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Computation of Acoustic Far Field Scattering Cross
Section from Plain and Intersecting Thin Bodies

P.R. Venkatesh1, B. Chandrasekhar2 and M.M.Benal3

Abstract: In this work, node based basis functions are used to solve the acous-
tic scattering from plain thin bodies like plates, discs; and intersecting thin bodies
like fins on a cylinder. Node based basis functions are defined on the vertices of
triangles generated by triangular patch modeling, and these functions are used to
define the unknown source distribution. Also the same functions are used as testing
functions in the method of moment’s solution. Three kinds of nodes were treated
for defining the basis functions, namely, boundary node, non-boundary node and
non boundary intersecting node. Also, three kinds of bodies were considered for
the acoustic scattering, namely closed bodies, open bodies and intersecting bodies.
A common numerical solution procedure is developed for the three kinds of bodies
using the node based basis functions. The numerical solutions developed are vali-
dated with closed form solutions wherever possible. Also the numerical solutions
were used to predict the far fields of complex bodies.

Keywords: Acoustic scattering, Method of moments, Node based basis func-
tions, Boundary integral equations, Acoustic resonance problem, Non-uniqueness,
thin bodies, surfaces

1 Introduction

The acoustic scattering from thin objects like plates and discs is attracting con-
siderable attention from researchers since complexities involved in modeling the
geometry and developing efficient numerical schemes is challenging. Thin bodies
may be defined as those bodies which have its thickness very small compared to its
other dimensions. This poses a challenge to create a quality mesh on the surface
of the thin bodies as the thickness becomes a deciding factor in the total number
of nodes or vertices created. For modeling purposes, as the thickness of the body
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becomes smaller, the number of nodes or vertices generated on the body becomes
larger, which puts strain on the computational capacity of the hardware one uses
for solving the problem accurately. Hence, more versatile numerical methods are
required to treat such problems which have less computational complexity.

Acoustic radiation and scattering problems are popularly solved using boundary
element method [Yang (2004), Qian, Han, Ufimtsev & Atluri (2004), Yan, Cui &
Hung (2005)] as only the surface of the object needs to be meshed. Other applica-
tions of BEM can be found in ref [Tan, Shiah & Lin (2009), Karlis, Tsinopoulos,
Polyzos & Beskos (2008), Soares&Vinagre (2008), Mantia & Dabnichki (2008)and
Wang & Yao (2008)]. Though BEM is very popular, it has got two major draw-
backs. The first one is the final moment matrices being dense and the second one
is the presence of singular, strongly singular and hyper singular kernels [De Klerk
(2005)] in the boundary integral equations. To overcome the problem of dense
matrices there has been a great deal of research work going on using different
approaches [He, Lim & Lim (2008), Liu & Nishimura (2006), Phillips & White
(1997)]. The treatment of strongly singular and hyper singular kernels has been
given a great importance by the researchers to implement it numerically. Notable
among them are: calculation techniques of hyper singular integrals [Yan, Hung
& Zheng (2003) and Yan, Cui & Hung (2005)], derivation of non-hypersingular
boundary integral equations [Qian, Han, Ufimtsev & Atluri (2004), and Qian, Han
& Atluri (2004)], derivation of weekly singular and regular integrals [Han & Atluri
(2007) and Sanz, Solis & Dominguez (2007)] and usage simple vector calculus
operators to circumvent the hyper singularity [Chandrasekhar & Rao (2008), and
Chandrasekhar (2008)] in integral equations.

In real world applications, all objects are to be treated as closed. But there are
objects which are very thin and can be approximated with a surface. They are called
in this work as open bodies since the volume occupied by those thin bodies is very
less and can be neglected. There is also another kind of objects which are nothing
but intersecting surfaces. An example of this kind object can be a space craft having
wings whose thickness is so negligible compared its other dimensions, hence it can
be treated, for computational purposes, as a surface intersecting with the main body.
If a thin body is treated as a closed body, having definite volume, such bodies are
subjected to breakdown of the solutions at their characteristic frequencies [Chen
& Chen (2006), Chen, Chen & Chen (2006)]. Where as in case of open bodies
and interesting bodies, when treated as surfaces or intersection of surfaces, are not
prone to this problem.

Three popularly known methods to resolve the non-uniqueness problem in the ex-
terior acoustic problems of closed bodies are
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1. Combined Helmholtz Integral Equation Formulation (CHIEF) [Schenck (1968)],

2. Burton and Miller’s (BM) approach [Burton & Miller (1971)] and

3. Method of Moments based Combined Layer Formulation (MoMCLF) [Chan-
drasekhar & Rao (2004)].

The advantages and limitations of these three methods are discussed in detail in ref
[Chandrasekhar & Rao (2008)]. It is possible to extend the MoMCLF to develop a
common numerical solution procedure to treat open and intersecting bodies along
with the usage of node based basis functions. Open and intersecting bodies were
treated in ref [Chandrasekhar & Rao (2005)]. The method of moments /BEM so-
lution that was proposed was based on defining the basis functions on the edges of
the triangular patch modeling of the surface of the scattering body. As the method
of moments solution results in a full matrix, the size of the resulting impedance
matrix, based on defining the basis functions on the edges, is large. Hence it puts a
limitation on the hardware as explained in previous paragraphs.

Chandrasekhar has developed a numerical scheme which defines the basis func-
tions on the nodes for solving combined layer formulation (CLF) of closed bodies
[Chandrasekhar (2008)]. Compared to defining the basis functions on the edges, it
is some what difficult to define the basis functions on the nodes. In other words,
procedure to define the basis functions on the nodes is more complex than defining
it on the edges. In this work, more complex procedures are developed for defining
the basis functions for the nodes located on the open edges and intersection edges
of the surfaces. But it is worth using the node based basis functions as it saves enor-
mous amount of computational power due to fewer unknowns. For a closed body,
the relationship between the number of nodes Nn, edges Ne and patches N f in the
triangular patch modeling is given by Nn−Ne + N f = 2 and N f = 2Ne/3 [Oneill];
this results into Nn = 2+Ne/3. Thus order of the resulting matrix, defining the ba-
sis functions on the nodes, is almost one third to that of defining the basis functions
on edges. As the storage matrix is smaller, time required for the solution of simul-
taneous linear system of equations is smaller and hence, much larger problems can
be solved without increasing the solution time compared to the existing solutions
based on method of moments with face based basis functions [Raju, Rao & Sun
(1991), Rao and Sridhara (1991), Rao, Raju & Sun (1992), Rao & Raju, (1989)]
and with edge based basis functions [Chandrasekhar & Rao (2004)]. All the re-
search work discussed above, either use complex numerical procedures to solve
hyper singular integral equations, or give special treatment for bodies with sharp
edges/corners; and no common algorithms have been developed to approximate the
thin bodies as open bodies except ref [Chandrasekhar & Rao (2005)]. It is a step
forward, in this research work, to develop an algorithm with a simple and common
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(to closed, open and intersecting bodies) numerical procedure to compute far fields
by treating the thin bodies as open bodies which finally results in smaller size of
moment matrix.

In this work, three kinds of nodes were treated for defining the basis functions,
namely, boundary node, non-boundary node and non boundary intersecting node.
Also, three kinds of bodies were considered for the acoustic scattering, namely
closed bodies, open bodies and intersecting bodies. A common numerical solution
procedure is developed for the three kinds of bodies using the node based basis
functions. Since the closed bodies do have internal resonance problem, combined
layer formulation is used for the solution. Open and intersecting bodies do not have
the problem of internal resonance and hence they can be solved using double layer
formulation to reduce the computational time.

2 Organization of the paper

In this paper, next section briefly describes the method of moment’s solution pro-
cedure [Harrington (1968), Sun & Rao (1992)]. Mathematical formulation is laid
in section 4 for CLF. In section 5, the basis functions are developed for the nodes
located on the open edges, intersecting edges and interior edges of the surfaces.
In section 6, we derive matrix equations for CLF. Numerical results, based on the
development of new basis functions are given in section 7. Lastly we present some
important conclusions drawn from the present work.

3 Outline of Method of Moments

Consider the deterministic equation

L f = g (1)

where L is a linear operator, g is a known function and f is an unknown function to
be determined. Let f be represented by a set of known functions f j, j = 1,2, ...,N
termed as basis functions in the domain of L as a linear combination, given by

f =
N

∑
n=1

β j f j (2)

where β j are scalar coefficients to be determined. Substituting Eq. 2 into Eq. 1,
and using the linearity of L, we have

N

∑
n=1

β jL f j = g (3)
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where the equality is usually approximate. Let (w1,w2,w3, ......)define a set of
testing functions in the range of L. Now, taking the inner product of Eq. 3 with
each wi and using the linearity of inner product defined as 〈 f ,g〉 =

∫
s f •g ds, we

obtain a set of linear equations, given by
N

∑
n=1

β j
〈
wi,L f j

〉
= 〈wi,g〉 i = 1,2, ....,N. (4)

The set of equations in Eq. 4 may be written in the matrix form as

ZX = Y (5)

which can be solved for X using any standard linear equation solution methodolo-
gies. The simplicity, accuracy and efficiency of the method of moments lies in
choosing proper set of basis/testing functions and applying to the problem at hand.
In this work, we propose a special set of basis functions and a novel testing scheme
to obtain accurate results using SLF, DLF and CLF.

4 Mathematical Formulation

Consider an acoustic wave, with a pressure and velocity
(

pi,ui
)
, incident on a three-

dimensional arbitrarily shaped rigid body placed in a source free homogeneous
medium of density ρ and speed of sound c through the medium. When an incident
wave interacts with the body, the acoustic wave gets scattered with a pressure and
velocity (ps,us). Here, we note that, incident fields are defined in the absence of the
scattering body. Φ is the scalar velocity potential satisfying the Helmholtz differ-
ential equation ∇2Φ + k2Φ = 0 for the time harmonic waves present in the region
exterior to the surface S of the body. One more condition on velocity potential is
that it should satisfy the appropriate boundary conditions on the surface S of the
body along with the Sommerfeld radiation condition. The pressure and velocity
fields of acoustic wave is related to the scalar velocity potential Φ as u = −∇Φ

and p = jωρΦ. In this paper, integral equation formulations are based on potential
theory and free space Green’s function. The scattered velocity potential may be
defined using three different formulations based on monopole and/or dipole distri-
bution. Formulations based on monopole distribution and dipole distribution are
called as single layer formulation (SLF), double layer formulations (DLF), respec-
tively. Third formulation, namely Combined layer formulation (CLF) is a linear
combination of SLF and DLF.

Using the potential theory and the free space Green’ s function, the scattered ve-
locity potential Φs may be defined as

Φ
s =

∫
s
σ
(
r′
)

G
(
r,r′
)

ds′ (6)
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for SLF,

Φ
s =

∫
s
σ
(
r′
) ∂G(r,r′)

∂n′
ds′ (7)

for DLF, and

Φ
s =

∫
s
σ
(
r′
)

G
(
r,r′
)

ds′+α

∫
s
σ
(
r′
) ∂G(r,r′)

∂n′
ds′ (8)

for CLF.

In the above three equations, σ is the source density function independent of r over
the surface of the body, r and r′ are the position vectors of observation and source
points, respectively, with respect to a global co-ordinate system O, and ∂G/∂n′

is the normal derivative of Green’s function at source point . Coefficient α is a
complex coupling parameter, to be chosen based on the guidelines given by Burton
and Miller [Burton and Miller (1971)].

k real or imaginary ⇒ Im(α) 6= 0 (9)

k complex ⇒ Im(α) = 0 (10)

where k is the wave number in the medium.

G(r,r′) is the free space Green’s function, given by,

G
(
r,r′
)

=
e− jk|r−r′|

4π |r− r′|
(11)

G(r,r′) is the solution of the Helmholtz equation with a point source inhomogeneity(
∇

2 + k2) G(r,r′) = −δ
(
r− r′

)
(12)

and can be interpreted as the solution at the observation point r due to the presence
of acoustic source of unit strength located at the source point r′.

For a rigid body, the normal derivative of total velocity potential, which is the sum
of incident and scattered velocity potential, with respect to the observation point on
the surface of the body vanishes. That is

∂
(
Φi +Φs

)
∂n

= 0 (13)

∂Φs

∂n
= −∂Φi

∂n
. (14)
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Substituting Eqs. 6, 7 and 8. into Eq. 14,

∂

∂n

∫
s
σ
(
r′
)

G
(
r,r′
)

ds′ = −∂Φi

∂n
(15)

for SLF,

∂

∂n

∫
s
σ
(
r′
) ∂G(r,r′)

∂n′
ds′ = −∂Φi

∂n
(16)

for DLF, and

∂

∂n

∫
s
σ
(
r′
)

G
(
r,r′
)

ds′+ α
∂

∂n

∫
s
σ
(
r′
) ∂G(r,r′)

∂n′
ds′ = −∂Φi

∂n
(17)

for CLF.

In the above equations, Φi is the scalar velocity potential of the incident wave.

Eq. 15, the SLF can also be re-written as

σ (r′)
2
−
∫

s
σ
(
r′
)∂G(r,r′)

∂n
ds′ =

∂Φi

∂n
. (18)

The second term in the above equation is the integration over the surface excluding
the principal value term i.e. r = r′. We note that, this integral is a well behaved in-
tegral, although rapidly varying, which can be evaluated using standard integration
algorithms.

Following the procedures developed in [Maue (1949) and Mitzner (1966)], Eq. 16,
the DLF, may be written as∫

s
n•n′k2

σ(r′)G(r,r′)ds′+
∫

s

(
n′X ∇

′
σ
)
•(nX ∇G) ds′ =

∂Φi

∂n
(19)

where n and n′ are the unit normal vectors at r and r′, respectively.

From Eq. 18 and Eq. 19, the CLF can be written as

σ (r′)
2
−
∫

s
σ
(
r′
)∂G(r,r′)

∂n
ds′+α

∫
s
n•n′k2

σ(r′)G(r,r′)ds′

+ α

∫
s

(
n′X ∇

′
σ
)
•(nX ∇G) ds′ =

∂Φi

∂n
. (20)

In the following sections, a novel numerical technique is developed using node
based basis functions for CLF. For this, first the basis functions are defined for the
nodes located on open edges, interior edges and intersecting edges of a surface.
Next, these basis functions are used for defining a source density function in the
method of moments solution procedure.
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5 Definition of Basis Functions

Fig.1 shows the triangular patch modeling of the surfaces of a arbitrarily shaped
three dimensional bodies of three varieties. One is a closed body in which there
are no open boundaries, the second one is an open body which is nothing but a
surface, and the third one is an intersecting body in which there are intersecting
surfaces. The three bodies shown in Fig. 1 are having a shape of a regular cone
or it resembles a cone. The triangular patch modeling is an approximation of the
surfaces. The accuracy of approximation can be increased by modeling the surface
with large number of triangular patches of smaller size. The three geometric enti-
ties that are present in the triangular patch modeling are triangular patches, edges
and nodes. Let N f ,Ne and Nnrepresent the number of triangular patches, number of
edges and number of nodes, respectively, on the surface of triangulated body. For
a closed body, every edge is common to two adjacent triangular patches, and every
node is common to at least three triangular patches as well as at least three edges.
Where as in case of an open body, there are edges which have only one adjacent tri-
angular patch, and they are called as boundary edges and the corresponding nodes
of that edge are called as boundary nodes in this paper. Similarly, in case of in-
tersecting bodies, there are edges which has more than two triangular patches; and
these edges are called as interesting edges and the corresponding nodes are called
as intersecting nodes.

 
Closed               Open Body 

  (Non-Intersecting Surface)

          Open Body 

Non- Boundary 

       Node 

Intersecting Node

Boundary 

N d

Figure 1: Triangular patch modeling of an Cone shaped three-dimensional bodies.

Next, we develop basis functions for these three kinds of nodes and they will be
used in the method of moments solution procedure to calculate the far field cross
sections of different bodies.

A. Non Boundary Node:
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Consider a node n about which the basis function is defined. For illustration
purposes, consider one such node as shown in Fig. 2, where there are five tri-
angular patches attached to it. Let T1,T2, ......,T5 are the triangular patches and
e1,e2, .......,e5 are the edges surrounding the node. The shaded region, shown in
the Fig. 2. as Sn, is formed by joining the mid points of the edges, that are con-
nected to the node n, to the centroids of adjacent triangular patches thus forming a
closed boundary around the node.

 
Figure 2: Node based basis function and geometric parameters associated with the
node.

Since the method of moments solution calls for the definition of expansion/basis
as well as testing/weighting functions, expansion/basis functions are defined on the
source node n and the testing/weighting functions are defined on the field node m.
Let there are p number of triangular patches attached to field node m and q number
of triangular patches attached the source node n. By joining the node on which
the basis function or weighting function is defined, to the centroid of the attached
triangular patches, the shaded area on each triangular patch is divided into two sub
triangles, resulting u number of sub triangles around field node m and v number of
sub triangles around the source node n. In this paper, index x is used to represent
the sub triangle attached to the field node and index y is used to represent the sub
triangle attached to the source node.
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The node based basis function is defined over the shaded area as follows.

fn
(
r′
)

=

{
1 r′ ∈ Sn

0 Otherwise.
(21)

The source density function σ over the surface of the scattering object is approxi-
mated by

σ
(
r′
)

=
Nn

∑
n=1

βn fn (22)

where βn represent the unknown coefficients to be determined and the equality
sign is usually approximate. The basis functions defined over the node has all
advantages as edge based basis functions [see B. Chandrasekhar & Rao (2004)].

In the numerical solution of CLF, Galarkin’s approach is used by defining the test-
ing function in the same manner as it is defined for the basis function.

wm =

{
1 r ∈ Sm

0 Otherwise.
(23)

B. Boundary Node
A boundary node is a one which is located on the boundary edges of an open body.
The position of boundary node is depicted in Fig. 1. Since the basis function do not
surround the node as in the case of non-boundary node, it is difficult to treat these
nodes due to the way the numerical solutions are described in the later sections. For
this purpose one can choose the following option. As in case of electromagnetic
scattering from open bodies, one can assume that there are no sources located on
the edges; hence the boundary nodes are discounted from the number of unknowns.
In order to minimize the error arising due to this assumption, one can increase the
density of triangular patches at the boundary. Hence

fn
(
r′
)

=

{
1 r′ ∈ Sn and r′ /∈ Γ

0 Otherwise.
(24)

where Γ is the boundary of a open surface.

C. Intersecting Non-Boundary Node
A node can be defined as an intersecting node if any of the edges sharing it have
more than two triangular patches attached to it. For example in Fig. 3a, an in-
tersecting node is shown and the procedure to define basis functions is laid down
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as follows. Group the triangular patches attached to the intersecting node into dif-
ferent sets. Care should be taken in a such a way that each set when combined
with any other set, it should be possible to completely define node based basis
function as described in above sections. For example, for the intersecting node
shown in Fig 3a, three sets can be formed. They are (Pa,Pb,Pc), (Pd ,Pe,Pf ) and
(Pg,Ph). A node based basis function can be defined by adding any two of the
three sets. The possible combinations are (Pa,Pb,Pc,Pd ,Pe,Pf ), (Pa,Pb,Pc,Pg,Ph)
and (Pd ,Pe,Pf ,Pg,Ph). Figs. 3b and 3c shows the node based basis function for
the combined sets (Pa,Pb,Pc,Pd ,Pe,Pf ) and (Pa,Pb,Pc,Pg,Ph). If there are N sets
attached to the intersecting node, then the number of basis functions required for
defining the source density function is N−1.

 

Intersecting Node 

Basis Function 
Basis Function

(a) 

(b) (c)

aPbP

cP

dP eP

fP

gP

hP

aPbP

cP
dP

fP

eP

aPbP

cP
gP

hP

Figure 3: Basis functions on a node located on the intersecting edges.

6 Numerical Solution Procedure

In this section the matrix equations are presented for the combined layer formula-
tion using node based basis functions. The detailed derivation of the matrix equa-
tion for combined layer formulation using node based basis functions can be found
in ref [Chandrasekhar (2008)].
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Testing Eq. 20 with the functions defined in Eq. 23〈
wm,

σ (r′)
2

〉
−
〈

wm,
∫

s
σ
(
r′
)∂G(r,r′)

∂n
ds′
〉

+α

〈
wm,

∫
s
n•n′k2

σ(r′)G(r,r′)ds′
〉

+α

〈
wm,

∫
s

(
n′x∇

′
σ
)
•(nX ∇G) ds′

〉
=
〈

wm,
∂Φi

∂n

〉
. (25)

This can be expressed in matrix form as

Zmn
cl f X = Y m (26)

where

Zmn
cl f = Zmn

sl f +α Zmn
dl f (27)

Zsl f and Zdl f are the impedance matrices of the single layer and double layer for-
mulations of size Nn X Nn , X and Y are column vector of size Nn.

Zmn
sl f =


1
2

u
∑

x=1
Ax

m f or m = nand x = y

−
u
∑

x=1

v
∑

y=1
Ax

m
∫

s
∂G(rcx

m ,rcy
n )

∂nx
m

ds′ otherwise
(28)

where rcx
m is the position vector to the centroid of the xth sub-triangle attached to

field node, rcy
n is the position vector to the centroid of the yth sub-triangle attached

to source node and ∂G/∂nx
m is the normal derivative of Green’s function at the

centroid of the xth sub-triangle attached to field node.

Zmn
dl f =

u

∑
x=1

v

∑
y=1

k2Ax
mnx

m •ny
n

∫
s
G(rcx

m ,rcy
n )ds′

+
lm
2
• ln

2A f n

(
p

∑
x=1

q

∑
y=1

∫
s f

G
(
rc f p

m ,rc f q
n
)

ds′
)

. (29)

and

Y m =
u

∑
x=1

Ax
m

∂Φi (rcx
m )

∂nx
m

(30)

where Ax
m is the area of the sub triangle attached to the field node, A f n is the area

of the triangular patch attached to the source node, rcx
m is the position vector to the
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centroid of the xth sub triangle attached to field node, rcy
n is the position vector to the

centroid of the yth sub triangle attached to source node, rc f p
m is the position vector

to the centroid of the pth triangular patch attached to field node, and rc f q
n is the

position vector to the centroid of the qth triangular patch attached to source node.
nx

m and ny
n represent the unit normal vectors of the sub triangle connected to the mth

node and nth node respectively. lm and ln the vectors of the edges of corresponding
nodes as shown in Fig 4.

 

Figure 4: Triangular patch Tf and associated edges and nodes.

For a plane wave incidence, we set

Φ
i = e jkk̂•r (31)

where the propagation vector k̂ is given by,

k̂ = sinθ0 cosφ0 ax + sinθ0 sinφ0 ay + cosθ0 az (32)

(θ0,φ0) define the angles of arrival of the plane wave in the conventional spherical
co-ordinate system and ax, ay and az are the unit vectors along the x,y and z axes,
respectively.

The normal derivative of the incident field may be written as

∂Φi

∂n
= n•∇Φ

i = jk n• k̂ e jkk̂•r. (33)

Once the elements of the impedance matrix Z and the forcing vector Y are deter-
mined, one may solve the linear system of equations, Eq. 26 for the unknown
vector X using any standard matrix inversion techniques.
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7 Numerical Results

In this section, numerical results for the numerical solutions based on using any or
combination of three different basis functions are presented depending up on the
geometry of the scattering body. Also, three kinds of bodies are considered in the
numerical results, namely, closed bodies, open bodies and intersecting bodies. The
closed bodies were solved with CLF where as the open and intersecting bodies were
solved using DLF since there are no resonance frequencies associated with open
and intersecting bodies. However, one can use CLF numerical solution procedure
for open and intersecting bodies also. The geometries considered are a disc, a
rectangular plate, a rectangular plate intersecting with a square plate, and a body
with an aircraft like shape. To begin with the node based CLF numerical solution is
validated for a case of a circular disc since a closed form solution [Bowman, Senior
& Uslenghi (1969)] is available for a circular disc. Along with the CLF solution,
a node based open body DLF solution is validated against the CLF solution and
closed form solution. Later on, the DLF solutions for open and intersecting bodies
were compared with the CLF solutions for those cases which do not have closed
form solutions.

Fig. 5 shows the geometries of the three cases validated in this work. Fig. 5a
shows the geometry of a disc of radius 1m. The normal of the disc is aligned with
the Z-axis and the acoustic plane wave is traveling in –Z direction and incident on
the disc. The disc is modeled as a open body (surface) as well as a closed body. The
open body is approximated by 121 nodes and 340 edges. Similarly, closed body is
modeled as 0.01m thick with 242 nodes and 720 edges. The number of nodes and
edges in case of a closed body is more since the there are two circular surfaces and
a cylindrical surface compared to one circular surface as in case of a disc modeled
as an open body.

Fig. 6 shows Scattering cross section versus polar angle for an acoustically rigid
disc of radius 1m, subjected to an axially incident plane wave of k = 1rad/mtraveling
in –Z direction. The closed body is solved using CLF(α = 0.1 j); where as the open
body is solved using DLF. Both the solutions are compared with the closed form
solution. The scattering cross section for the numerical solution is defined by

S = 4π

∣∣∣∣Φs

Φi

∣∣∣∣2
≈ 1

4π

∣∣∣∣∣ Nn

∑
n=1

βn

[
v

∑
y=1

Ay
nny

n • ry
ne jkny

n•ry
n

]
.

∣∣∣∣∣
2 (34)

The solutions compare very well with the closed form solution. The accuracy of the
solutions can be further improved by increasing the number of triangular patches
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 7

Figure 3: Triangular patch fT and associated edges and 
nodes. 

For a plane wave incidence, we set 
rk•=Φ

ˆjki e      (31) 

where the propagation vector k̂ is given by, 

zy aaak x 00000 cossinsincossinˆ θφθφθ ++=  (32) 

( )00 ,φθ  define the angles of arrival of the plane wave in the 
conventional spherical co-ordinate system and yaa x ,  and 

za  are the unit vectors along the y x, and z  axes, 
respectively.  
The normal derivative of the incident field may be written as 

.ˆ ˆ rkkn ••=

Φ∇•=
∂
Φ∂

jk

i
i

ejk

n
n     (33) 

Once the elements of the impedance matrix Z  and the 
forcing vector Y  are determined, one may solve the linear 
system of equations, Eq. 27 for the unknown vector X  using 
any standard matrix inversion techniques. 
7 Numerical Results 
In this section, numerical results for the numerical solutions 
based on using any or combination of three different basis 
functions are presented depending up on the geometry of the 
scattering body. Also, three kinds of bodies are considered in 
the numerical results, namely, closed bodies, open bodies and 
intersecting bodies. The closed bodies were solved with CLF 
where as the open and intersecting bodies were solved using 
DLF since there are no resonance frequencies associated with 
open and intersecting bodies. However, one can use CLF 
numerical solution procedure for open and intersecting 
bodies also. The geometries considered are a disc, a 
rectangular plate, a rectangular plate intersecting with a 
square plate, and a body with an aircraft like shape. To begin 
with the node based CLF numerical solution is validated for a 
case of a circular disc since a closed form solution [Bowman, 
Senior & Uslenghi (1969)] is available for a circular disc.  
Along with the CLF solution, a node based open body DLF 
solution is validated against the CLF solution and closed 
form solution. Later on, the DLF solutions for open and 
intersecting bodies were compared with the CLF solutions 
for those cases which do not have closed form solutions. 
Fig.3 shows the geometries of the three cases validated in this 
work. Fig. 3a shows the geometry of a disc of radius 1m. The 
normal of the disc is aligned with the Z-axis and the acoustic 
plane wave is traveling in –Z direction and incident on the 
disc. The disc is modeled as a open body (surface) as well as 
a closed body. The open body is approximated by 121 nodes 
and 340 edges. Similarly, closed body is modeled as 0.01m 
thick with 242 nodes and 720 edges. The number of nodes 

and edges in case of a closed body is more since the there are 
two circular surfaces and a cylindrical surface compared to 
one circular surface as in case of a disc modeled as an open 
body. 

 
Figure 3: Geometries of thin and intersecting bodies 

 
Fig. 4 Scattering cross section versus polar angle for an 
acoustically rigid disc of radius 1m, subjected to an axially 
incident plane wave of  mradk /1= traveling in –Z direction. 
The closed body is solved using CLF( j1.0=α ); where as 
the open body is solved using DLF. Both the solutions are 
compared with the closed form solution. The scattering cross 
section for the numerical solution is defined by 
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The solutions compare very well with the closed form 
solution. The accuracy of the solutions can be further 
improved by increasing the number of triangular patches for 
the case of open body; and reducing the thickness of the disc 
and increasing the number of triangular patches for the case 
of closed body. However it is not the scope of the present 
work to optimize the number triangular patches for a given 
accuracy of solution. 
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Figure 5: Geometries of thin and intersecting bodies

for the case of open body; and reducing the thickness of the disc and increasing
the number of triangular patches for the case of closed body. However it is not the
scope of the present work to optimize the number triangular patches for a given
accuracy of solution.

Fig. 5b shows a rectangular thin plate of dimensions 2m×1m. The plate has been
modeled as closed body with thicknesses 0.01m and 0.001 m for demonstrating the
convergence of solution towards open body solution. The closed body model of the
rectangular plate has been modeled with 462 nodes and 1380 edges; where as the
open body model is modeled with 231 nodes and 630 edges.

It is evident from Fig. 7 that open body solution is very close to the solution of the
closed body having lesser thickness. As the thickness of the closed body model of
the plate is reduced from 0.01m to 0.001m, its solution converges towards the open
body model. The open body model of both disc and plate uses boundary node basis
function and non-boundary node basis functions in the numerical solution.

Fig. 5c shows the geometry of a rectangular plate of dimensions 2m x 1m with
negligible thickness intersecting with a square plate of size 1m x 1m. This geometry
may be again modeled as a closed body with thicknesses of 0.01m and 0.001m, and
as a open body. The closed body is modeled with 704 nodes and 2106 edges; where
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 Figure 6: Scattering cross section versus polar angle for an acoustically rigid disc
of radius 1m, subjected to an axially incident plane wave of k = 1rad/m.
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 Figure 7: Scattering cross section versus polar angle for an acoustically rigid rect-
angular thin plate of size 2m x 1m, subjected to an axially incident plane wave of
k = 1rad/m.

as the open body model is approximated with 341 nodes and 940 edges.

It is evident from Fig. 8 that as the thickness of the plates is reduced from 0.01m
to 0.001m, the far field scattering cross section converges towards the open body
solution. In other words, the open body solution compares very well with the closed
body solution as thickness of the plates is reduced. This is a case where all kinds
of basis functions developed in this work, namely, boundary node basis functions,
non-boundary node basis functions and intersecting node basis functions are used
in the numerical solution.
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 Figure 8: Scattering cross section versus polar angle for an acoustically rigid inter-
secting thin plates, subjected to an axially incident plane wave of k = 1rad/m

 

Figure 9: Triangulated model of an aircraft like body.

As a final case, the numerical solution developed in this work is used to solve for a
case of an aircraft like body shown in Fig. 9. The wings of the body are modeled
as open bodies and the main body is modeled as a closed body. This is an example
of open bodies intersecting with a closed body. The overall size of the cylindrical
body is 2m in diameter and 12.5m in length. The size of the main wings is 2m x
6.5m and that of small wings in the rear is 0.5m x 2.5 m. The body is approximated
by triangular patch modeling with 3222 nodes and 9420 edges.
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 Figure 10: Scattering cross section (normalized) versus polar angle for an acous-
tically rigid aircraft like body, subjected to an axially incident plane wave of
k = 1rad/m

Fig. 10 shows the normalized scattering cross section versus polar angle for an
acoustically rigid aircraft like body, subjected to an axially incident plane wave of
k = 1rad/m traveling in –Z direction. The numerical solution uses again all the
three kinds of basis functions defined above.

8 Conclusions

In this work, node based basis functions are used to solve the acoustic scattering
from plain thin bodies like plates, discs; and intersecting thin bodies like wings
on a cylinder. Node based basis functions are defined on the vertices of triangles
generated by triangular patch modeling, and these functions are used to define the
unknown source distribution. Also the same functions are used as testing functions
in the method of moment’s solution. Three kinds of nodes were treated for defining
the basis functions, namely, boundary node, non-boundary node and non boundary
intersecting node. Also, three kinds of bodies were considered for the acoustic
scattering, namely closed bodies, open bodies and intersecting bodies. A common
numerical solution procedure is developed for the three kinds of bodies using the
node based basis functions. The numerical solutions developed are validated with
closed form solutions wherever possible. To validate the numerical solutions, a case
of acoustic scattering from disc is solved since the disc has a closed form solution.
The numerical solutions compare very well with the closed form solution. Also, the
closed body solutions are validated with the closed form solutions. For the cases of
a rectangular plate and intersecting plates, the open body solutions are compared
with the closed body solutions based on CLF. For lesser and lesser thickness of the
plates, the open body solutions converge towards closed body solutions. All three
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kinds of basis functions developed in this work are validated by using them in the
solutions for a case of intersecting plates. Also the numerical solutions were used
to predict the far fields of complex bodies like aircraft like bodies. This work can
be further improved by using adaptive basis functions.

References

Bowman, J.J.; Senior, T.B.A.; Uslenghi, P.L.E. (1969): Electromagnetic and
Acoustic Scattering by Simple Shapes North-holland, Amsterdam.

Burton, A.J.; Miller, G.F. (1971): The application of integral equation methods to
the numerical solution of some exterior boundary value problems. Proceedings of
Royal Society, London vol A323, pp. 601-618 .

Chandrasekhar, B.; Rao, S.M. (2004): Elimination of internal resonance prob-
lem associated with acoustic scattering by three-dimensional rigid body, Journal of
Acoustical Society of America, vol 115, pp. 2731-2737.

Chandrasekhar, B.; Rao, S.M. (2005): Acoustic Scattering from Complex Shaped
Three Dimensional Structures, CMES: Computer Modeling in Engineering & Sci-
ences, vol. 8, No. 2, pp. 105-118.

Chandrasekhar, B. (2008): Node Based Method of Moments Solution to Com-
bined Layer Formulation of Acoustic Scattering. CMES: Computer Modeling in
Engineering and Sciences, Vol. 33, No. 3, pp. 243-268.

Chandrasekhar, B.; Rao, S.M. (2008): A New Method to Generate an Almost-
Diagonal Matrix in The Boundary Integral Equation Formulation. Journal of Acous-
tical Society of America, Vol. 124, Issue no. 6, pp. 3390-3396.

Chen, I.L.; Chen, K.H.(2006), Using the Method of Fundamental Solutions in
Conjunction with the Degenerate Kernel in Cylindrical Acoustic Problems, J. Chi-
nese Institute of Engineers, vol 29, No.3, 445-457.

Chen, J.T.; Chen, I.L.; Chen, K.H.(2006) A unified formulation for the spurious
and fictitious frequencies in acoustics using the singular value decomposition and
Fredholm alternative theorem, J. Comp. Acoustics, vol 14, No.2, 157-183.

De Klerk J.H. (2005): Hypersingular integral equations—past, present, future.
Nonlinear Analysis, 63: 533 –540.

Harrington, R.F. (1968): Field computation by Method of Moments. MacMillan,
New York.

Han Z.D.; Atluri S.N. (2007):A systematic approach for the development of weaklysin-
gular BIEs, CMES: Computer Modeling in Engineering & Sciences, 21(1): 41-52.
(9)

He X.F.; Lim K.M.; Lim S.P. (2008): Fast BEM Solvers for 3D Poisson-Type



102 Copyright © 2009 Tech Science Press CMES, vol.52, no.1, pp.83-103, 2009

Equations. CMES: Computer Modeling in Engineering & Sciences, 35(1): 21-48.

Karlis G.F.; Tsinopoulos S.V.; Polyzos D.; Beskos D.E. (2008): 2D and 3D
boundary element analysis of mode-I cracks in gradient elasticity. CMES: Com-
puter Modeling in Engineering & Sciences, 26(3): 189-207.

Liu Y.J.; Nishimura N. (2006): The fast multipole boundary element method for
potential problems: A tutorial. Engineering Analysis with Boundary Elements,
30(5): 371-381.

Mantia M.L.; Dabnichki P. (2008): Unsteady 3D boundary element method for
oscillating wing. CMES: Computer Modeling in Engineering & Sciences, 33(2):
131-153.

Maue, A.W. (1949): Zur Formulierung eines allgemeinen Beugungsproblems durch
eine Integralgleichung. Journal of Physics, vol 126, pp. 601-618.

Mitzner, K.M. (1966): Acoustic scattering from an interface between media of
greatly different density. Journal of Mathematical Physics. vol 7, pp. 2053-2060.

O’Neill. B. (1966): Elementary Differential Geometry. Academic, New York.

Phillips J.R.; White J.K. (1997): A precorrected-FFT method for electrostatic
analysis of complicated 3-D structures. IEEE Transactions on Computer-aided
Design of Integrated Circuits and Systems, 16(10): 1059-1072.

Qian Z.Y.; Han Z.D.; Atluri S.N. (2004): Directly derived non-hypersingular
boundary integral equations for acoustic problems, and their solution through Petrov
Galerkin schemes. CMES: Computer Modeling in Engineering & Sciences 5(6):
541-562.

Qian Z.Y.; Han Z.D.; Ufimtsev P.; Atluri S.N. (2004): Non-hypersingular bound-
ary integral equations for acoustic problems, implemented by the collocation-based
boundary element method. CMES: Computer Modeling in Engineering & Sciences
6(2): 133-144.

Raju, P.K.; Rao, S. M.; Sun, S.P. (1991): Application of the method of moments
to acoustic scattering from multiple infinitely long fluid filled cylinders. Computers
and Structures. vol 39, pp. 129-134.

Rao, S.M.; Raju, P.K. (1989): Application of Method of moments to acoustic
scattering from multiple bodies of arbitrary shape. Journal of Acoustical Society of
America. vol 86, pp. 1143-1148.

Rao, S.M.; Sridhara, B.S. (1991): Application of the method of moments to
acoustic scattering from arbitrary shaped rigid bodies coated with lossless, shear-
less materials of arbitrary thickness. Journal of Acoustical Society of America. vol
90, pp. 1601-1607.

Rao, S. M.; Raju, P.K.; Sun, S.P. (1992): Application of the method of moments



Computation of Acoustic Far Field Scattering Cross Section 103

to acoustic scattering from fluid-filled bodies of arbitrary shape. Communications
in Applied Numerical Methods, vol 8, pp. 117-128.

Soares Jr.D.; Vinagre, M. P. (2008): Numerical computation of electromagnetic
fields by the time-domain boundary element Method and the complex variable
method. CMES: Computer Modeling in Engineering & Sciences, 25(1): 1-8.

Sanz J.A.; Solis M.; Dominguez J. (2007): Hypersingular BEM for piezoelectric
solids: formulation and applications for fracture mechanics, CMES: Computer-
Modeling in Engineering & Sciences, 17(3): 215-229.

Schenck, H.A (1968): Improved integral formulation for acoustic radiation prob-
lems. Journal of Acoustical Society of America. vol 44, pp. 41-58.

Sun, S.P.; Rao, S. M. (1992): Application of the method of moments to acoustic
scattering from multiple infinitely long fluid-filled cylinders using three different
formulation. Computers and Structures. vol 43, pp. 1147-1153.

Tan C.L.; Shiah Y.C.; Lin C.W. (2009): Stress Analysis of 3D Generally Anisotropic
Elastic Solids Using the Boundary Element Method. CMES: Computer Modeling
in Engineering & Sciences, 41(3): 195-214.

Wang H.T.; Yao Z.H. (2008): A rigid-fiber-based boundary element model for
strength simulation of carbon nanotube reinforced composites. CMES: Computer
Modeling in Engineering & Sciences, 29(1): 1-13.

Yan Z.Y.; Hung K.C.; Zheng H. (2003): Solving the hypersingular boundary
integral equation in three-dimensional acoustics using a regularization relationship.

J. Acoust. Soc. Am. 113: 2674-2683.

Yan Z.Y.; Cui F.S.; Hung K.C. (2005): Investigation on the normal derivative
equation of Helmholtz integral equation in acoustics. CMES: Computer Modeling
in Engineering & Sciences, 7(1): 97-106.

Yang S.A. (2004): An integral equation approach to three-dimensional acoustic
radiation and scattering problems. J. Acoust. Soc. Am. 116 (3): 1372-1380.




