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ON INVERTIBILITY OF BOUNDARY INTEGRAL EQUATION
SYSTEMS IN LINEAR ELASTICITY

ROMAN VODICKA!, VLADISLAV MANTIC?

The existence of various types of non-uniqueness in the solution of elastostatic
problems by means of systems formed by both displacement and traction boundary
integral equations is presented. Such solutions may appear whenever a rigid-body
motion is allowed in the solution of a boundary value problem, or the size of the
domain is special giving arise to a phenomenon of critical scale, or the traction
equation is used on a cavity boundary. In order to obtain uniquely solvable boundary
integral equation systems a technique of the non-uniqueness removal, based on
the Fredholm theory of integral operators, is proposed and analyzed. A numerical
example presented shows various situations where these non-uniqueness appear and
studies applicability of the approach suggested.

Keywords: Boundary Integral Equation, Rigid Body Motion, Solution unique-
ness, Domain with cavities, Critical scale, Symmetric Galerkin Boundary Element
Method, BIE of the second kind

1 Introduction

The present work deals with the solution of Boundary Value Problems (BVPs)
of linear elasticity which may lead to non-uniquely solvable Boundary Integral Equa-
tions (BIEs). These non-unique solutions can be naturally related to rigid-body motions
(RBM) of the body not restricted by the boundary conditions prescribed — the original
BVP has the non-unique solution, too. However, there are some other special config-
urations when the BVP has a unique solution, while the associated BIE system does
not.

One of these particular situations is related to the so-called critical scale factors of
a region. This kind of problems appears solely in plane BVPs, see (Chen et al., 2002;
Constanda, 1994; Heise, 1987; Vodicka and Manti¢, 2004). It is known, that the exterior
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BVP with Dirichlet boundary conditions is uniquely solvable when a suitable radia-
tion condition, i.e. a condition on behaviour of displacements at infinity, is prescribed.
Nevertheless, there are one or two scales for each domain in plane BVPs, where the
corresponding exterior BVP with homogeneous boundary conditions and a radiation
condition has a non-trivial solution. Then the associated BIE is not-invertible. However,
not only the BIE associated to the exterior BVP is not-invertible but also that asso-
ciated to the interior BVP defined on the domain, possibly with cavities, which outer
contour is a boundary of the critical domain. ‘

Another kind of non-unique solutions appears, when a system of BIEs, which uses
the traction equation (Ugodchicoff and Khutoryanskiy, 1986), is applied. The kernels
of the integral operators in the traction equation have some interesting properties, see
(Chen and Zhou, 1992). In particular, if this equation is used to solve a BVP on a domain
with cavities, then both, the displacements which are prescribed at one cavity boundary
by a RBM and by zero on the rest of the boundary, and the tractions in the BVP
with these displacements prescribed on the boundary, belong to the nullspaces of the
pertinent integral operators generated by the traction equation, depending on the type
of prescribed boundary data, see (Greenbaum et al., 1993; Vodi¢ka et al., subm.). The
system of BIEs, which combines the traction equation with the classical displacement
BIE may produce then the non-unique solutions, too. This is also the case of Symmetric
Galerkin BEM (SGBEM), as was recently shown in (Pérez-Gavilan and Aliabadi, 2001;
Vodicka et al., subm.).

The non-invertibility may obviously cause problems in numerical solution. However,
a suitable modification of the non-invertible BIE systems may remove this unpleasant
property and generate a system with a unique solution. Fredholm theory, applied to
boundary integral operators in (Chen and Zhou, 1992), seems to be an excellent frame-
work for development of such techniques. The integral operators may be modified either
by augmenting the system by some auxiliary equations or by adding an operator with a
degenerated integral kernel. The application of such modification techniques were shown
in (Blazquez et al., 1996) with an emphasis on the former approach and in (Vodicka et
al., subm.) which was focused on the latter one.

The above specified non-unique solutions are studied in the paper. It will be shown
how the BIE systems can be modified to obtain uniquely solvable problems. Numerical
tests will demonstrate the examples of all aforementioned cases of non-invertible BIE
systems. The modifications will be based on adding an operator in such a way that the
resulting system will be uniquely solvable.

2 BIE systems

Let us consider an elastic body occupying a region €2 C RP (D = 2,3) with a
bounded Lipschitz boundary 8Q = I'. An example, rather general, of such a bounded
body in 2D is shown in Fig. 1. Let us denote the cavities in the region 2 by symbols
Q;, i =1,...,H and their boundaries (i.e. connected subsets of ) Iy, i =1,...,H,
where H denotes the total number of cavities. The sum of all regions Q; together with
their boundaries T; forms a ‘cavitiless’ region {2o with a boundary I'g. Symbolically we
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Fig. 1. A general bounded region in a plane.

may write
H
Q=0)\ [U(Qiul‘i)] , QF =q, Q7 =RP\ (UL}, i=0,...,H, M
i=1

I;=00; i=0,...,H, I; =T;, U, Tju Nl =0.

The last relation introduces a boundary split via prescribed boundary conditions of the
solved BVP, i.e. prescribed displacements w (Dirichlet boundary conditions)

uk(x) = [uiu]k ((IJ), re Fiuv k= 1,""D . (211)
and given load prescribed in tractions ¢ (Neumann boundary conditions)
te(z) = [title (z), = € Ty (2t)

Two normal vectors are defined on each boundary I';, nf, as the outward unit normal
vectors of the regions Q;t, see also Fig. 1.

The BVP on the region 2 will be solved by two different’ BIE systems, obtained
according to prescribed boundary conditions using the two following BIEs. The first
BIE is the Somigliana displacement identity

Cra(@)uy(z) = /F Uki(z, )t (v)dT(y) — ]£ Ty, y)u(y)d0(y), o € T,
kl=1,...,D,

(3u)
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where Cj; is a known free term matrix (Mantig, 1993), Uy; is a fundamental solu-
tion of the Navier equation and Tj; are pertinent fundamental tractions, i.e. T'(z,y) =
ﬁl(y)U(m,y) and 7;(3} is an operator relating tractions ¢ with the displacements wu:
t(z) = Ta(z)u(z); n(xé being a normal vector of the traction plane. The last integral
on the right-hand side may be evaluated, however, only as a Cauchy principal value.

The second BIE is the Somigliana traction identity (Ugodchicoff and Khutoryanskiy,
1986). It should be noted that in the present form it is valid only for the points of the
boundary I'p (Manti¢ and Paris, 1995) — the parts with a smooth distribution of
curvature and tangential vector. It reads

3t4(2) = £ Ti(e ) e)- £ Sul@nu@are), €Tr,
kil=1,...,D,

(3t)

with T*(z,y) = T,)U(z,y) and S(z,y) = To(z)T(z,y). The first integral exists as
a Cauchy principal value, the second as a Hadamard finite part of a hypersingular
integral (Manti¢ and Paris, 1995). '

These equations also hold for an unbounded domain (a case when I'g = @) for
problems with the solution satisfying the condition, see (Balés et al., 1989),

wk(z) = Ugg(3, 008y + O(z]=P), |l = oo, by, = /]F t(4)dT(). (4)

Let us introduce the following notation, in order to present the BIE systems in a
transparent and compact way:

| [(Uia, bt 56 )(@)]k = - Uki(z,y)ti(y)dl(y), = € Dy, (5U)

i,j€{0,1,...,H}, k,l€l,...,D, a,b=u,t,

[(ﬂi:,]bu]b)(m)]k = A_\ Tk:;*l:(xv y)ul(y)dr(y)v ia # jb, z €Iy,

(5T)
(T2 o ia) (@) = ]{, Ty ()r),
[T iotio) @)k = [ T t@)dly), ia#jb, €Ty,
Fab (5D)
(T*E satia) @)k = ][ T+ (2, )t (4)dT(y),
Tia
[(Siajotsp) ()K= /r Ski(z, y)u(y)dl(y), ia#jb, x €y,

(s8)
(Swau) @ =F_ Sa@vu@dre).
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In all of these expressions any of the indices i, J,a,b can be omitted, with a clear meaning
of the remaining symbol. The integral kernels T,fl: and T*,:::l are equivalent to functions
Ty and T3 in Eq. (3) expressed with respect to normal vectors n;t, respectively. In
the integral kernel Sy; the normals are always defined as outward vectors to pertinent
regions ); or (2.

Two BIE systems are introduced and analyzed. They can be formally written as

(A29) (2) = (B;b) (z), | (6)

where index z is either ‘f’ for the first-kind BIE system or ‘s’ for the second-kind BIE
system. The vector function y consists of the unknown boundary functions and the
function b contains the prescribed boundary conditions

y' = {uor u1e -+ upg tou tiy - thu} )
b = {tor tie -ty wou ury - upL)
A well-known SGBEM approach can be obtained applying both BIEs Eq. (3) so

that a BIE system of the first kind is created. The operators for this system (z=Ff)
have the form

- *+ *+ *+ -
Sot,ot  Sot,1e -+ Sot,Ht —T* g0y —T ot1u "~ L ot Hu
*— *— * =
Sior St o Sum T Low ~T*Gre - T %
*— * * —
_ | Smtor Smtae - Sutht T hyou=—T g1 —T B S£-A)
| -7 = = Ul U, U, ’ (8F
- %,Ot “ou,1t T T Lou,Ht Ou,0u Oudu - Ou,Hu
“T1u,0t - l—u,lt”'— 1Z,Ht Ulwou Utyiu - Ulu, Hu
: : i - : :
-_THu,Ot_ Hult"" "~ * Hu,Ht UHu,0u Uhuiu "+ UHuHu |
-1 + + + -
-3 +T*Ot,0t T*Ot,lt T*Ot,Ht ~S0t,0u —SOt,lu -+ —Sot,Hu
* — 1 * — * ~— t “ e —
T e —3+T TRV & 1t,Ht —S1t0u  —Sit,1u - S1t,Hu
= N 1 . _ . . . .
*Ht,Ot *Ht,lt Ty +T*Ht,Ht ~SHtou —SHtlu ** —SHtHu
1 + - -
—Uou,0t —Uou,1t -+ —Upymt 35+ TOu,Oul Toviw  Touwmu
+ - .. T
"Ulu,Ot —Ulu,lt to _Ulu,Ht Tlu,Ou 5+ lu,lu Tlu,Hu
. . . . +. _. o 1 -_
L “Unwot  ~Unmuyt - ~Unubt  Thyon Thure 3+ Thu g

(8-B)
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The second-kind BIE system uses the operators introduced by the relations

A, = .
_1 + - —
5+ fOt’Otl Toene  Togme —Uotou —Uotiu - ~Uot,Hu ]
Tioe 3+Thy Tame —Uiow  ~Uiw - —Unhu
—+: _. 01 ._ . . A .
= Tgioe Thepe 2t THt,Htl_UHt_;_Ou —UI{:,Iu “UIf,Hu (8s-A)
* * * Y
Souot  Souit - SouHt 3~ T ouou 1—T oulu *° ~L 0w Hu
Stuot St o SwEt  Thuow 3 Trieie —T 1uHa
’ ’ ) ’ _ ~ 1 —
i Sauot SHuit - SHuHt T Huow ~T Huiuw =2~ T HuHu-
- Tt -T=. ..._T2
Uotor Uotat -+ Uot,t —Topou —Tot1u Tot,bu |
+ — —
Uior Uitat - Unrr —Tipoy —Tiggw —TigHu
: : R | B :
B, = Ufit,Ot Ufit,lt UI_I:,Ht ~Trt0u ~THtaw ~THe Ho (85-B)
* * * :
T Ou,0t T Ou,lt ** T Ou,Ht —S0u,0u =Sou,1u *** ~S0u,Hu
* — * — * —
T*Tuot T rue T 1w e —S1u0u —Stutu - ~S1u,Hu
LT*;-Iu,OtT*;Iu,lt' : 'T*;Iu,Ht‘SHu,Ou_SHu,IU' “+=SHu,Hu

The pros and cons of both abovementioned BIE formulations are known, they are not
analyzed here, see e. g. (Voditka and Manti¢, 2001). The attention will be paid to those
BVPs which lead to multiple solutions of the system in Eq. (6).

3 BVPs with non-invertible operators in BIE formulations

It was already mentioned that some BVPs cannot be solved uniquely. A natural
case of such non-uniqueness appears in the solution of interior Neumann BVP. In the
case of elasticity the boundary conditions are prescribed in tractions t. The solution
space of the homogeneous BVP is formed by RBM. Let us introduce the notation for
them — pf(z) forr € QUT' and @ =1,...,np, np = 2§22+_12_ Thus for plane we may

write

w@={s} wo={1} we-{2} ©)

Moreover, let us denote ¢, i =1,...,H a BVP with boundary conditions prescribed
as follows

T; =T, Hw=p% uj=0j#i t;z=0 j#i,j=0,...,H (10)




On invertibility of boundary integral equation systems in linear elasticity

A classification of BVPs that lead to BIE system with a non-unique solution can
be done, finding following classes of problems, (Bldzquez et al., 1996; Chen and Zhou,
1992; Vodicka and Manti¢, 1995; Vodicka and Manti¢, 2004; Vodlcka et al., subm.):

(n) The solution of interior Neumann BVP 1s non-unique. RBMs in Eq. (9) belong to
the kernel of the operators A, (z = f,s). !

(f) If there exists an index i such that the boundary conditions of ©F with reference to
their types are opposite (i.e. u instead of ¢ and vice versa) to the conditions of the
solved BVP, the prescribed boundary conditions of ©F form vectors from the kernel
of the operator Ay, Eq. (8f-A). Let Hy be a set of 1nd1ces i, which enable at least
one such BVP ©f. Let ny, be the total number of all such problems. Then nH,
gives the number of hnearly independent functions from the kernel of the operator
Ay diminished by enabled RBMs if any, see the item (n).

(s) If there exists an index i such that the boundary conditions of ©F with reference
to their types are the same as the conditions of our BVP, the solutlon of ©¢ forms
a vector from the kernel of the operator Ag, Eq. (8s-A). Let H, be a set of indices
i, which enable at least one such BVP ©%. Let ng, be the total number of all such
problems. Then it is the number of linearly independent functions from the kernel
of the operator Aj.

(c) The BIE solution of the 2D-Dirichlet exterior BVP or of any interior BVP with
Dirichlet conditions prescribed on I'y obtained by system Eq. (6) for z = f is
multiple provided that the size of the domain is special. According to (Vodicka and
Manti¢, 2004) for each domain Q with a boundary I" there exist one or two critical
scales p such that the solution of the BIE system Eq. (6) with z = f on the set

pI' = {pz € R? : £ € I'} is not unique. The dimension ne of the kernel of the
operator Ay is one or two.

Thus the solution of the system in Eq. (6) is not unique whenever one of the above
conditions is satisfied. It is possible, however, to modify the system using some techniques
described in detail in (Bldzquez et al., 1996; Chen and Zhou, 1992; Voditka et al.,
subm.). The modified systems are then uniquely solvable and the solution of the modified
system is also the solution of the original system. Here we present an example of such
a modification, without a detailed proof. The modification is based on the theory of
Fredholm operators as all present operators are Fredholm of index zero, see (Chen and
Zhou, 1992).

For each ©F, r € H, satisfying the conditions either of the item (f ) or (s), according
to z, let us define functions v2 and w& for some fixed points :vr € Q;f and for a critical
BVP of the class (c) the same functions, but for the point zy € 0y or z§ € Q of the
interior or exterior BVP, respectively, using the following relations

. T, (zg, x), ifzely,i#0
[vrli(z) = { T (22,2),  if z € Ty : (11v)
—U(z2,z), ifzely,

! Some kinds of boundary conditions, e.g. symmetry conditions, inhibit only some RBMs. In
such a case not all RBMs appear in the kernel of the pertinent operator. This case is not treated
hereinafter for the sake of simplicity.
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o o _T]‘;(mgaw)’ if £ € Tyt 7é 0

[w2li(@) = ~T5 (z%,2), ifz€Tou , (11w)
' Ukl(mgvx)v if z € Ty

where k = 1,...,D, is a suitably chosen index for each fixed point z¢. The func-

tions v® and w?®, however, can be chosen arbitrarily, only some conditions introduced
in (Bldzquez et al., 1996; Chen and Zhou, 1992), have to be satisfied, so they are not
restricted to the present particular choice.

Let us take z = f, and create, instead of the system Eq. (6), a modified system

(Asy) (2)+)_v*() / v&(2)y(2)dT(2) = (Byb) (2)+)_v¥(z) / w®(2)b(z)dl(2), (12f)
a=1 r r

- a=1

where v® and w?® are just appropriately reordered functions v¥ and wg and 7 is equal
to ng, if the BVP belongs to the class (f) or it is equal to nc if the BVP is critical of
the class (c).

Similarly, a modified system for z = s can be introduced for a BVP belonging to
the class (s)

an an

(Asy) (2) +&Z=1wa<x> /r 29(2)y(2)dT(z) = (Bsb) <x>+£wa<x> /F w? (2)b(2)dT(2). (125)

The system in Eq. (6) for the Neumann BVP (the class (n)) should be modified in
a different way, as the above modification does not remove the RBMs from the kernel
of the pertinent operator, but the RBM itself can be used for modification as follows

(o) @) + 3 1@ [ H(AYEANE) = (B:b) @) (12m)
a=1

It should be noted that a Neumann BVP on a region with cavities solved by SGBEM
belongs to both classes (n) and (f). Thus the modification must be performed using both
modifying parts of Eq. (12f) and Eq. (12n).

4 Some notes about the discretisation

The system of integral equations in Eq. (6), can be discretized by the BEM and
written in a form of linear equation system as follows

_
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Let us denote IV the number of unknowns in the discretized system, thusy € RV and M
the number of known nodal quantities in the same system according to the prescribed
boundary data, hence b € RM. The left-hand side matrix of Eq. (13) is therefore a
square matrix A, € RVxN , while the right-hand side matrix B, € RVY*M does not
have to be. ‘

Similarly, any modified systems Eq. (12) can be discretized to obtain

[Af + VVT] y = [B Pt VWT] b, (14f)
[As + v"va] y = [Bs + v"va} b, (14s)
[Az + MMT} y = B,b. (14n)

The dimensions of matrices V, W and M can be deduced from Eq. (12) — referring to
the part added to the original system — and from the dimensions of matrices in Eq. (13):
V e RVxnH: W ¢ RMxnm: ‘M € RN*n0 When the modification is used for a (c)-
class BIE, the relevant matrices belong to V € RV *ne, W € RM*ne_The 'tilded’ matrix
W e RVN*nH; ig introduced just due to the discretisation, it corresponds to the same
function in Eq. (12) as the matrix without tilde.

5 Notes about numerical implementation

A program BEMGAL, described in (Vodicka, 1999) will be used to demonstrate
the applicability of aforementioned modification techniques. Although, the developed
theory can be applied to both 2D and 3D problems, the program is designed to solve
only 2D problems. The code is then applied to numerical examples of the next section.
Some important features of the code will be summarized below:

¢ Linear continuous elements are used to approximate both displacements and trac-
tions. The tractions are, however, allowed to be discontinuous if necessary.

o Galerkin method is applied for the solution of BIE. The basis functions are the same
as used for the approximation of the boundary data.

¢ Connected components of the boundary are approximated by polygons.

e Integrals in the influence matrices are calculated analytically.

o The discretized linear equation system is solved by Gauss elimination.

All calculations are performed in double precision arithmetic.

6 An example

The example will present all classes of non-invertible boundary integral operators
introduced in Section 3. Let us take a domain according to Fig. 2 of a material with
E = 10*MPa and v = 0.25. No ‘reasonable’ (meant in engineering sense) load produces
a known analytical solution, hence a solution given by the following Airy stress function
will be considered:

F(z1,z9) = Fysin (%) exp (—-%) , Fy=10*N, h =100 mm. (14)
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Fig. 2. Domain description.

Four instances of boundary conditions will be treated with, their values are chosen
according to the stress function from Eq. (14) but their types are different. The first
case is the first BVP of the elasticity theory, i. e. a Neumann type BVP. The case will
be distinguished by ‘NEU’ mark. The second case is the second BVP of the elasticity
theory, i. e. a Dirichlet type BVP, distinguished by ‘DIR’ mark. The last two cases are
mixed BVPs: the mark ‘NiDo’ is used for a problem with tractions prescribed at inner
boundary (Ni — Neumann in) and the displacements given on the outline contour (Do
— Dirichlet out), ‘NoDi’ mark denotes a BVP with oposite definition of the boundary
conditions. A uniform boundary element mesh will be used. The size of elements in the
mesh is 10mm. Plane strain state will be considered for the calculation.

Besides that, the parameters for the modified systems Eq. (12) introduced by Eq. (11)
have been chosen such that the classes (f) and (s) (r =1 and o = 1,2, 3) use z} (35, 90)
and k = 1, 23(35,90) with k = 2 and z3(55,130) with k = 1. Contrary, the class (c)
uses m(1)(1000, 1000) and k = 1 for the critical scale, calculated according to (Vodicka
and Manti¢, 2004), p; = 0.0136279.

Let us first check the BIE systems for possible non-invertibility of the pertinent
integral operator. Table 1 gathers some singular values (obtained by SVD) of the
matrices, belonging to the chosen discretisation. The rows ‘System (Eq.)’ inform about
the used integral equation system, whether a modified system was used or not. At each
instance three parameters are referred: the maximum of all singular values omaz, the
minimum of all positive singular values (zeroes skipped) O min and the number of zeroes
appearing in SVD. The cases of our special interest are those, which have a non-trivial
kernel, i. e. with some zero singular values.

The natural non-trivial kernel is present in a solution of Neumann BVP as the
RBMs belong to such kernel (in plane there exist three linearly independent). The
system Eq. (6) with z = s confirms exactly this fact. However, the other type system
with z = f belongs, due to the present cavity with Neumann type boundary conditions,
additionally to the class (f) of Section 3, therefore the kernel dimension of the matrix,
and also of the operator, is six.

10
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Table 1. Parameters obtained from SVD.

BVP case NEU
System (Eq.)|(6), z = f|(12f) + (12n) (6), z=s|(12n), z=s
Omazx 1.36885 1.38455 0.139058 | 0.139058
Kernel dim. 6 0 3 0
1030 # 01 0.432967 0.429556 0.0529876 | 0.0529876
BVP case DIR
System (Eq.)|(6), z = f (6), z=f, p1 |(12f), A =1, p; (6),z=s (12s)
Tmaz 0.0628024 0.115170 0.115093 0.132709 | 0.153533
Kernel dim. 0 1 0 3 0 ‘
1030m # 0] 0.184506 0.342699 0.342661 2.34089 1.185462
BVP case NiDo
System (Eq.)((6), z = f (12f), n =3 [(6), 2= f, ; (12f), A =4, p1| (6), z = s
Omaz 0.889932 0.893306 0.890093 0.897909 0.639323
Kernel dim. 3 0 4 0 0
10%0im #010.190779 0.190779 0.354292 0.354287 0.889057
BVP case NoDi
System (Eq.)|(6), z = f (6), z=3s (12s)
(i 0.888114 0.640282 | 0.659178
Kernel dim. 0 3 0
1030 min #0(0.1910274 0.889063 | 0.889062

The second case of BVP describes a Dirichlet BVP. We can observe that this kind of
boundary conditions causes the system Eq. (6) for the index z = s to be non-invertible.
There are three linearly independent functions in the kernel of the left-hand side op-
erator. They are the solutions of the problem ©f as the BVP represents a problem of
the class (s). The other system for z = [ is uniquely solvable. However, it does not
have to be true generally. Each Dirichlet BVP can belong to the class (c) if the region
is appropriately scaled. The present region has two critical scales p; = 0.0136279 and
p2 = 0.01557632. The former was chosen to demonstrate the existence a non-trivial
kernel of the integral operator belonging to the class (c). It should be noted that the
non-uniqueness can be removed from the solution in this casg also in a simpler way, by
modifying the integral kernel Uy;(z, y) of the operator Uy, jp, in Eq. (5U). The influences
of this kind of operator modification can also be seen in (Vodicka and Manti¢, 2004).

The next case, a mixed BVP of the ‘NiDo’ case appears also rather interesting
at least for the system Eq. (6) with the index z = f. While the other system has
a unique solution, the first-kind BIE system does not. The Neumann type boundary
condition at the cavity normally cause the kernel to have the dimension three. However,
as the conditions of the outer countour are Dirichlet, the problem may also be of the
class (c). Actually, if the size of the domain is p1 scaled, the dimension of the kernel
is increased by one. Nevertheless, in both cases a suitable modification of the system
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eliminates non-trivial functions from the kernel, so that the resulting system has a unique
solution.

The last treated case of boundary conditions, the ‘NoDi’ case, confirms the results
of the above paragraphs and also the classification of the BVPs in Section 3. The first-
kind BIE system, Eq. (6) with z = f, is uniquely solvable, while the other BIE system
presents non-invertibility of the class (s). It causes the second-kind BIE system to have
a non-trivial kernel of the dimension three.

A general observation can be presented, too. The singular values does not change
significantly, when, in a numerical solution, any of the systems Eq. (14) is used instead
of Eq. (13). Of course, with an exception of the zero singular values which are pushed
to a positive magnitude. It can be shown, for example, that the modification used for
the solution of the Neumann type BVPs does not vary the singular values at all, except
of the zeros, naturally, see (Heise, 1981).

Six pictures describe the behavior of the solution of BIE systems, especially, of the
modified systems. The same key marks in the pictures have been used: The marks ‘f’
and ‘s’ refer to the index z in Eq. (6), ‘m’ means that the system has been modified to
obtain a uniquely solvable system. The used symbols representing values of the evalu-
ated functions are the same for one BIE type, however the first component, uj or tn, is
displayed by unfilled symbol, the second component, ug or ts, uses filled symbol. Dis-
placements are depicted in global coordinate as they are continuous along the boundary,
while the tractions do not have to be continuous and are expressed locally with respect
to normal and tangential vectors. Moreover, [ is a measure of length along the boundary.
It is measured clockwise from point Oy in the case of cavity boundary or from point A
to B for the outmost boundary.

Fig. 3 presents the solution of the ‘NEU’ case at the cavity boundary. Only the
solution of the modified systems is plotted. The numerical results agree with the analyt-
ical ones, with small distinctions caused probably by an eigen-solution close to a RBM.
This influence is larger in the ‘f’ case.

The ‘DIR’ example, unlike the previous one, shows also a solution of the unmodi-
fied ‘s’ system, Fig. 4. It does not have a unique solution and the kernel functions are
more complicated than RBMs are. We can observe and it can be proved, too, that such
functions are singular at reentrant corners. Contrary, the modified ‘s’ system and the
unmodified ‘f’ system offer solutions in accordance with the solution obtained analyt-
ically. On the other hand, the ‘DIR’ case is interesting also when it is scaled to the
critical scale. We used p1 to obtain the solutions of the unmodified and the modified f’
systems. They are plotted in Fig. 5 (‘c’ in the key refers to critical scale) for the segment
AB of the boundary. The presence of a kernel function in the solution is obvious for
the unmodified system. The kernel function is singular at the corners, being a solution
of the exterior BVP with the same boundary as the outline curve is, see (Voditka and
Manti¢, 2004).

The case ‘NiDo’ belongs to the class (f) if it is not scaled. The ‘f’ system has to
be modified, as it is apparent from Fig. 6. The obtained solution of unmodified system
contains a kernel function and lies mostly out of the range of the graph. Moreover, if
the domain is scaled by the factor pi, i. e. to its critical scale we obtain another kind
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Fig. 3. A comparison of the solution of the modified system with the analytical solution, Neumann
problem.
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Fig. 4. A comparison of the solution of the modified system with the analytical solution, Dirichlet
problem.
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Fig. 5. A comparison of the solution of the unmodified and the modified systems with the
analytical solution, when the domain is scaled by the factor p1, Dirichlet problem.
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Fig. 6. A comparison of the solution of the modified system with the analytical solution, mixed
BVP ‘NiDo’.
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Fig. 7. A comparison of the solution of the unmodified and the modified systems with the
analytical solution, when the domain is scaled by the factor p;, ‘NiDo’ case.
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Fig. 8. A comparison of the solution of the modified system with the analytical solution, mixed
BVP ‘NoDi’.
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of non-unique solution. It is plotted in Fig. 7 (‘c’ in the key refers to critical scale) for
the segment AB of the boundary. The presence of a kernel function in the solution is
clearly seen for the unmodified system, again it is singular at the corners.

The last selected type of mixed BVP, case ‘NoDi’, again confirms the above discus-
sion. The problem is of the class (s), thus ‘s’ system had to be modified. Nevertheless, the
solutions of both possible uniquely solvable BIE systems are the same as the analytical
solution is as it can be seen in Fig. 8.

7 Conclusions

The presented example shows various possibilities of non-invertibility of the operator
appearing in BIE formulations. A natural situation appears in the solution of Neumann
BVPs. Then not only the BIE system but also the original BVP have multiple solutions.
An unexpected problem can occur for a domain with cavities. Then the dimension of the
integral operator kernel of the system Eq. (6) with z = f is higher than the number of
allowed RBMs. This system is used for the SGBEM approach. The proposed technique
which removes the non-trivial functions from the kernel seems to be quite successful and
works in accordance with theoretical predictions.

Together with this, according to the present authors’ opinion, most crucial result
also other BIE formulation, leading to the system of BIEs of the second kind, Eq. (6)
with z = s can cause similar problems, but for different types of BVP. For engineers it
is not so important, as this formulation is less applied. Surprising may only be the fact
that the non-unique solution appears in Dirichlet BVP.

Another speciality of some BVPs is the phenomenon of critical scales. Though it is
actually a speciality and can be avoided more comfortably by other means, it was treated
in the same way as other cases of non-invertible integral operators in BIE systems. The
proposed method works quite satisfactorily also in this instance.

Acknowledgements. The work was supported by the Scientific Grant Agency of Slovak Repub-
lic (Grants No. 1/8033/01 and 1/1089/04) and the Spanish Ministry of Education and Culture
(Grant No. MAT2000-1115). The paper was presented at the 9th International Conference on
Numerical methods in Continuum Mechanics, Zilina, Slovakia, 9-12 September 2003 and its
shorter form was published in the Conference CD Proceedings.

REFERENCES .

[1] BALAS, J., SLADEK, J., SLADEK, V. (1989), Stress analysis by Boundary Element Method,
Elsevier, Amsterdam — Oxford — New York — Tokyo

[2] BLAZQUEZ, A., MANTIC, V., PARIS, F., CANAS, J. (1996), ”On the removal of rigid :
body motions in the solution of elastostatic problems by direct BEM”, Int. J. Num. Meth.
Engrg., 39, 4021-4038

[3] CHEN, G., ZHOU, J. (1992), Boundary Element Methods, Academic Press, London

[4] CHEN, J. T., KUO, S. R., LIN, J. H. (2002), ” Analytical study and numerical experiments
for degenerate scale problems in the boundary element method for two-dimensional elastic-
ity”, Int. J. Num. Meth. Engrg., 54, 1669-1681,

16




On invertibility of boundary integral equation systems in linear elasticity

[5] CONSTANDA, C. (1994), ”On non-unique solutions of weakly singular integral equations
in plane elasticity”, Quart. J. Mech. and Appl. Math., 47, 261 — 268,

(6] GREENBAUM, A., GREENGARD, L., MCFADDEN G. (1993), ”Laplace’s equation and
the Dirichlet- Neumann map in multlply connected domains”, J. Comput. Phys., 105, 267 —
278

[7] HEISE, U. (1981), "Removal of the zero eigenvalues of integral operators in elastostatic
boundary value problems”, Acta Mechanica, 41, 41-61

(8] HEISE, U. (1987), "Dependence of the round-off error in the solution of boundary integral
equations on geometrical scale factor”, Comput. Methods Appl. Mech. and Engrg., 62, 115—
126

[9] MANTIC, V. (1993), ” A new formula for the C—matrix in the Somigliana identity”, J. Elast.,
33, 191201

[10] MANTIC, V., PARIS, F. (1995), ”Existence and evaluation of the free terms in the hyper-
singular boundary integral equation of potential theory”, Engrg. Anal. Boundary Element,
16, 253-260

[11] PEREZ-GAVILAN, J., ALIABADI, M. (2001), "A symmetric Galerkin BEM for multi-
connected bodies: a new approach”, Engrg. Anal. Boundary Element, 25, 633-638

(12] UGODCHICOFF, A. G., KHUTORYANSKIY, N. M. (1986), Boundary element method in
solid mechanics, Kazan Umvers1ty Press, (in Russian)

[13] VODICKA, R. (1999), Coupled formulations of boundary integral equations for solving con-
tact problems of elasticity, PhD thesis, TU Kosice, Faculty of Mechanical Engineering, (in
Slovak)

[14] VODICKA, R., MANTIC, V. (1995), A comparison of three basic formulations of BIEs of
potential theory, Report, Technical University of Kosice, University of Sevilla

(15] VODICKA, R., MANTIC, V., (2004), ” On invertibility of elastic single layer potential op-
erator”, J. Elast in print

(16] VODICKA R., MANTIC, V., PARIS, F. (submitted), ”On the removal of non-uniqueness
in the solution of SGBEM for bodies with holes”, Int. J. Num. Meth. Engrg.

(17] VODICKA, R., MAN TIC, V. (2001),” A comparative study of three systems of boundary in-
tegral equations in the potential theory”, In T. Burczynski, editor, [UTAM/IACM/IABEM
Symposium on Advanced Mathematical and Computational Mechanics Aspects of the Bound-
ary Element Method, pages 377 — 394, Kluwer Academic Publishers

17




