.19)
(80:3125:3%) 0.125 0.125768 (0.62) 0.124220 (0.62)
(0-315,1) 0.375 0.377344 (0.63) 0.372394 (0.69)
(0.625,1) 0.625 0.629172 (0.67) 0.619416 (0.89)
(0.875,1) 0.875 0.882124 (0.81) 0.861658 (1.52)
(-0.125,1) -0.125 -0.125768 (0.62) -0.124220 (0.62)
(-0.375,1) -0.375 -0.377344 (0.63) -0.372394 (0.69)
(-0.625,1) -0.625 -0.629172 (0.67) -0.619416 (0.89)
(-0.875,1) -0.875 -0.882124 (0.81) -0.861658 (1.52)
(-0.125,-1) =-0.125 -0.125768 (0.62) -0.124220 (0.62)
(-0.375,-1) =-0.375 -0.377344 (0.63) -0.372394 (0.69)
(-0.625,-1) -0.625 -0.629172 (0.67) -0.619416 (0.89)
(-0.875,-1) -0.875 -0.882124 (0.81) -0.861658 (1.52)
(O 525,.=X%) 0125 0.125768 (0.62) 0.124220 (0.62)
(0.375,-1) Q.375 0.377344 (0.63) 0.372394 (0.69)
(0.625,-1) 0.625 0.629172 (0.67) 0.619416 (0.89)
{0.875,=1) 0.875 0.882124 (0.81) 0.861658 (1.52)

———————————————————————————————————————————————————————" . ——— -
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Fig.1 General Darcy Flow Problem.

-+

Fig.2 Normal vector of source and field point.
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Fig.3 Uniform flow problem.
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Fig.5 Velocity flow diagran.



