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The paper employs sequential limit analysis to investigate rotating hollow cylinders of nonlinear isotro-
pic strain-hardening viscoplastic materials. A computational optimization procedure was developed to
account for hardening material properties and weakening behavior corresponding to the strain-rate sen-
sitivity and widening deformation. A sequence of limit analysis problems was then conducted to seek the
corresponding plastic limit angular velocities sequentially by a general algorithm incorporated with an
inner and outer iterative sequence. Particularly, analytical solutions of plastic limit angular velocities
and the onset of instability were derived for rigorous comparisons. The corresponding stability condition
was also obtained explicitly. Specifically, the implicit form of the onset of instability was solved by the
fixed point iteration. It is found that the computed limit angular velocities are rigorous upper bounds
and match well with analytical solutions.
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1. Introduction

Limit analysis is a conventional but yet convenient and compa-
rable tool [1–13], especially in conjunction with finite element
methods [14] and computational optimization techniques [15].
Providing efficiently the plastic limit loads with simple input data,
limit analysis plays the role of a snapshot look at the structural
performance. Furthermore, sequential limit analysis is to conduct
a sequence of limit analysis problems with updating local yield cri-
teria in addition to the configuration of the deforming structures.
Accordingly, it has been illustrated widely that sequential limit
analysis is an accurate and efficient tool for the large deformation
analysis [16–26].

Especially, a general algorithm featuring a combined smoothing
and successive approximation (CSSA) presented by Yang [27] has
been utilized successfully with satisfactory results at a modest cost
in certain problems of limit analysis [8] and sequential limit anal-
ysis [18–26]. Particularly, its numerical efficiency has been re-
vealed explicitly through some quantitative comparisons with
elasto-plastic analysis by Kim and Huh [21]. On the other hand,
its convergence analysis was originally performed and validation
was also conducted rigorously [22,23,25] by considering sequential
limit analysis of pressurized hollow cylinders of viscoplastic mate-
rials [22], involving materials with nonlinear isotropic hardening
ll rights reserved.
[23], or involving materials with viscoplastic nonlinear isotropic
hardening [25].

Plastic limit angular velocities of cylinders are useful informa-
tion requested frequently for structure optimal design and safety
evaluation. For investigating such problems of optimization fea-
tures, the author and his coworker [24] have applied successfully
sequential limit analysis based on the CSSA algorithm to deal with
the rotating problems involving nonlinear isotropic hardening
materials. Much effort [28–31] has been made to such interesting
topics by investigating the elastic–plastic behavior and the fully
plastic state. Similar attention [32–36] is also paid to the limit
angular velocities of disks.

Based on the previously successful applications [22–25], the pa-
per aims to extend further the above-mentioned CSSA algorithm to
upper-bound limit analysis of rotating problems considering the
combination effect of strain hardening and strain-rate dependence.
The paper will focus on the rotating cylinders problems involving
nonlinear isotropic hardening viscoplastic materials. Contrary to
the normalization on stress filed or velocity field along some edge
boundaries (e.g. [8,18–23,25]) adopted usually in the CSSA algo-
rithm, the rotating problem formulation to be concerned features
the velocity control on the whole domain [24]. It is also noted that
such problems feature in involving hardening material properties
and weakening behavior corresponding to the strain-rate sensitivity
in addition to widening deformation. Thus, the applicability of the
CSSA algorithm is to be validated by numerical and analytical stud-
ies of thick-walled cylinders involving materials of the von Mises
model with viscoplastic nonlinear isotropic hardening. Particularly,
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corresponding to the specific normalization condition adopted in
the paper, the onset of instability and the existence of hardening
phenomena before the weakening behavior are to be investigated
analytically and explicitly. And the limiting cases of the current
work are to be converted to the previous results [24].

In the following sections, the paper employs sequential limit
analysis to deal with the rotating hollow cylinders of the von Mises
materials with viscoplastic nonlinear isotropic strain hardening. By
sequential limit analysis, the paper is to treat the plasticity prob-
lems as a sequence of limit analysis problems seeking the least
upper bound of plastic angular velocities sequentially. A computa-
tional optimization procedure is to be developed to appropriately
account for the interaction between hardening material properties
and weakening behavior corresponding to the strain-rate sensitivity
and widening deformation. Particularly, analytical solutions of plas-
tic limit angular velocity, the onset of instability and the stability
condition are to be derived for rigorous comparisons and validation.

2. Problem formulation

2.1. Lower bound formulation

The hollow cylinder is considered to rotate about its axis at a
constant angular velocity x. It is assumed that the angular acceler-
ation is negligible. In the beginning, we consider a general plane-
strain problem with the domain D consisting of the static boundary,
oDs, and the kinematic boundary, oDk. The problem is then to search
for the maximum allowable angular velocity factor, qx2(r), sub-
jected to constraints of static and constitutive admissibility such
that

maximize qx2ðrÞ

subject to r � rþ qx2 r
*
¼ 0 in D

krk_ 6 rY in D

ð1Þ

where q is the constant material density of the rotating hollow cyl-
inders, x is the angular velocity, qx2 r

*
is the centrifugal force with

r
*

the position vector, krk_ denotes the von Mises primal norm on
stress tensor r and rY is a material constant. Therefore, this con-
strained problem is simply to maximize the angular velocity factor
qx2(r) representing the magnitude of the driving load.

Obviously, the problem statement leads naturally to the lower
bound formulation seeking the extreme solution under constraints
of static and constitutive admissibility. The statically admissible
solutions satisfy the equilibrium equation and the static boundary
condition. The constitutive admissibility is stated by the yield cri-
terion in an inequality form. As to the existence of a unique ex-
treme solution, we can further interpret the solutions as sets as
shown in the work of Huh and Yang [8], Yang [26]. Note that, the
equilibrium equation is linear and the constitutive inequality is
convex and bounded. Accordingly, the intersection of statically
admissible set and constitutively admissible set is convex and
bounded. Thus, the existence of a unique maximum to the convex
programming problem can be confirmed.

2.2. Upper bound formulation

Now we intend to transform the lower bound formulation to
the upper bound formulation as similar to the previous work of
Huh and Yang [8], Leu and Chen [24]. Equilibrium equations can
be restated weakly in the form asZ

D
u
*
�ðr � rþ qx2 r

*
ÞdA ¼ 0; ð2Þ

where u
*

is a kinematically admissible velocity field. Integrating by
parts, using the divergence theorem and imposing static boundary
conditions, we may rewrite Eq. (2) to give an expression for
qx2(r) asZ

D
u
*
�ðqx2 r

*
ÞdA ¼ qx2ðrÞ

Z
D

u
*
� r
*

dA ¼
Z

D
r : _edA; ð3Þ

where _e is the strain rate tensor.
Since the power r : _e is nonnegative. It is clear that r : _e ¼ jr : _ej.

Further, according to a generalized Hölder inequality [37], and the
normality condition in plasticity [38], it results in

r : _e ¼ jr : _ej 6 krk_k_ek�_ ¼ �r_�e; ð4Þ

where k_ek�_ is the dual norm [8] of krk_ based on the flow rule
associated with the von Mises yield criterion. Therefore, we have

qx2ðrÞ
Z

D
u
*
� r
*

dA ¼
Z

D
r : _edA 6

Z
D
krk_k_ek�_dA

6 rY

Z
D
k_ek�_dA: ð5Þ

Since u
*

appears homogeneously and linearly in Eq. (3) and
inequality (5), we can normalize the relationship by setting the fol-
lowing normalization:Z

D
u
*
� r
*

dA ¼ 1; ð6Þ

which is to be treated as one of constraints. Note that, the normal-
ization condition involving the velocity field is imposed on the
whole domain. In the previous works (e.g. [8,22,23,25]), the normal-
ization condition was, in stead, simply related to the stress field [8]
or the velocity filed [22,23,25] control along some boundaries.

Accordingly, qx2(r) can be bounded above by q �x2ðu
*
Þ as

qx2ðrÞ ¼
Z

D
r : _edA 6

Z
D
krk_k_ek�_dA 6 rY

Z
D
k_ek�_dA ¼ q �x2ðu

*
Þ:

ð7Þ

Thus, the upper bound formulation is stated in the form of a
constrained minimization problem as

minimize q �x2ðu
*
Þ

subject to q �x2ðu
*
Þ ¼ rY

Z
D
k_ek�_dAZ

D
u
*
� r
*

dA ¼ 1 in D

r � u* ¼ 0 in D
kinematic boundary conditions on oDk

ð8Þ

where r � u* ¼ 0 is the incompressibility constraint inherent in the
von Mises model.

Therefore, the upper bound formulation seeks sequentially the
least upper bound for each step on kinematically admissible solu-
tions. Accordingly, the primal–dual problems (1) and (8) are con-
vex programming problems following the work of Huh and Yang
[8] and Yang [26] and as demonstrated by Yang [11,12,39]. Thus,
for each step, there exist a unique maximum and minimum to
problems (1) and (8), respectively.

Thus, the extreme values of the lower bound functional qx2(r)
and its corresponding upper bound functional q �x2ðu

*
Þ are equal to

the unique, exact solution qx*2 for each step in a process. Namely

maximize qx2ðrÞ ¼ qx�2 ¼minimize q �x2ðu
*
Þ: ð9Þ

2.3. Discretized and augmented functional

To discretize the continuous domain and surface boundary, we
adopt four-node quadrilateral isoparametric elements [14]. Apply-
ing finite-element discretization, the original functional in the
problem Eq. (8) is approximated by a new one in a finite-dimen-



Fig. 1. Finite-element model of a rotating hollow cylinder.
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sional space of the vector {U}, the discrete approximation of the
velocity field. We restate the problem as

minimize q ~x2ðfUgÞ ¼
XNe

e¼1

rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fUgt ½Ke1�fUg

q

subject to fUgtfRg ¼ 1

fUgtfCg ¼ 0

ð10Þ

where Ne denotes the numbers of elements used to discretize the
domain; the superscript t denotes transposition; [Ke1] is the ele-
ment stiffness matrix, {C} and {R} are vectors.

To deal with the constrained minimization problem Eq. (10), we
utilize the penalty function method [40] and the Lagrangian multi-
plier method [40] to relax the incompressibility constraint and to
impose the normalization condition. The corresponding uncon-
strained minimization problem is then expressed as

minimize q ~x2ðfUgÞ þ b
2

pðfUgÞ � kðfUgtfRg � 1Þ

with pðfUgÞ ¼
XNe

e¼1

fUgt ½Ke2�fUg
ð11Þ

where the penalty parameter b is a sufficiently large positive con-
stant, k is the Lagrangian multiplier, and [Ke2] is the coefficient matrix
corresponding to the incompressibility constraint. It is noted that the
element stiffness matrix [Ke1] is positive semi-definite such that the
objective functional is non-smooth over some rigid regions. The
resulting numerical difficulty is to be overcome in the next section.

3. Computations

In the paper, the behavior of viscoplastic, nonlinear isotropic
hardening is as adopted by Haghi and Anand [41]

rY ¼ ½r1 � ðr1 � r0Þ expð�h�eÞ�
_�e
_�e0

� �m

; ð12Þ

where r0 is the initial yield strength, r1 is the saturation value of
r0 and h is the hardening exponent. �e is the equivalent strain and
_�e the equivalent strain rate. _�e0 and m are positive valued material
parameters called the reference strain rate and strain-rate sensitiv-
ity, respectively.

While conducting a sequence of limit analysis problems
sequentially, we need to update the current yield criterion in addi-
tion to the configuration of the deforming structures. At the first
step, we have the equivalent strain rate �e1 ¼ 0. For the current step
n P 2, the value of �en is obtained as the following expression:

�en ¼
Xn�1

i¼1

_eiDti; ð13Þ

where Dti is the step size.
Further, we then update the yield stress as

ðrY Þnjþ1 ¼ ½r1 � ðr1 � r0Þ expð�h�enÞ�
_�en

jþ1

_�e0

 !m

; ð14Þ

where ðrY Þnjþ1 is the yield stress obtained for the current iteration,
_�en

jþ1 is calculated with the velocity vector {U}j+1

To solve the minimization problem Eq. (11), we apply the
necessary condition for the minimum of q ~x2ðfUgÞ þ b

2 pðfUgÞ�
kðfUgtfRg � 1Þ, namely taking its first derivative with respect to
{U}, and the Lagrangian multiplier k, respectively. Moreover, the
objective functional is smoothed by a small real number d to over-
come the numerical difficulty resulting from non-smoothness over
some rigid regions as detailed by Huh and Yang [8]. Reorganizing
the nonlinear equations, linear matrix-vector equations are then
produced as
½K�fUg ¼ kfRg; ð15Þ
fUgtfRg � 1 ¼ 0; ð16Þ

with

½K�fUg ¼
XNe

e¼1

ðrYÞnjþ1

½Ke1�fUgjþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fU�gt

j ½Ke1�fU�gj þ d2
q þ b

XNe

e¼1

½Ke2�fUgjþ1;

ð17Þ

where subscriptions j, (j + 1) indicate quantities corresponding to
any successive iterations.

Combining Eqs. (15) and (16), we express k, {U} in each step as
follows

k ¼ 1

fRgt½K��1fRg
; ð18Þ

fUg ¼ k½K��1fRg; ð19Þ

where [K]�1 is the inverse of [K].
As expressed in Eqs. (17) and (18), the current value of kj+1 is

based on the value of {U*}j obtained at the preceding iteration j.
With the acquired kj+1, the other unknown {U}j+1 is then calculated
as expressed in Eq. (19). Initially, an arbitrary {U}0 is assumed as
the first estimate. A convergent sequence of k({U*}j) is then gener-
ated iteratively and converges to the plastic limit angular velocity.

Computationally, an inner and outer iterative sequence is con-
ducted to solve the minimization problem. From one outer iteration
to the next, the smoothing parameter d used in the inner iteration is
allowed to decrease and then convergence to zero finally. Stopping
criterion based on the ratio of Euclidean norms Eu = k{U*}j �
{U*}j�1k2/k{U*}j�1k2 is applied to check the convergence of each step.
All the above-mentioned procedures have been summarized as the
flowchart shown in the previous work by Leu and Chen [24].
4. Numerical examples

The paper employs sequential limit analysis to investigate the
plastic limit angular velocity of hollow cylinders involving strain-
hardening viscoplastic materials in plane-strain conditions. In the
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Fig. 2. Effect of strain-rate sensitivity m on the normalized plastic limit angular velocity factor qx2b2
0=r0 with yield strength ratio R = r1/r0 = 2.
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Fig. 3. Effect of strain-rate sensitivity m on the normalized plastic limit angular velocity factor qx2b2
0=r0 with yield strength ratio R = r1/r0 = 2.5.
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formulation, the centrifugal force associated with the angular
velocity is the driving load to cause the rotating cylinders fully
plastic. In the computations, the behavior of viscoplastic, nonlinear
isotropic hardening is as adopted by Haghi and Anand [41] as
shown in Eq. (12).

For the sake of rigorous validation, analytical solutions for the
limit angular velocity are derived as detailed in Appendix A.1. As
shown in Appendix A.1, the key point that makes analytical
solutions possible is the consideration of limit analysis theorem,
axisymmetric problems in plane-strain conditions and the assump-
tion of a certain value of the hardening exponent. To be complete,
the onset of the instability and the stability condition are also inves-
tigated analytically in Appendix A.2. Comparisons between numer-
ical results and analytical solutions are then made as to assure the
reliable applications.

In the numerical examples, the initial inner and outer radii are
denoted as a0 and b0, respectively. The angular velocity required
to keep the deforming cylinder fully plastic is then computed
sequentially by using the CSSA algorithm. In the following case
studies, we adopt the following parameters of consistent dimen-
sions: a0 = 5.0, b0 = 10.0, h ¼

ffiffiffi
3
p

, _�e0 ¼ 1:0 and a constant step size
Dt = 1.0. The problem concerned is axisymmetric and in plane
strain conditions. Without effort made to the development of
the corresponding element type in the paper, the problem is sim-
ulated in an equivalent way without loss of accuracy as in the
previous work [22–25]. One quarter of the axisymmetric struc-
ture is simulated as shown in Fig. 1 due to geometric and loading
symmetry. Four-node bilinear quadrilateral isoparametric ele-
ments are utilized to discretize the problem domain. The finite
element mesh of 15 � 25 elements shown in Fig. 1 is adopted
in the following computations. In the beginning, the first-step
limit angular velocity is obtained. The first-step solution is the
limit value of the angular velocity causing the cylinder of dimen-
sions a0 and b0 fully plastic. Following the first step, each step in
sequential limit analysis gets started with the result obtained in
the preceding step. A sequence of limit analysis problems is then
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solved to obtain sequentially numerical solutions of the rotating
problem.

Firstly, we consider the rotating cylinder with various values of
the strain-rate sensitivity m. For the case with m = 0, the problem is
then reduced to a rate independent plasticity problem involving
strain-hardening materials as investigated in the previous work
[24]. Parametric studies are performed with various values of the
strain-rate sensitivity m together with the values of the yield
strength ratio R = r1/r0 = 2.0 and R = r1/r0 = 2.5, respectively.
The results of the normalized plastic limit angular velocity factor
qx2b2

0=r0 are summarized in Figs. 2 and 3. All the computed upper
bounds agree very well with the analytical solutions.

Secondly, parametric studies are performed with various values
of the yield strength ratio R = r1/r0 associated with the values of
the strain-rate sensitivity m = 0.1, m = 0.3, respectively. The results
of the normalized plastic limit angular velocity factor qx2b2

0=r0 are
summarized in Figs. 4 and 5. All the computed upper bounds
match very well with the analytical solutions.
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Fig. 5. Effect of yield strength ratio R = r1/r0 on the normalized plastic lim
On the other hand, there may be a strengthening phenomenon
before the weakening phenomenon as shown in Figs. 2–5 depend-
ing on the value of the yield strength ratio R = r1/r0 relative to the
value of the strain-rate sensitivity m. For some values of the yield
strength ratio R = r1/r0 and the strain-rate sensitivity m, rotating
hollow cylinders are strengthened due to the strain hardening until
the onset of instability. Following that, however, the weakening
phenomenon is observed while the effect of strain-rate sensitivity
and widening deformation counteracts that of the strain hardening.
Note that, the simulation of the plastic deformation localization is
beyond the scope of the paper. The onset of instability concerned
is about the plastic instability marked by the rotating speed maxi-
mum while dealing with thick-walled cylinders, see the work by
Rimrott [31], Chakrabarty [42]. Namely, the strengthening due to
material hardening is exceeded by the weakening resulting from
the widening deformation and the strain-rate sensitivity.

As detailed in Appendix A.2, the onset of instability can be cal-
culated by the following mathematical condition:
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oðqx2b2
0=r0Þ

oa
¼ 0: ð20Þ

Thus, corresponding to the initial inner and outer radii a0, b0 and the
viscoplastic strain-hardening behavior adopted by Haghi and Anand
[41] together with the hardening exponent h ¼

ffiffiffi
3
p

, the onset of
instability can be obtained implicitly as

ðmr1=r0 þ 1Þ
mþ 1

ðb2mþ2 � a2mþ2Þ
b2mþ2

¼ ðr1=r0 � 1Þ a
2
0

a2 � ðr1=r0 � 1Þ a
2mþ2b2

0

b2mþ4 : ð21Þ

For the sake of completeness, we then solve this nonlinear equation
for the onset of instability by means of the fixed point iteration [43].
Namely, we recognize Eq. (21) as

a
a0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1=r0 � 1Þb2mþ4

mr1=r0þ1
mþ1 ðb2mþ4 � a2mþ2b2Þ þ ðr1=r0 � 1Þa2mþ2b2

0

vuut : ð22Þ

The onset of instability is then acquired in terms of the inner radius
a/a0 by using fixed point iteration.

Fig. 6 shows the relationship between the onset of instability
and the yield strength ratio R = r1/r0 with various values of the
strain-rate sensitivity m. Again, the computed results for the onset
of instability are in good agreement with the analytical solutions as
shown in Figs. 2–6. On the other hand, it is found that the strength-
ening phenomena exist only for the cases with r1/r0 > m + 2. Note
that, considering the viscoplastic strain-hardening behavior with
the hardening exponent h ¼

ffiffiffi
3
p

, the stability condition for the wid-
ening problem of rotating hollow cylinders is obtained analytically
as r1/r0 > m + 2 as detailed in Appendix A.2.

5. Conclusions

Plastic limit angular velocities of cylinders are useful informa-
tion for structure optimal design or safety evaluation. The paper
employs sequential limit analysis to investigate the plastic limit
angular velocity of rotating hollow cylinders made of nonlinear
isotropic strain-hardening viscoplastic materials. The plasticity
problem was formulated as a sequence of limit analysis problems
stated in the upper bound formulation with the angular velocity
factor as the objective function. Specifically, the corresponding
normalization condition was imposed on the whole domain. A
computational optimization procedure was developed for seeking
the corresponding plastic limit angular velocities sequentially.
Rigorous upper bounds are then computed sequentially and
effectively based on a combined smoothing and successive approx-
imation (CSSA) algorithm incorporated with an inner and outer
iterative sequence. The CSSA algorithm is comparable for its simple
implementation and unconditional convergence. Particularly, ana-
lytical solutions of the plastic limit angular velocity as well as the
onset of instability and the stability condition corresponding to the
hardening exponent h ¼

ffiffiffi
3
p

were also derived in the paper for
rigorous comparisons. The onset of instability was specifically
acquired in terms of the inner radius a/a0 by using fixed point iter-
ation. Especially, it is found numerically and analytically that the
strengthening phenomena exist only for the cases with r1/r0 >
m + 2 considering the viscoplastic strain-hardening behavior with
the hardening exponent h ¼

ffiffiffi
3
p

and the strain-rate sensitivity m.
Numerical and analytically studies of rotating hollow cylinders

have demonstrated the accuracy of the computational optimiza-
tion procedure presented here. The computed limit angular veloc-
ities are in good agreement with analytical solutions and are
rigorous upper bounds.

Appendix A.1

We consider a plane-strain problem with a rotating hollow cyl-
inder made of strain-hardening viscoplastic materials simulated by
the von Mises model. The initial interior and exterior radii of the
cylinder are denoted by a0 and b0. Also, its current interior and
exterior radii are denoted by a and b. As shown in the Eq. (1), we
consider a problem of widening deformation with the centrifugal
force being the driving load. The behavior of viscoplastic, nonlinear
isotropic hardening is as adopted by Haghi and Anand [41]

rY ¼ ½r1 � ðr1 � r0Þ expð�h�eÞ�
_�e
_�e0

� �m

; ðA:1Þ

where r0 is the initial yield strength, r1 is the saturation stress and
h is the hardening exponent, �e is the equivalent strain and _�e the
equivalent strain rate. _�e0 and m are positive valued material param-
eters called the reference strain rate and strain-rate sensitivity,
respectively.

Similar to the procedures adopted by the previous work of Leu
[22,23,25], Leu and Chen [24], we derive the analytical solutions as
follows.

In the cylindrical coordinate system, the incompressibility con-
dition requires that
ov
or
þ v

r
¼ 0; ðA:2Þ

where v is the radial velocity at a point (r,h). Accordingly, the radial
velocity can be expressed as

v ¼ a _a
r
; ðA:3Þ

where a, _a are the interior radius and interior velocity, respectively.
Accordingly, we can express the strain rates as

_er ¼
ov
or
¼ � a _a

r2 ; ðA:4Þ

_eh ¼
v
r
¼ a _a

r2 ; ðA:5Þ

_ez ¼ 0 ðA:6Þ
and from Eqs. (A.4)–(A.6) we obtain the equivalent strain rate

_�e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ð_e2

r þ _e2
h þ _e2

z Þ
r

¼ 2ffiffiffi
3
p a _a

r2 : ðA:7Þ

Accordingly, the equivalent strain is obtained as

�e ¼
Z

_�edt ¼ 1ffiffiffi
3
p ln

r2

r2
0

; ðA:8Þ

where r0 is the initial radius to the location concerned.
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The components of the stress deviator, sr, sh, sz, can be obtained
by considering the flow rule and satisfying the yield condition.
Thus, we obtain

sr ¼ �
1ffiffiffi
3
p ½r1 � ðr1 � r0Þ expð�h�eÞ�

_�e
_�e0

� �m

; ðA:9Þ

sh ¼
1ffiffiffi
3
p ½r1 � ðr1 � r0Þ expð�h�eÞ�

_�e
_�e0

� �m

; ðA:10Þ

sz ¼ 0: ðA:11Þ

Thus, the stresses are given as

rr ¼ sþ sr ; ðA:12Þ
rh ¼ sþ sh; ðA:13Þ
rz ¼ sþ sz; ðA:14Þ

where s is the mean normal stress.
Substituting Eqs. (A.12)–(A.14) into the following equilibrium

equation:

orr

or
þ rr � rh

r
¼ �qx2r: ðA:15Þ

Therefore, we obtain

orr

or
¼ �rr � rh

r
� qx2r

¼ 2ffiffiffi
3
p

r
½r1 � ðr1 � r0Þ expð�h�eÞ�

_�e
_�e0

� �m

� qx2r: ðA:16Þ

Note that h ¼
ffiffiffi
3
p

is used in the derivations. Thus, with the boundary
conditions rr(r = a) = 0 and rr(r = b) = 0, the limit value of the angu-
lar velocity factor qx2 at the current radii a, b is given by

qx2 ¼ 2

b2 � a2

1ffiffiffi
3
p
� �mþ1 2a _a

_�e0

� �m r0

m
1

a2m
� 1

b2m

� ��

�ðr1 � r0Þ
mþ 1

ða2
0 � a2Þ 1

a2mþ2 �
1

b2mþ2

� ��
: ðA:17Þ

If the angular velocity factor qx2 is normalized by r0=b2
0, then we

have the normalized angular velocity factor qx2b2
0=r0 in the form

as

qx2b2
0

r0
¼ 2b2

0

b2 � a2

1ffiffiffi
3
p
� �mþ1 2a _a

_�e0

� �m 1
m

1
a2m �

1

b2m

� ��

� ðr1=r0 � 1Þ
mþ 1

ða2
0 � a2Þ 1

a2mþ2 �
1

b2mþ2

� ��
: ðA:18Þ

For the case with m = 0

lim
m!0

a�m � amb�2m

m
¼ ln

b2

a2

 !
: ðA:19Þ

Thus, we reduce the viscoplasticity problems to rate independent
plasticity problems [24] with the strain-rate sensitivity m = 0, such
that

qx2b2
0

r0
¼ 2b2

0

b2 � a2

1ffiffiffi
3
p ln

b2

a2 �
ðr1=r0 � 1Þffiffiffi

3
p a2

0

a2 �
b2

0

b2

 !( )
: ðA:20Þ

For the case with r1 = r0, we reduce to non-hardening power-law
viscoplasticity problems such that

qx2b2
0

r0
¼ 2b2

0

b2 � a2

1ffiffiffi
3
p
� �mþ1 2a _a

_�e0

� �m 1
m

1
a2m �

1

b2m

� �� �
: ðA:21Þ
Appendix A.2

To consider instability and then the existence of the maximum
value of the limit angular velocity during the whole widening pro-
cess, we apply the necessary condition for the maximum of
qx2b2

0=r0, namely the following mathematical expression with
the current interior radius a:

oðqx2b2
0=r0Þ

oa
¼ 0: ðA:22Þ

Note that, we have a2 � a2
0 ¼ b2 � b2

0 ¼ r2 � r2
0, namely a _a ¼ b _b ¼ r _r,

due to the incompressibility condition inherent in the von
Mises model. Particularly, we recall the normalization conditionR

D u
*
� r
*

dA ¼ 1 adopted in the computational procedure as detailed
in Eq. (6). Accordingly, it implies that a _a ¼ b _b ¼ r _r is a constant in
the computations in the paper. Thus, oðqx2b2

0=r0Þ=oa ¼ 0 we have

�1
a2mþ1 þ

a

b2mþ2 þ
r1=r0 � 1

mþ 1
1

a2mþ1 �
a

b2mþ2

� �

þ ðr1=r0 � 1Þ a
2
0 � a2

a2mþ3 � ðr1=r0 � 1Þ a
2
0a� a3

b2mþ4 ¼ 0: ðA:23Þ

We can reorganize the equation in the form as

ðmr1=r0 þ 1Þ
mþ 1

ðb2mþ2 � a2mþ2Þ
b2mþ2

¼ ðr1=r0 � 1Þ a
2
0

a2 � ðr1=r0 � 1Þ a
2mþ2b2

0

b2mþ4 : ðA:24Þ

To solve the nonlinear equation, we apply the method of fixed point
iteration [43] to acquire the onset of instability in terms of a/a0.
Thus, the nonlinear equation is reorganized as

a2

a2
0

¼ ðr1=r0 � 1Þb2mþ4

mr1=r0þ1
mþ1 ðb2mþ4 � a2mþ2b2Þ þ ðr1=r0 � 1Þa2mþ2b2

0

: ðA:25Þ

And get the solution of a/a0 in the form ready for the method of
fixed point iteration [43]

a
a0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1=r0 � 1Þb2mþ4

mr1=r0þ1
mþ1 ðb2mþ4 � a2mþ2b2Þ þ ðr1=r0 � 1Þa2mþ2b2

0

vuut : ðA:26Þ

Finally, we come to consider the condition of stability, namely the
existence of hardening phenomena before the weakening behavior.
Mathematically, it is to consider the case expressed in the form

oðqx2b2
0=r0Þ

oa
> 0: ðA:27Þ

Certainly, the condition expressed by Eq. (A.27) is equivalent to see
if there is the solution a/a0 > 1 to Eq. (A.26). Therefore, correspond-
ing to the viscoplastic strain-hardening behavior with the harden-
ing exponent h ¼

ffiffiffi
3
p

, we can get the stability condition by Eq.
(A.26) as

r1
r0

> mþ 2: ðA:28Þ

Therefore, if the viscoplastic strain-hardening behavior adopted by
Haghi and Anand [41] with the hardening exponent h ¼

ffiffiffi
3
p

, then
there exists strengthening phenomenon if the rotating cylinders
are made of hardening materials with r1/r0 > m + 2.
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