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Abstract This work provides a preliminary contribution in
the context of analytical integrations of strongly and hyper
singular kernels in boundary element methods (BEMs) in
3D. It concerns the integral of 1=r3 over a triangle in R3,
that plays a fundamental role in BEMs in 3D, especially for
the Galerkin implementation. Because the existence of the
aforementioned integral depends on the position of the
source point, all significant instances of the position of the
source point will be considered and detailed. For its interest
in the context of BEM, the integral is also considered in the
more general sense of finite part of Hadamard.

Keywords Boundary element method, Analytical
integration

1
Introduction
Boundary integral equations [1, 2] represent a classical
formulation for many engineering problems. Their nu-
merical solution, towards the boundary element method
(BEM), reveals computationally effective when non-linear
phenomena (if any) take place only along the boundaries.
Despite this lack of generality, BEM is widely used in
potential problems and linear elasticity [3], both in static
and dynamic [4, 5], in fracture mechanics problems, even
in presence of internal pressure [6] and frictional contact
[7], in multidomain problems with non-linear interfaces
[8]. Reviews on the various applications of BEM can be
found, among others, in [9, 10]. The boundary integral
formulation of linear elasticity is taken as a prototype in
the frame of the present work.

Consider therefore a homogeneous solid with domain
X � R3 and with boundary C ¼ Cu [ Cp. Assuming small
strains and displacements, its response to quasi-static
external actions: tractions �ppðxÞ on Cp, displacements �uuðxÞ
on Cu and domain forces �ffðxÞ in X is studied. The well
known Somigliana’s identity, which stems from Green’s
second theorem, is the boundary integral representation of
displacements, in the interior of the domain, x 2 X, for the
aforementioned linear elastic problem. The Somigliana’s
identity is based on Green’s functions (also called kernels,
see Appendix 2) which represent components ui of the
displacement vector u in a point x due to: (i) a unit force

concentrated in space (point y) and acting on the
unbounded elastic space X1 in direction j (such functions
are gathered in matrix Guuðx� yÞÞ; (ii) a unit relative
displacement concentrated in space (at a point y), crossing
a surface with normal lðyÞ and acting on the unbounded
elastic space X1 (in direction j) (gathered in matrix
Gupðx� yÞ).

Because all above introduced kernels are infinitely
smooth in their domain, which is the whole space R3 with
exception of the origin (that is when x 6¼ y), the traction
operator can be applied to Somigliana’s identity, thus
obtaining the boundary integral representation of trac-
tions on a surface of normal nðxÞ in the interior of the
domain. Such a representation formula (by some authors
named ‘‘hypersingular identity’’ [11]) involves Green’s
functions (collected in matrices Gpu and Gpp) which
describe components ðpiÞ of the traction vector p on a
surface of normal nðxÞ due to: (i) a unit force concentrated
in space (point y) and acting on the unbounded elastic
space X1 in direction j; (ii) a unit relative displacement
concentrated in space (at a point y) , crossing a surface
with normal lðyÞ and acting on the unbounded elastic
space X1 (in direction j).

Boundary integral equations (BIEs) for the linear elastic
problem can be derived from the aforementioned two
representation formulae performing the boundary limit
X 3 x ! xo 2 C. For the hypersingular identity, the
boundary limit must be considered at a smooth point xo

with a well defined normal vector nðxoÞ [12]. The two
integral equations, usually referred to as displacements
and traction equations, are also called ‘‘dual’’ boundary
integral equations [13].

In the limit process, singularities of Green’s functions
are triggered off. Kernel Guu shows a singularity (named
‘‘weak’’) of Oðr�1Þ; kernels Gup and Gpu present a strong
singularity of Oðr�2Þ; kernel Gpp is usually named
hypersingular because it shows a singularity of Oðr�3Þ
greater than the dimension of the integral [14]. Following
the approach of [15], all singular terms cancel out in the
limit process (and without the recourse to any a-priori
interpretation in the finite part sense). Though, there
exists an intimate relationship between hypersingular BIEs
and finite part integrals (HFP) in the sense of Hadamard
[16]: in [14] and [18] among others, it has been proved
that a hypersingular integral can be interpreted as a HFP
in the limit as an internal source point approaches the
boundary. In [17], the same conclusion has been obtained
by a different definition of HFP, without the need for any
limit process.
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The numerical solution of the discrete set of integral
equations is generally performed toward two different
techniques: the ‘‘collocation’’ method [9] and the Galerkin
approach [10], which is stated on the weak form of the
integral equations [19, 20]. In recent years, the increasing
use of the Symmetric Galerkin BEM stimulated a con-
siderable amount of research in the area of efficient eva-
luation of double ‘‘integrals’’ containing singular and
hypersingular kernel functions. In fact, the evaluation of
(hyper) singular integrals still remains the highest diffi-
culty within the implementation of Galerkin BEM.

Three main techniques (regularization methods, nu-
merical approximations and analytical integrations) have
been proposed for the evaluation of singular and hy-
persingular integrals. Analytical integrations have been
basically performed in 2D (only a few works appeared in
the 3D context, see e.g. [21–23]), towards different
schemes. In the first scheme (see e.g. [11, 15, 24–26]), the
source point is fixed, while the boundary around the
source point is temporarily deformed to allow an analy-
tical evaluation of contributions from singular and hy-
persingular kernels, and then the limit is taken as the
deformed boundary shrinks back to the actual boundary.
All singular and hypersingular integrations are performed
analytically, while standard quadrature formulae are used
for non-singular integrals. In a second approach, see
among others [27–29], the source point x is first moved
away from the boundary; integrals are evaluated analyti-
cally and a limit process is then performed to bring the
source point back to the boundary. In a third fashion, the
direct evaluation of the HFP and of the CPV has been
performed in [30, 31].

The present note is preliminary to the complete analy-
tical integration of kernels in 3D, that will be published in
a forthcoming paper (see also [32]). This work only con-
cerns the nature and the analytical integration of 1=r3 over
a triangle, say Tj, that plays a major role in strong and
hypersingular kernels. Because the aforementioned in-
tegral depends on the position of the source point x with
respect to Tj, all significant instances of the position of the
source point will be analyzed. In particular, when the
source point x belongs to the triangle Tj, the integral does
not exist in a classical sense. The HFP of such a divergent
integral has a perfect meaning though and an interesting
property of continuity (with respect to the source point)
between the HFP and the Lebesgue integral is shown. To
this aim, the HFP has been directly evaluated as first;
further, the limit process to the boundary X 3 x ! xo 2 C
has been performed.

In Sect. 2 notations and the local orthogonal reference
adopted in the subsequent paragraphs are explained. The
Lebesgue integral is thereafter performed in Sect. 3, dis-
cussing separately the two items of source point outside
of the plane of the triangle Tj and of source point inside
of such a plane. The HFP is analyzed in Sect. 4 con-
sidering a square neighborhood around the source point
(the equivalence with a circular neighborhood can be
found in [23]). Remarks of Sect. 5 conclude the work,
whereas Appendix 1 includes a property of the arctanðxÞ
function that is relevant to the proposed analytical
integration.

2
Notation
Let Ch be a triangulation of the boundary C and let Tj be
the generic triangle of Ch. Let L � fy1; y2; y3g define a
local coordinate system such that: (i) a vertex of Tj is the
origin; (ii) the plane y1 ¼ 0 contains Tj; (iii) the plane
y3 ¼ 0 is orthogonal to the side of Tj opposite to the origin
(see Fig. 1). In L;Tj is defined by:

Tj :¼fy 2 R3 s.t. y1 ¼ 0; 0 � y2 � �yy2;

ay2 � y3 � 0; by2 � y3 � 0g
where a and b denote the slopes of the two sides of Tj

that cross the origin (see again Fig. 1). In L consider
the field point y 2 Tj, the source point x 2 R3, the
vector d ¼ ðy � xÞ and denote with r ¼ kx� yk
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2 þ d2

3

p
the usual norm of d in R3.

This paper is mainly focused on the evaluation of the
integral:

FðxÞ ¼
Z
Tj

1

kx� yk3 dy ¼
Z�yy2

0

Zbx2

ax2

1

kx� yk3 dy3 dy2 ð1Þ

in the coordinate system L. Adopting the new variable
d ¼ y � x, integral (1) becomes:

FðxÞ ¼
Z�yy2�x2

�x2

Zbd2þkb

ad2þka

1

r3
dd3 dd2 ð2Þ

in which ka :¼ ax2 � x3 and kb :¼ bx2 � x3. By the defi-
nition of a and b, ka ¼ 0 and kb ¼ 0 are the equations of
the two sides of Tj that cross the origin. The integral (2)
will be expressed as the sum of the two factors

FðxÞ ¼ f ðx; �yy2 � x2Þ � f ðx;�x2Þ
where f : fR3nTj � ½�x2; �yy2 � x2�g ! R is defined by:

f ðx; d2Þ ¼
Z

dd2

Zbd2þkb

ad2þka

1

r3
dd3

¼ f bðx; d2Þ � f aðx; d2Þ ð3Þ
Integral (1) takes sense when x =2Tj and is evaluated in
Sect. 3. To make such section lighter, a flow chart of the

Fig. 1. Local coordinate system L
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expressions of f bðx; d2Þ is presented in Fig. 2. For its
interest in the context of BEM, integral (1) is evaluated also
in the sense of finite part of Hadamard for x 2 Tj in Sect. 4.
A relationship between the two instances is set performing
the ‘‘limit to the boundary’’ Tj 63 x ! x0 2 Tj (Sect. 4).

3
Lebesgue integral
By the assumptions x =2Tj and y 2 Tj, the function 1=r3 is
infinitely smooth and from the calculus fundamental the-
orem the function f ðx; d2Þ 2 C1ðR3nTj; ½�x2; �yy2 � x2�Þ.
Keeping in mind that r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2 þ d2

3

p
, it holds:

i0ðx; d2; d3Þ :¼
Z

1

r3
dd3 ¼

d3

d2
1 þ d2

2

1

r

It is immediate to see that i0 is not defined when:

(i) r ¼ 0, never fulfilled.
(ii) d2

1 þ d2
2 ¼ 0, a new condition which has nothing to do

with x =2Tj (a suitable choice of x3 is sufficient to prove
it). In fact, if d2

1 þ d2
2 ¼ 0 one has:

i0 ¼
Z

d
�3=2
3 dd3 ¼ �

1

2

signðd3Þ
d2

3

ð4Þ
where signðxÞ :¼ x=jxj.

Taking into account of Eq. (4), it’s easy to show that:

I0ðx; d2Þ :¼
Zbd2þkb

ad2þka

1
r3 dd3

¼
d3

d2
1þd2

2

1
r

���d3¼bd2þkb

d3¼ad2þka

when d2
1 þ d2

2 6¼ 0

� 1
2

sgnðd3Þ
d2

3

���d3¼bd2þkb

d3¼ad2þka

when d2
1 þ d2

2 ¼ 0

8><
>:

ð5Þ

with I0ðx; d2Þ 2 C1ðR3nTj; ½�x2; �yy2 � x2�Þ. Equation (5b)
requires ka 6¼ 0, kb 6¼ 0, which are always fulfilled when
x =2Tj.

In order to show how to perform the outer integral of
Eq. (3), that is

f ðx; d2Þ ¼
Z

I0ðx; d2Þdd2

it is useful to separately consider the two items of field
point x lying or not lying in the plane of Tj.

3.1
The field point x does not lie in the plane of the triangle
For being d1 6¼ 0, from Eq. (5) one writes:

I0ðx; d2Þ ¼ Ib
0 ðx; d2Þ � Ia

0 ðx; d2Þ;

Ib
0 :¼ d3

d2
1 þ d2

2

1

r

���d3¼bd2þkb

;

Ia
0 :¼ d3

d2
1 þ d2

2

1

r

���
d3¼ad2þka

Focusing on the upper limit d3 ¼ bd2 þ kb in Eq. (5), the
two candidate functions to be a primitive for Ib

0 are:

f b
1 ðxÞ ¼

Z
Ib

0 ðx; d2Þdd2 ¼
1

2d1
�

arctan
2d1ðbd2

1 � kbd2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2 þ ðbd2 þ kbÞ2

q
ðb2 � 1Þd4

1 þ ðkbd2Þ2 � d2
1ðð1þ b2Þd2

2 þ 4bd2kb þ k2
bÞ

f b
2 ðxÞ ¼

Z
Ib

0 ðx; d2Þdd2 ¼ �
1

2d1
�

arctan
ðb2 � 1Þd4

1 þ ðkbd2Þ2 � d2
1ðð1þ b2Þd2

2 þ 4bd2kb þ k2
bÞ

2d1ðbd2
1 � kbd2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2 þ ðbd2 þ kbÞ2

q

Fig. 2. A flow chart of f bðx; d2Þ
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A property of the arctan function, shortly discussed in
Appendix 1, has been used to obtain this result. f b

1 and f b
2

are linked by the following identity:

f b
1 ¼ f b

2 þ
p

4d1

�sgn
ðb2�1Þd4

1þðkbd2Þ2�d2
1ðð1þb2Þd2

2þ4bd2kbþk2
bÞ

2d1ðbd2
1�kbd2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1þd2
2þðbd2þkbÞ2

q
ð6Þ

The (unique) primitive f b of Ib
0 can be caught after

studying the domain in which f b
1 and f b

2 are defined.
Within a domain where both f b

1 and f b
2 are defined, they

have the same derivative, Ib
0 , for they differ by a constant.

Within a domain in which only f b
1 (f b

2 ) is everywhere de-
fined, f b

1 (f b
2 ) is the unique primitive.

3.1.1
b =0
Consider first the easier case of b ¼ 0. If kb 6¼ 0, the ex-
istence domain for f b

2 with respect to d2 is the whole real
axis except the point z3 ¼ 0.

The existence domain for f b
1 with respect to d2 is the

whole real axis except the two points:

z1;2 ¼ �d1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b þ d2
1

k2
b � d2

1

s

When d2
1 � k2

b, f b
1 is defined with respect to d2 along the

whole real axis and again it represents the primitive for Ib
0 .

This item includes also kb ¼ 0.
When d2

1 < k2
b, the primitive f bðx; y1; y2Þ (which must

be smooth) is a suitable ‘‘glue’’ of f b
1 and f b

2 . Denote (and
therefore complete their definition) z1 and z2 such that
z1 � z2. Defining with:

z13 :¼ z1

2
; z23 :¼

z2

2

g13 :¼ �d4
1 þ ðkbz13Þ2 � d2

1ðz2
13 þ k2

bÞ

�2d1kbz13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ z2
13 þ k2

b

q ;

g23 :¼ �d4
1 þ ðkbz23Þ2 � d2

1ðz2
23 þ k2

bÞ
�2d1kbz23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ z2
23 þ k2

b

q
f b reads as follows:

f b ¼
�1 � d2 � z13 f b

2

z13 � d2 � z23 f b
1 � p

4d1
sgnðg13Þ

z23 � d2 � þ1 f b
2 � p

4d1
sgnðg13Þ � sgnðg23Þð Þ

8><
>:

ð7Þ
In Fig. 3 the subregions of the d1 � d2 plane in which f b is

defined by f b
1 or f b

2 are depicted.

3.1.2
b 6= 0
In the more general case of b 6¼ 0, the existence domain for
f b
2 with respect to d2 is the whole real axis except the point:

z3 ¼
bd2

1

kb
ð8Þ

When kb ¼ 0, f b
2 is everywhere defined provided that

d1 6¼ 0. Therefore f b
2 is the primitive of Ib

0 .
The existence domain for f b

1 with respect to d2 is the
whole real axis except the zeroes of the quadratic poly-
nomial

pðd2Þ ¼ ðb2 � 1Þd4
1 þ ðkbd2Þ2

� d2
1ðð1þ b2Þd2

2 þ 4bd2kb þ k2
bÞ ð9Þ

When ð1� b2Þd2
1 � k2

b > 0, pðd2Þ has no roots. Accord-
ingly, f b

1 is well defined 8 d2 2 R and it is the primitive

of Ib
0 .

When d2
1ð1þ b2Þ � k2

b ¼ 0, pðd2Þ becomes linear. As a
consequence, the existence domain for f b

1 with respect to
d2 is the whole real axis except the point

z1 ¼ �
kb

2bð1þ b2Þ ¼ �
1

2b2
z3 ð10Þ

The two roots z1 and z3 lie on opposite sides of the real
axis.

If none of the previous items holds, the zeroes of pðd2Þ
are the two points:

z1;2 ¼ �
2bd2

1kb

d2
1ð1þ b2Þ � k2

b

� d1

d2
1ð1þ b2Þ � k2

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

b þ b2d2
1Þ

2 � d4
1

q
ð11Þ

Fig. 3. Subregions of f . Results refer to the following data:
b ¼ 0; x2 ¼ 5; x3 ¼ 7
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Because of the properties z1ð�d1Þ ¼ z2ðd1Þ and
z3ð�d1Þ ¼ z3ðd1Þ, only the subdomain d1 > 0 will be
considered. Results on the complementary subdomain
d1 < 0 will be easily recovered. As before, denote z1 and z2

such that z1 � z2. The lowest root in (11) depends on the
quantity

j ¼ d1

d2
1ð1þ b2Þ � k2

b

One has in fact:

j > 0
z1 ¼ �2bjd1kb � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

b þ b2d2
1Þ

2 � d4
1

q
z2 ¼ �2bjd1kb þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

b þ b2d2
1Þ

2 � d4
1

q
8<
:

j < 0
z1 ¼ �2bjd1kb þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

b þ b2d2
1Þ

2 � d4
1

q
z2 ¼ �2bjd1kb � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

b þ b2d2
1Þ

2 � d4
1

q
8<
:

8>>>>>><
>>>>>>:
With regard to the mutual position of z1, z2 and z3, from
Eq. (9) one finds:

pðz3Þ ¼�
d2

1ðb4d4
1þ k2

bðd2
1þ k2

bÞþ b2ðd4
1þ 2d2

1k2
bÞÞ

k2
b

< 0

Therefore ‘‘around’’ z3 there is always a neighborhood in
which the primitive is f b

1 . Moreover, it can be easily
checked that:

lim
d2!1

pðd2Þ ¼ �sgnðd2
1ð1þ b2Þ � k2

bÞðþ1Þ

Because pðd2Þ is a quadratic polynomial, the mutual po-
sition of z1, z2 and z3 can be summarized in this way, by
means of the Weierstrass theorem.

d2
1ð1þ b2Þ � k2

b < 0 ! z1 < z3 < z2

d2
1ð1þ b2Þ � k2

b > 0 ! z3 < z1 < z2 or z1 < z2 < z3

ð12Þ
As mentioned, the function f bðx; y2Þ is smooth. Because

around z3 the primitive is f b
1 , and around z1 and z2 the

primitive must be f b
2 , the whole primitive will be a ‘‘glue’’

of f b
1 and f b

2 smooth by construction. Defining with:

z13 :¼
z1þz3

2
; z23 :¼

z3þz2

2

g13 :¼
ðb2�1Þd4

1þðkbz13Þ2�d2
1ðð1þb2Þz2

13þ4bz13kbþk2
bÞ

2d1ðbd2
1�kbz13Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1þz2
13þðbz13þkbÞ2

q
g23 :¼

ðb2�1Þd4
1þðkbz23Þ2�d2

1ðð1þb2Þz2
23þ4bz23kbþk2

bÞ

2d1ðbd2
1�kbz23Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1þz2
23þðbz23þkbÞ2

q
and making use of Eq. (6), we have the following in-
stances:

� When d2
1ð1þ b2Þ � k2

b < 0 ! z1 < z3 < z2:

f b ¼
�1 < d2 � z13 f b

2

z13 � d2 � z23 f b
1 � p

4d1
sgnðg13Þ

z23 � d2 < þ1 f b
2 � p

4d1
sgnðg13Þ � sgnðg23Þð Þ

8<
:

ð13Þ

� When d2
1ð1þ b2Þ � k2

b � 0 and ð1� b2Þd2
1 � k2

b � 0:

z3 < z1 < z2

! f b ¼
�1 < d2 � z13 f b

1

z13 � d2 < þ1 f b
2 þ p

4d1
sgnðg13Þ

(

z1 < z2 < z3

! f b ¼
�1 < d2 � z23 f b

2

z23 � d2 < þ1 f b
1 � p

4d1
sgnðg23Þ

(

8>>>>>>>>>>><
>>>>>>>>>>>:

ð14Þ
� When ð1� b2Þd2

1 � k2
b > 0:

f b :¼ f b
1 .

In Figs. 4 and 5 the subregions of the d1 � d2 plane in
which f b is defined as above are depicted.

3.2
The field point x lies in the plane of the triangle
Within the hypothesis x =2 �TTj, consider the point x lying on
the same plane of the triangle Tj, i.e. d1 ¼ 0. Depending on
the position of the point x, different values of d2, ka, kb

may occur, as shown in Fig. 6.

I0 ¼
d3

d2
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ d2
3

p ���d3¼bd2þkb

d3¼ad2þka

is again an integrable function. In fact, because x =2 �TTj

implies either d2 6¼ 0 or sgnðkaÞ ¼ sgnðkbÞ, the asympto-
tic expansion of I0 around d2 ¼ 0 holds:

I0ðd2Þ ¼
1

d2
2

� kaffiffiffiffiffi
k2

a

p þ kbffiffiffiffiffi
k2

b

q
0
B@

1
CAþ Oð1Þ ¼ Oð1Þ

When kb 6¼ 0 and ka 6¼ 0, it turns out:Z�yy2�x2

�x2

I0 dd2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ðad2þ kaÞ2
q

d2ka
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ðbd2þ kbÞ2
q

d2kb

2
4

3
5
������

d2¼�yy2�x2

d2¼�x2

ð15Þ
When kb ¼ 0 the quantity �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ðbd2 þ kbÞ2
q

=d2kb must

be substituted with �b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ b2d2
2

p
in Eq. (15). Analo-

gously when ka ¼ 0.
One could obtain such a result by a limit process:

Z�yy2�x2

�x2

I0 dd2 ¼ lim
d1!0

f bðx; d2Þ � f aðx; d2Þ
� ����d2¼�yy2�x2

d2¼�x2

From Eq. (12), it turns out that for d1 ! 0:

d2
1ð1þ b2Þ � k2

b < 0 ! z1 < z3 < z2

The asymptotic expansion:
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z1 ¼ �d1 þ Oðd2
1Þ; z3 ¼

b

kb
d2

1; z2 ¼ d1 þ Oðd2
1Þ

� 1
2d1 þ Oðd2

1Þ ¼ z13 < 0 < z23 ¼ 1
2d1 þ Oðd2

1Þ
g13 ¼�3

4 sgnðkbÞ þ Oðd1Þ; g23 ¼ 3
4 sgnðkbÞ þ Oðd1Þ

ð16Þ
can be easily derived from Eqs. (8)–(11). As a con-
sequence:

f bðx; d2Þ �
�1 < d2 � z13 f b

2

z13 � d2 � z23 f b
1 þ p

4d1
sgnðkbÞ

z23 � d2 < þ1 f b
2 þ p

2d1
sgnðkbÞ

8<
:

Equation (16) implies that for x2 > �yy2 it will exist a d�1 s.t.
8 d1 < d�1 ) �x2 < z13 and it will exist a dy1 s.t.

8 d1 < dy1 ) �yy2 � x2 < z13. Accordingly,

lim
d1!0

f bðx; d2Þ � f aðx; d2Þ
� ����d2¼�yy2�x2

d2¼�x2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ad2 þ kað Þ2
q

d2ka
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ bd2 þ kbð Þ2
q

d2kb

2
4

3
5

d2¼�yy2�x2

d2¼�x2

þ p
4d1
ðsgnðd2kbÞ � sgnðd2kaÞÞ

� �d2¼�yy2�x2

d2¼�x2

þOðd1Þ

with

p
4d1
ðsgnðd2kbÞ � sgnðd2kaÞÞ

� �d2¼�yy2�x2

d2¼�x2

¼ 0

Similar considerations hold when x2 < 0. Again from
Eq. (16), when 0 < x2 < �yy2 it will exist a d�1 s.t.
8 d1 < d�1 ) �x2 < z13 and it will exist a dy1 s.t.

8 d1 < dy1 ) �yy2 � x2 > z23. Accordingly,

Fig. 4. Subregions of f . Results refer to the following data:
b ¼ 0:5; x2 ¼ 5; x3 ¼ 7

Fig. 5. Subregions of f . Results refer to the following data:
b ¼ 1; x2 ¼ 5; x3 ¼ 7

Fig. 6. Different values of d2; ka; kb depending on the position of
the point x
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lim
d1!0

�
f bðx; d2Þ � f aðx; d2ÞÞ

��d2¼�yy2�x2

d2¼�x2

¼ � lim
d1!0

f b
2 ðx;�x2Þ � f a

2 ðx;�x2Þ
� �

þ lim
d1!0

�
f b
2 ðx; �yy2 � x2Þ � f a

2 ðx; �yy2 � x2Þ

þ p
2d1

ðsgnðkbÞ � sgnðkaÞÞ
�

¼ p
4d1

ðsgnðd2kbÞ � sgnðd2kaÞÞ
� �d2¼�yy2�x2

d2¼�x2

þ p
2d1

ðsgnðkbÞ � sgnðkaÞÞ
� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ðad2 þ kaÞ2
q

d2ka

2
4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ðbd2 þ kbÞ2
q

d2kb

3
5

d2¼�yy2�x2

d2¼�x2

þOðd1Þ

Because x =2 �TTj, it holds (see also Fig. 6):

p
4d1
ðsgnðd2kbÞ � sgnðd2kaÞÞ

� �d2¼�yy2�x2

d2¼�x2

¼ 0;

sgnðkbÞ � sgnðkaÞ ¼ 0 ð17Þ
Analogous considerations hold in case of kb ¼ 0 or ka ¼ 0.

4
Hadamard’s finite part
Let FðeÞ denote a complex-valued function which is
continuous in ð0; e0Þ and assume that

FðeÞ ¼ F0 þ F1 logðeÞ þ
Xm

j¼2

Fj e1�j þ oð1Þ; e! 0

Then F0 is called the finite part p.f. of FðeÞ and one writes
F0 ¼ p:f :F [21].

Considering x 2 Tj, let us define as in Fig. 7:

Te
j :¼ fy 2 Tj : jy2 � x2j < e and jy3 � x3j < eg

I � ðxÞ :¼
Z

TjnTe
j

1

r3
dy

By direct integration, it can be proved that for e ! 0:

I � ðxÞ ¼
4
ffiffiffi
2

p

e

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ðka þ ad2Þ2
q

d2ka
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ðkb þ bd2Þ2
q

d2kb

2
4

3
5
������

d2¼�yy2�x2

d2¼�x2

ð18Þ
Therefore, by definition of finite part we obtain:

p:f :

Zd2¼�yy2�x2

d2¼�x2

Zbd2þkb

ad2þka

1

r3
dd3 dd2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ðad2 þ kaÞ2
q

d2ka
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ðbd2 þ kbÞ2
q

d2kb

2
4

3
5
������

d2¼�yy2�x2

d2¼�x2

ð19Þ
the same expression as (15). This result can be viewed as a
continuity property (with respect to x) of the finite part of
Hadamard, that coincides with the Lebesgue integral for
every integrable function.

In the framework of the BEM, it is interesting to per-
form the limit process,

lim
d1!0

f bðx; d2Þ � f aðx; d2Þ
� ����d2¼�yy2�x2

d2¼�x2

; x 2 Tj

In this case, 0 < x2 < �yy2 and it exist a d�1 s.t.
8 d1 < d�1 ) �x2 < z13. Moreover it exist a dy1 s.t.

8 d1 < dy1 ) �yy2 � x2 > z23. Accordingly,

lim
d1!0

f bðx; d2Þ � f aðx; d2Þ
� ����d2¼�yy2�x2

d2¼�x2

¼ lim
d1!0

�
f b
2 ðx; �yy2 � x2Þ þ

p
2d1

sgnðkbÞ

� f a
2 ðx; �yy2 � x2Þ �

p
2d1

sgnðkaÞ
�

� lim
d1!0

f b
2 ðx;�x2Þ � f a

2 ðx;�x2Þ
� �

¼ p
4d1

ðsgnðd2kbÞ � sgnðd2kaÞÞ
� �d2¼�yy2�x2

d2¼�x2

þ p
2d1

ðsgnðkbÞ � sgnðkaÞÞ
� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ðad2 þ kaÞ2
q

d2ka

2
4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ ðbd2 þ kbÞ2
q

d2kb

3
5

d2¼�yy2�x2

d2¼�x2

þOðd1Þ ð20Þ

Fig. 7. Geometrical description of a square neighborhood
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Differently from (17), for being x 2 �TTj one has this time
(see also Fig. 6):

p
4d1
ðsgnðd2kbÞ � sgnðd2kaÞÞ

� �d2¼�yy2�x2

d2¼�x2

þ p
2d1

ðsgnðkbÞ � sgnðkaÞÞ
� �

¼ 2p
d1

ð21Þ

which is an expected divergent term, as the integral

Z�yy2�x2

�x2

I0ðx; d2Þdd2; x 2 Tj

does not exist.

5
Concluding remarks
As mentioned in the introduction, integral (1) plays a
fundamental role in the analytical integration of the
Green’s functions pertaining to the BEM, especially for
symmetric Galerkin BEM. As a matter of fact, in BEM one
usually deals with integrals of the following form:Z
Cs

Grsðx� yÞUðyÞdCðyÞ r ¼ u; s ¼ u; p ð22Þ

where UðyÞ are matrices of shape functions for the ap-
proximation of the displacement and traction fields, and
Grsðx� yÞ are generic kernels (see Appendix 2). It can be
proved that integral (22) admits of the following closed
form expression in the local coordinate system L:

log
d2 þ bd3ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p þ r

�  
Lrs þ logðd3 þ rÞLrs

2

�!

þ arctanhðd3

r
ÞArs þ f ðx; d2ÞFrs þ Rrsr

þPrs þ Srs 1

r
þHrs 1

r3

�d3¼bd2þkb

d3¼ad2þka

)d2¼�yy2�x2

d2¼�x2

ð23Þ

where f ðx; d2Þ has been defined by integral (3) and Lrs, Lrs
2 ,

Ars, Frs, Rrs, Prs, Srs, Hrs are suitable matrices. In particular,
integral (3) is responsible for the free terms that arise in
the limit process to the boundary X 3 x ! xo 2 C, which
are due to the term (21). For details on these subjects, the
reader is referred to a forthcoming paper.

It has been shown [23] that for potential problems, the
integral (3) does not affect the result of the integration of
the hypersingular kernel. This surprising fact is due to the
coefficient Fpp that vanishes for the potential hypersingular
kernel [23].

All aforementioned integrals have been implemented to
verify the capability of the proposed formulation and their
computational interest. Some benchmarks are included in
[8] whereas engineering applications, pertaining to a jaw-
teeth stress analysis are in progress [34].

Appendix 1 – A property of arctan x
It is a fact that:

d

dx
arctan x ¼ � d

dx
arctan

1

x
¼ 1

1þ x2
ð24Þ

The function

1

1þ x2
ð25Þ

is obviously infinitely smooth in R and the calculus fun-
damental theorem guarantees that there exists one (and
only one) family of primitives, which differ by a constant.
Equation (24) seems to say that

arctan xþ arctan
1

x
¼ C

which is not true. It is well known in fact that

arctan xþ arctan
1

x
¼ p

2
sgnðxÞ ð26Þ

and (of course) this fact does not contradict the funda-
mental theorem. As an hypothesis of the fundamental
theorem, the primitive must be differentiable over the
given domain. p

2 sgnðxÞ � arctan 1
x is neither defined nor

differentiable at x ¼ 0. Therefore, in every domain which
contains zero, the primitive of (25) is arctan x and not
arctan 1

x. In every domain which does not contain zero,
the two functions do differ by a constant and are
elements of the same (unique) family of primitive
for (25).

Appendix 2 – Green’s functions for 3D linear elasticity
The expressions of Green’s functions for 3D linear elasti-
city follows (see also [33]). nðxÞ and lðyÞ are the normals at
the boundary at x and y, respectively. Vector d ¼ ðy � xÞ
has been defined in Sect. 2

Guu dð Þ ¼ 1

16p
1

Gð1� mÞ
1

r

d d

r2
þ ð3� 4mÞ I

�  

Gpuðd;nðxÞÞ ¼ � 1

8p
1

ð1� mÞ
1

r3

�
ð1� 2mÞð2 SKWðd nÞ

� ðd ! nÞ IÞ � 3ðd ! nÞ d d

r2

�

Gupðd; lðyÞÞ ¼ � 1

8p
1

ð1� mÞ
1

r3

�
ð1� 2mÞð2 SKWðd lÞ

þ ðd ! lÞ IÞ þ 3 ðd ! lÞ d d

r2

�

Gpp d;nðxÞ; lðyÞð Þ

¼ Gm
4pð1� mÞ

1

r3

!
2SYMðl nÞ þ 2SKWðl nÞ 3m� 1

m

þ 3
ð3m� 1Þ

m
SKWðd lÞd ! n

r2
� SKWðd nÞd ! l

r2

� �

þ 3
ð1� mÞ

m
SYMðd lÞd ! n

r2
þ SYMðd nÞd ! l

r2

� �

þ 3
d d

r2
ðl ! nÞ � 5

m
ðd ! nÞðd ! lÞ

r2

� �

þ 3
ðd ! nÞðd ! lÞ

r2
þ ðl ! nÞ ð1� 2mÞ

m

� �
I

#
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