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In this paper, we extend the successful experience of solving an infinite medium containing circular holes
and/or inclusions subject to remote shears to deal with the problem containing elliptical holes and/or
inclusions. Arbitrary location, different orientation, various size and any number of elliptical holes and/
or inclusions can be considered. By fully employing the elliptical geometry, fundamental solutions were
expanded into the degenerate kernel by using an addition theorem in terms of the elliptic coordinates
and boundary densities are described by using the eigenfunction expansion. The difference between
the proposed method and the conventional boundary integral equation method is that the location point
can be exactly distributed on the real boundary without facing the singular integral and calculating prin-
cipal value. Besides, the boundary stress can be easily calculated free of the Hadamard principal values. It
is worthy of noting that the Jacobian terms exist in the degenerate kernel, boundary density and contour
integral; however, these Jacobian terms would cancel each other out and the orthogonal property is pre-
served in the process of contour integral. This method belongs to one kind of meshless methods since
only collocation points on the real boundary are required. In addition, the solution is regarded as
semi-analytical form because error purely attributes to the number of truncation term of eigenfunction.
An exact solution for a single elliptical inclusion is also derived by using the proposed approach and the
results agree well with Smith’s solutions by using the method of complex variables. Several examples are
revisited to demonstrate the validity of our method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering practice, saving engineering costs and how to in-
crease the material strength are always the main concern for engi-
neers. For this purpose, the study on stress distribution of the
material containing holes or inclusions becomes an important is-
sue. In the past, many researchers have paid attention on studying
this problem. Goree and Wilson [1] used the complex-variable
method and bilinear transformation to solve the problem of the
infinite medium containing two circular inclusions and provided
the numerical results of the normal stresses on the interface for
the different radius ratio and varying spacing ratio between two
inclusions. Budiansky and Carrier [2] revisited this problem by
using the theory of complex variables. They derived some exact
solutions for the cases of two rigid inclusions and two inclusions
not rigid but touch each other. Later, Steif [3] provided the exact
solution for the special case of two traction-free holes. Besides,
Zimmerman [4] employed the Schwartz alternative method to
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discuss the stress concentration for the plane problems with two
holes or inclusions and obtained a closed-form approximate solu-
tion. For a triangle pattern of three inclusions, Gong [5] employed
the complex potential and Laurent series expansion to calculate
the stress concentration. Based on the technique of analytical con-
tinuity and the method of successive approximation, Chao and
Young [6] studied the stress concentration on a hole surrounded
by two inclusions. Wu [7] solved the analytical solution for two
inclusions under the remote shear in two directions by using the
conformal mapping and the theorem of analytic continuation. In
realistic engineering problems, however, the interface between
matrix and inclusion is not always perfectly bonded. Stief [8] used
the singular integral equation to solve a weakly bonded fiber com-
posite under the longitudinal shear.

However, the use of analytical methods or complex-variable
method is limited to some simple cases. The extension to the prob-
lems with multiple circular holes or inclusions may encounter dif-
ficulty. More and more researchers have paid attentions on
numerical solutions. Sendeckyj [9] proposed a successive approxi-
mation method to resolve the problems containing multiple inclu-
sions. However, the approach is more complicated and it needs a
large number of truncated terms when the number of inclusions
increases. Honein et al. [10] employed the Mobius transformations
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involving the complex potential to solve the problems with two
unequal holes and/or inclusions. Not only antiplane shears but also
screw dislocations were considered in their works. For screw
dislocation, Chen et al. [11] have solved it by using the null-field
integral equation. In addition, the complex variable boundary
element method (CVBEM) was also used to solve the antiplane
problem with two holes under remote shear by Chou [12]. To de-
velop a general solution for solving an infinite medium containing
multiple circular inclusions with any number, radii, shear moduli
and location is not trivial. Mogilevskaya and Crouch [13] utilized
the Fourier series expansion in conjunction with the Galerkin
method to solve the problem of circular inclusions in 2-D elasticity.
Besides, Chen and his group [14] used the null-field boundary inte-
gral equation in companion with the degenerate kernels and
Fourier series to solve the antiplane problem with multiple circular
holes. Later, they [15,16] also extend the approach to deal with the
problem containing multiple inclusions and piezoelectricity prob-
lems with arbitrary circular inclusions. The approach belongs to
one kind of meshless methods and has high accuracy and exponen-
tial convergence.

The aforementioned works were limited on the circular geo-
metric shape. For elliptical shape, it may be more general than cir-
cular geometry in the practical applications. As a result, study on
the problems including elliptical geometry is interesting and
important. Based on the concept of complex potential, Gong and
Meguid [17] used the conformal mapping and Laurent series
expansion to solve an infinite medium containing an elliptical
inhomogeneity under antiplane shear. Explicit form of the stress
function in the inhomogeneity as well in the matrix was derived
in their work. Then, a generalized and unified treatment was devel-
oped by Gong [18] for the elliptical inclusion embedded in an infi-
nite matrix not only under the remote shear but also interacting by
screw dislocation. A similar work was implemented by Ru and
Schiavone [19]. In their work, they can confirm that stress is uni-
form in the elliptical inclusion. Besides, Shen et al. [20] develop a
semi-analytical solution for the problem of an elliptical inclusion
not perfectly bonded in an infinite matrix under antiplane shear.
Under the assumption of continuous tractions and discontinuous
displacements across the interface, they used a model of a spring
layer with thickness to simulate the interface. They found the
non-uniform stress field and the average stresses in the inclusion
is highly related to the aspect ratio of the inclusion and the param-
eter of interface simulation. However, these researches only con-
centrated on single elliptical inclusion. For arbitrary distributed
elliptical inclusions under remote shear, Noda and Matsuo [21]
have used the Cauchy-type singular integral equations to solve
an interaction problem of elliptical inclusions disturbed in an infi-
nite medium under a longitudinal shear loading. They discussed
different outlet of two elliptical inclusions as well as different ra-
tios of shear moduli. Later, Lee and Kim [22] also revisited the
problem of Noda and Matsuo by using the volume integral equa-
tion method. Besides, many works were done for the plane elastic-
ity [23-25] with multiple elliptical inclusions as well as antiplane
problems. However, for antiplane elasticity with more than two
elliptical inclusions, few works were found to our knowledge ex-
cept [21,22]. Recently, Kuo [26] used the mulipole expansion ap-
proach in companion with a construction of consistency
conditions and translation operators to deal with a number of arbi-
trarily dispersed elliptic cylinders bonded in an infinite isotropic
matrix subject to a remote potential field. Mathematically speak-
ing, the mathematical model of the problem solved by Kuo and
the antiplane problem subject to remote shear is the same. In this
paper, we present our approach to revisit the antiplane problem
containing multiple elliptical inclusions.

In this paper, we extend the successful experience of solving
antiplane shear for circular holes and/or inclusions to deal with

the problem containing elliptical holes and/or inclusions. A prob-
lem of arbitrary location, different orientation, various size and
any number of elliptical holes and/or inclusions imbedded in an
isotropic and infinite medium is considered. By fully employing
the elliptical geometry, fundamental solutions were expanded into
the degenerate kernel by using an addition theorem in terms of the
elliptical coordinates, and boundary densities are approximated by
the eigenfunction expansion. In the present approach, the
collocation point can be exactly located on the real boundary
without calculating Cauchy principal value or Hadamard principal
value. Besides, the Jacobian terms may exist in the degenerate
kernel, boundary density and contour integral. Nevertheless, these
Jacobian terms would cancel each other out and the orthogonal
property is preserved in contour integral. The proposed approach
can be seen as one kind of meshless and semi-analytical methods
because only collocation points on the real boundary are required
and the error purely attributes to the number of truncation term of
eigenfunction. An exact solution for a single elliptical inclusion is
also derived by using the proposed approach. Although the repre-
sentation is different from Smith’s form [27], both the two solu-
tions match well with each other in numerical implementation.
Finally, several examples are revisited to demonstrate the validity
of our method.

2. Problem statement

For the antiplane problem as shown in Fig. 1, the displacement
field is

u=v=0 w=wxy), (1)

where w is the only nonvanishing component of displacement and
itis a function of x and y in the Cartensian coordinates. Based on the
theory of elasticity, the stress components of the isotropic and elas-
tic body are

ow

Tz = Tix = ,ua (2)
ow

T =Ty = Mo 3)

where p is the shear modulus. The equilibrium equation in elastic-
ity can be simplified to

0Ty, 0Ty,
X + ay

Therefore, we have

-0, (4)
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Fig. 1. Sketch of the problem containing multiple elliptical inclusions under remote
shears.
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Fig. 2a. An infinite plane with multiple holes under the remote shears.
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Fig. 2b. Each isolated inclusion.

’*w Pw  _,
W+T}}2=v w=0. (5)

As shown in Eq. (5), the antiplane problem is governed by the
Laplace equation. Here, an antiplane problem with N elliptical inclu-
sions subject to remote shears is considered as shown in Fig. 1. By
taking free body technique with respect to each inclusion, the prob-
lem in Fig. 1 is decomposed into Figs. 2a and 2b. One is an infinite
plane with multiple elliptical holes under remote shears and the
other is the problem of multiple isolated inclusions where each
individual inclusion is governed by the Laplace equation. In the
interface between the matrix and inclusion, the continuity of dis-
placement and equilibrium of traction are given as follows:

wy = w, (6)
:uotkM + ,let;< =0, (7)

where the subscripts of M and I denote matrix and inclusion,
respectively, 1o and py denote the shear moduli of matrix and the
kth inclusion, respectively, and t¥ and t}, are the tractions of matrix
and inclusion, respectively. The problem in Fig. 2a can be further
decomposed as shown in Figs. 3a and 3b. In Fig. 3a, the matrix is
homogenous and isotropic, and bears the uniform shear stresses,

Ty and ty;, at infinity or equivalently disturbs by the displacement

T Ty,
we =2y Ky 8
Ho Ko ®)

The two problems in Figs. 2b and 3b can be solved by using the
present approach as mentioned in the next section.
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Fig. 3a. An infinite plane with remote shears.
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Fig. 3b. A problem of an infinite plane containing multiple holes.

3. Dual null-field integral formulation
3.1. Dual null-field integral equations - the conventional version

The integral equation for the domain point can be derived from
the third Green’s identity, we have

:/T(s,x)ws dB(s
B
x):/BM(s,x)wsst

where s and x are the source and field points, respectively,
t(x) = %%, t(s) = 2%, n, and n, denote the outward normal vectors
at the source point s and field point x, respectively, D is the domain
of interest and the kernel function, U(s,x) =-L Inr (r=[x —s|), is

the fundamental solution which satisfies

- / U(s, x)t(s)dB(s), X €D, )
B

- / L(s,x)t(s)dB(s), x €D, (10)
B

V2U(X,8) = §(X — ), (11)

in which 6(x — s) denotes the Dirac-delta function. The other kernel
functions, T(s, X), L(s, X), and M(s, X), are defined by

T(s,X) = m]a(lsl’sx)
L(s,X) = aua(;;x) ; (12)
2
U(s,
M(s,x) = %.

By moving the field point x to the boundary, the dual boundary inte-
gral equations for the boundary point can be obtained as follows:
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%w(x) = C.P‘V./B T(s,x)w(s)dB(s)

_RPV. / U(s, X)t(s)dB(s), X € B, (13)
B

%t(x) = H.P.V./BM(s,x)w(s)dB(s)

_CPV. / L(s,x)t(s)dB(s), x¢€B, (14)
B

where B is the boundary, R.P.V,, C.P.V. and H.P.V. denote the Rie-
mann principal value (Riemann sum), Cauchy principal value and
Hadamard (or called Mangler) principal value, respectively. In the
singular or hypersingular integral for either smooth or unsmooth
boundary, it should be interpreted by using the sense of principal
value if a technique of small circular bump is considered. For the
smooth boundary, the boundary density or boundary contour inte-
gral can improve the singularity order in integration and Riemann
integrals can be interpreted. To be consistent with the BEM litera-
ture [28-30], C.P.V. is employed if a small circular bump is used
in the BEM formulation. The more general contours of Lipschitz
type (which may include edges and corners) are mentioned in the
textbooks. Here, we consider the smooth contours of circular and
elliptical boundaries. No singular integrals are involved in BIE for-
mulation if the Lipschitz condition is considered. Besides, once the
field point x locates outside the domain (x € £2), we obtain the dual
null-field integral equations as shown below

Oz/T(s,x)w(s)dB(s)—/U(s,x)t(s)dB(s), x € Df, (15)

B B

0:/ M(s,x)w(s)dB(s)—/L(s,x)t(s)dB(s), x e D", (16)
B B

where D¢ is the complementary domain. Egs. (9), (10), (15), and
(16) are conventional formulations where the point cannot be
located on the real boundary. Singularity occurs and concept of
principal values is required once Egs. (13) and (14) are considered.
The traction t(s) is the directional derivative of w(s) along the outer
normal direction at s. In order to satisfy the interface condition, the
collocation points are located on the boundary. For calculating the
stress in the domain, the normal vector of an interior point is arti-
ficially given, e.g. t(x) = Ou(x)/0x4, if n = (1, 0) and t(x) = Ou(X)/dx,, if
n = (0, 1). In other words, the selection of 7i depends on the stress
under consideration. Here, we briefly introduce the theory of inte-
gral equations. More information on the potential theory can be
found in [31,32].

3.2. Dual null-field integral formulation - the present version

By introducing the degenerate kernels, the collocation point can
be located on the real boundary free of calculating principal value
using a small circular bump. Therefore, the representations of inte-
gral equations including the boundary point for the interior prob-
lem can be written as

w(x) = / T'(s, X)w(s)dB(s) — / U'(s,x)t(s)dB(s),
B B
xeDUB, (17)

t(x) = / Mi(s,x)w(s)dB(s) — / L'(s,X)t(s)dB(s),
B B
xeDUB, (18)

and

0= / T*(s, X)w(s)dB(s) — / US(s,x)t(s)dB(s), xeD°UB, (19)
JB B

0- / M (s, X)w(s)dB(s) — / I5(s,X)t(s)dB(s), XeD°UB, (20)
B B

once the kernels are expressed in terms of an appropriate degener-
ate forms (denoted by subscripts i and e) instead of the closed-form
fundamental solution. It is noted that x in Egs. (17)-(20) can be ex-
actly located on the real boundary.

For the exterior problem, the domain of interest (D) is in the
external region of the elliptical boundary and the complementary
domain (D) is in the internal region of the ellipse. Therefore, the
null-field integral equations are represented as

w(X) = / T*(s,X)w(s)dB(s) — / U(s,X)t(s)dB(s),
B B
xcDUB, (21)

((x) = /B M(s, X)w(s)dB(s) — / L(s, X)t(s)dB(s),

B
xeDUB, (22)

and
0:/Ti(s,x)w(s)dB(s)—/U‘(s,x)t(s)dB(s), xeDUB, (23)
B B

0= / M(s,x)w(s)dB(s) — / L'(s,x)t(s)dB(s), xeDUB. (24)
JB B

Also, x in Egs. (21)-(24) can be exactly located on the real boundary.
For various problems (interior or exterior), we used different kernel
functions (denoted by superscripts “i” and “e”) so that jump behav-
ior across the boundary can be captured. Therefore, different
expressions of the kernels for the interior and exterior observer
points are used and they will be elaborated on later.

3.3. Expansions of fundamental solution and boundary density

The keypoint of derivation of the degenerate kernel is the use of
addition theorem. In mathematics, the definition of an addition
theorem is given below:

fo®4Y) = Pu®)0m)- (25)

The simplest addition theorem is the exponential function as
shown below:

e =t e, (26)

However, the fundamental solution needs the subtraction theo-
rem due to

U(jx=y) =D rm®)sm(y). (27)

By changing y to —y, the addition theorem can be extended to the
subtraction theorem for the fundamental solution. In other words,
the addition theorem is the re-expansion formula that allow for
analytical representation of the fields written in the co-ordinate
system of one ellipse in terms of the co-ordinate system of another
one. The degenerate kernel used in the present work is an addition
theorem for expanding the fundamental solution. Then, we used an-
other co-ordinate system to describe the position of source point
s = (&1,11) and field point x = (¢4, 171). We can have another observer
for x =(&,,172) and s = (&,17,) to express the fundamental solution
with objectivity. A figure is given in Fig. 4 for clarity.

Based on the separable property, the kernel function U(s, X) can
be expanded into degenerate form by employing the separating
technique for source point and field point under the elliptical coor-
dinates. The fundamental solution, U(s, X), in terms of degenerate
(separable) kernel is shown below:
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where the position of the source point is s = (¢,77) and the field
point is x = (&, 1), the superscripts “i” and “e” denote the interior
(¢ = &) and exterior (& < &) cases, respectively. Fig. 5 shows the
contour plot by using Eq. (28). The other kernels in the boundary
integral equation can be obtained by utilizing the operators of
Eq. (12) with respect to the kernel U(s, x). In the computation,
the degenerate kernel can be expressed as finite sums of products
of functions of s alone and functions of x alone.

Since the closed-form fundamental solution (In r) is used in the
conventional BEM, the principal values of singular and hypersingu-
lar integrals have to be encountered and need to be calculated by
using the small circular bump technique and the C.P.V. and
H.P.V. concept. Therefore, we can obtain the jump term and derive
the boundary integral equation not only from the null-field inte-
gral equation but also from the integral equation for the domain
point. However, in the present formulation, we use the null-field
integral equation or integral equation for the domain point in con-
junction with appropriate degenerate kernel. By using the colloca-
tion method, we can easily construct a linear algebraic system. It is
noted that the null-field point or the domain point can be exactly
located on the real boundary when the appropriate degenerate ker-
nels are employed. The main advantage of present formulation is
that the collocation point X is located on the real boundary free
of facing principal value using the small circular bump, while the
conventional BEM needs to deal with singularities by using the
upper bump or lower bump since a closed-form kernel is used.
Therefore, the main difference between our approach and the con-
ventional method is that the integral path is along the real bound-
ary without bump to obtain the free term. Furthermore, the jump
behavior for potentials of integral equations between the domain
point and the null-field point is captured when various degenerate
kernels for fundamental solutions are employed for the domain
point and complementary domain point. In other words, the jump
behavior is revealed by using various degenerate kernels for the
fundamental solution instead of employing the small circular
bump approach in the conventional boundary integral equation
method since the jump term can be easily captured by the Wrons-
kian. Although we construct the same linear algebraic equation,
the derivation process is different. In other words, the conventional

(S2:1,)
¥ €
o &-m)
&)

&S

Fig. 4. Objective of the fundamental solution of different observers by using the
addition theorem (separable kernel).

o0
U'E i ém) =5 (cf +In§ - Z%e*’”‘f cosh mé cos m# cos mij —
m=1
0 —
> Ze-m coshmé cos myj cos mij —

Z%e*mz sinh m¢ sinmpy sinmﬁ>7 Ex¢

'"j (28)
Z%e‘mi sinhmé sinmy sin mn), E<é,

m=1

BEM is direct to capture the discontinuous function of double-layer
potential using the small circular bump and principal value senses.
In the present work, we used the degenerate kernel to separately
describe the interior and exterior fields to capture the jump poten-
tial across boundary. By using the different integral representa-
tions in companion with appropriate degenerate kernels, we can
derive a linear algebraic equation without facing singular and
hypersingular integrals by collocating the observation point ex-
actly on the boundary. Briefly speaking, the discontinuity across
the boundary can be described either by C.P.V. with the small cir-
cular bump technique or by the degenerate kernel.

For the kth boundary densities, we apply the Fourier series
expansions to approximate the potential w(s) and its normal deriv-
ative t(s) on the boundary

W(S) = 0o + Y _a,Cosnij+ » _b,sinni, (29)
n=1 n=1
t(s) :]1 <po +> pycosni+ g, sin n11> , (30)
s n=1 n=1

where ao, a,, by, po, pn and g, are the coefficients of the Fourier ser-
ies, 77 is the angle (0 < #7 < 27) and J; is the Jocobian with respect to
the source point and the definition is

JJ(E,7) = c\/(sinhécos i)? + (cosh &sinip)?. (31)

Here, it can be observed that the terms of J; which may exist in the
degenerate kernel, boundary density and boundary integral are

'4 T T T T T T
-4 -3 -2 -1 0 1 2 3 4

Fig. 5. Contour plot of the degenerate kernel in the elliptic coordinates to represent
the closed-form fundamental solution Inr.
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cancelled out each other naturally in the boundary integration.
Therefore, the elliptic integral is not required to deal with. In the
real computation, only the finite M number of terms is used in
the summation. The present method belongs to one kind of semi-
analytical methods since error only attributes to the truncation of
Fourier series.

3.4. Linear algebraic system

In order to calculate the Fourier coefficients, Np (Np=2M +1)
boundary nodes for each elliptical boundary are needed and they
are uniformly collocated on each elliptical boundary. After locating
the null-field point x; exactly on the kth elliptical boundary in Eq.
(19) or Eq. (20), we have

N N
0= Z/ T(s,X)w(s)dB;(s) — Z/ U(s, x)t(s)dB;(s),
j=1 “B; j=1 “B;
X € D°UB, (32)

or

N N
OZEAM@WMWMf;AMmmWWQ
X € D°UB. (33)

Since the boundary integral equations are frame indifferent, i.e.
objectivity rule is satisfied. The origin of observer system is adap-
tively chosen at the center of elliptical boundary under integration.
For the B integral of the elliptical boundary, the kernels of U(s, x)
and T(s, X) are expressed in terms of degenerate kernels, and w(s)
and t(s) are substituted by using the Fourier series. For simplicity,
a linear algebraic system is obtained

[U[{t} = [T{w}, (34)
or
[LI{t} = M]{w}, (35)

where [U], [T], [L] and [M] are the influence matrices with a dimen-
sion of N x (2M + 1) by N x (2M + 1), {u} and {t} denote the column
vectors of Fourier coefficients with a dimension of N x (2M + 1) by 1
in which [U], [T], [L], [M] {u} and {t} can be defined as follows:

U; Up - Uy
Uy Uyp oo Uy
U=\ ) o ; (36)
Uvi Unz - Uw
-T]] T]Z e T]N ]
Ty Tn -+ Tw
[T = , (37)
LTvi Tne - T ]
[Lin Lz -+ Lin]
Ly L - L
L= (38)
LLvi L2 --- L
My M - My
My, My - My
M] = ; (39)
MN] MNZ e MNN

W, t
\''5) t

{W} = 7{t} = . s (40)
Wy ty

where the vectors {w;} and {t;} are in the forms of
{ak ak b} ...ak, bi3T and {pk p* g ---pk q,}", respectively; the first
subscript “j” (j =1,2,...,N) in [Uy], [Tj], [Li] and [Mj] denotes the
index of the jth ellipse where the collocation point is located and
the second subscript “k” (k=1,2,...,N) denotes the index of the
kth ellipse where the boundary data {w,} and {t;} are specified
and M indicates the truncated terms of Fourier series. The coeffi-
cient matrix of the linear algebraic system is partitioned into blocks,
and each off-diagonal block corresponds to the influence matrices
between two different elliptical holes. The diagonal blocks are the
influence matrices due to itself in each individual hole. After uni-
formly collocating the null-field point along the kth elliptical
boundary, the submatrix can be written as

[Kim)  Kigom)  Kgy) - Kion)  Kie(m)
K(my)  Kigtny)  Kg(my) - KiOn)  Ki(n)

Kﬁf(’h) K}kc(’h) K}ks(”la) : K]l'\l/fk(’h) K,-",fs(ﬂa)

[[(Jk ] - . . . . . . ’

Kie (o) Kji(n)  Kig(na) - K (a) K (121)

_Kﬁf(”luq) Kjlkc(’?qu) Kjlks("lzul) K%C(’hul) K}I?(”ZLH)_

(41)
where K can be substituted by U, T, L or M. Although the matrix in
Eq. (42) is not sparse, it is diagonally dominant. It is found that the
influence coefficient for the higher-order harmonics is smaller. It is
noted that the superscript “0Os” in Eq. (42) disappears since
sin(0#x) = 0. The element of [Kj] is defined, respectively, as

Ky (n) = /B K(s, Xm) cos(nife) &dii, (42)

@WWZAM%MNW%mMm (43)
'k

where n=0,1,2,...,M, m=1,2,...,2M+1, and #,, is the angle
coordinate of the collocating points X,, along the boundary in the
elliptical coordinates. The physical meaning of the influence coeffi-
cient for Kj (n,) in Eq. (42) denotes the response at x,, due to
cos(nn) distribution.

3.5. Solution procedures and interface conditions

In the real computation, two problems in Figs. 2b and 3b are
solved by using the present formulation. For the exterior problem
of the matrix in Fig. 3b, we have

MW" —w} — [UY]{t" -t} = {0}, (44)

from Eq. (23). For the interior problem of each inclusion in Fig. 2b,
we have

T){w'} — [U']{t'} = {0}, (45)

from Eq. (19), where the subscripts “M” and “I” denote the matrix
and inclusion, respectively. The four influence matrices, [UM],
[TM], [U"] and [T'], are obtained from the degenerate kernels, while
{(wM}, (M}, {w'}, {t'} represent the coefficient vectors of Fourier ser-
ies. Based on the continuity of displacement and equilibrium of
traction between the interface of matrix and the kth inclusion as
shown in Egs. (6) and (7), we have
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{w} —{w'} = {0}, (46)
(ol {t"} + [ J{t'} = {0}, (47)
where
Bo O o 0 o O - 0
0 u - O 0 w - 0
= =] ] @
0 0 - 0 0 - op

in which po and gy are the shear moduli of matrix and the kth inclu-
sion, respectively. According to Egs. (45)-(48), we have a linear sys-
tem as follows:

™ -Uu" 0 o0 wH c
| 1 M
o o T Ut _Jof (49)
I 0 -10 w! 0
0 n 0 m t 0

where [I] is the identity matrix and {c} is the forcing term due to the
remote shear stress as shown below

{c} = M"H{w~} — U){t~). (50)

From Eq. (49), the unknown Fourier coefficients can be easily
determined.

4. Illustrative examples and discussions

4.1. Example 1: an infinite plane with an elliptical hole or an elliptical
rigid inclusion

The sketch shown in Fig. 6 is an infinite plane with an elliptical
hole under the remote shear. For this case, the analytical solution
of Smith [27] was obtained to verify the validity of our approach.
He obtained the solution of a circular case first. Then, the ellipse
in the z plane is mapped into the unit circle |¢| = Rg in the { plane
by using the conformal mapping as follows:
g:aﬁ:’b [z+(z2+c2)”2]. (51)

For the Neumann case without considering the dislocation, the
anti-displacement field can be described by

2

_naja+b . a+b Ry
w= RE{ZRO (Tae — 1Ty2)( + Ry (T +1Ty2) C}’ (52)

where Re{-} denotes the real part. We also consider the Dirichlet-
type case and the solution is represented by

Ty
© 6 0 o 66 O O

(a) or (b)

A
\ 4

O 6 0 66 66 ©

& & & & D b

e © & & & & ©

Fig. 6. An infinite plane with an elliptic inclusion under remote shears (boundary
conditions: (a) a hole (w = 0) and (b) a rigid inclusion (%% = 0).

8

T
-2 0 2

T

Fig. 7a. Contour plot of Smith’s solution (Neumann B.C.).

-2 0 2

e
1T

Fig. 7b. Contour plot of the present approach (Neumann B.C.).

2R0 2RO C

Now, the problem is revisited by using the present approach.
Here, we consider the Neumann boundary condition (¥ = 0) on
the hole first. As mentioned in Section 2, the problem can be
decomposed into two parts. One is the remote shear in an infinite
plane and another is the infinite plane problem with an elliptical
hole. Since

2
w= Re{a+b(TM _iTyz)éu—ib(fxz+i‘Eyz)&}~ (33)

ow  ow>

on  on

ow
= 0, (54)

the boundary condition of elliptic cylinder in an infinite plane is
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2] L Fig. 9a. Case A: An infinite plane with two elliptical inclusions under a remote
shear at x axis (Ty,=1).
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Fig. 9b. Case B: An infinite plane with two elliptical inclusions under a remote
shear at y axis (t,,=1).
0_ -
27 i Ta,v =1
-4 L
6 L y
-8
-8 8
Fig. 8b. Contour plot of the present approach (Dirichlet B.C.).
ow ow>* T T
_:__:_XZnX_Fﬂny
on on u u
C(Txs . o = T .
=- (—"z sinh écos 7] + -2 coshgsmn). (55)
IANT u
By comparing with Eq. (30), the Fourier coefficients are ob-
tained as ® Db b D b b b D D D
P = CT—XZ sinhE Fig. 9c. Case C: An infinite plane with two elliptical inclusions subject to an
1 ’ inclination angle under a remote shear (7, =1, one slant inclusion).
(56)

g, = ¢ cosh?, . . o
n After using the null-field integral equation in Eq. (23), the un-
Pn=G,=0, n#l. known Fourier coefficients are obtained as
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Fig. 10a. Normal stress distribution of case A (the present approach).
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Fig. 10b. Normal stress distribution of case A by Noda and Matsuo [21].

aop = arbitrary,
o ke E
a=p, = m csinh ¢, (57)
T -
b = q, :fccoshf.

For simplicity, we choose ag = 0. After obtaining unknown Fou-
rier coefficients and given boundary conditions, we have the sec-
ond-part solution

w(&n) = % e csinh (cosh & + sinh &) cos 7 + %e*c
x cosh &(cosh & + sinh &) siny, (58)

where & =tanh ' (b/a). Then, the total field can be obtained by
superimposing the two parts as follows:

w=w>+w
Ty Ty oy (N
= -—=ccosh¢cosy +—csinhésiny +-——e c
u u u
x sinh &(cosh & + sinh &) cos 17 + % e¢ccosh é(cosh &

+ sinh &) siny. (59)

Fig. 7a is the contour plot by using Smith’s solution in Eq. (52)
and considered 14, =0 and 7,, =1 after rotating 90° in a clockwise
way. Fig. 7b shows the contour plot for case of 7,,=1 and 7,,=0
by using the present approach. After comparing the two figures,
it is observed that our result matches well with the Smith’s
solution. Another rigid inclusion case (Dirichlet-type boundary
condition) is also utilized to verify the validity of the present
approach. In a similar way, we have the second-part field solution

_ T . . S Tyr s
w(En) = — fe*gc cosh &(cosh & + sinh &) cos i — Le~c
x sinh &(cosh & + sinh &) sin . (60)
3
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Fig. 11a. Tangential stress distribution of case B (the present approach).

3 pr— T T T T T T
. [ l ]
[ x ]

oL 2.0 5=1 T::c =1 _',
L © @ o} ]
- 1.0 2

1E Do -0 2
L @ i=2 5% ® 7

T z
tzM 0

) 2 V ]
i G1/Gu=2 A

,1_ oy
[ 5 ]
i G1/Gu =10

oL Gr/Gu=1 --- single ]
! inclusion J

<3 § 2 1 1 L 1 l L I h
0 90 180 270 360

f1(deg.)

Fig. 11b. Tangential stress distribution of case B by Noda and Matsuo [21].
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Fig. 12a. Normal stress distribution of case B (the present approach).
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Fig. 12b. Normal stress distribution of case B by Noda and Matsuo [21].

Then, the total field can be obtained by superimposing the two
parts as follows:

w=w>*+w
T Ty, . . Tz s
="ccoshécosn + -2 csinhésing — —Ze~“c
u u u
- < Ty, o = -
x cosh ¢(cosh ¢ + sinh &) cosn — fe*éc sinh &(cosh ¢

+sinh &) siny. (61)

Similarly, Fig. 8a shows the contour plot by using Smith’s solu-
tion [27] in Eq. (53) and considered t,, = 0 and 7, = 1 after rotating
90° in a clockwise way. Fig. 8b shows the contour plot for case of
Tx.=1 and 1,,=0 by using the present approach. Although the
solution forms between ours and Smith’s look different, good
agreements from contour plots not only in the Neumann problem
but also in the Dirichlet problem are made in real calculations.

4.2. Example 2: an infinite plane with two elliptical inclusions

The interaction problem of two identical elliptical inclusions in
an infinite plane with remote shears is considered. The shear mod-
uli of two inclusions are the same (u; = u). In this example, three
cases of different locations of two inclusions are considered in the
demonstrative examples as shown in Figs. 9a-9c. These cases have
been solved by Noda and Matsuo [21] by using the singular inte-
gral equation method. Lee and Kim [22] also revisited cases A
and B for the modulus ratios of 0.5, and 2.0 to verify their solutions
of the volume integral equation method. Besides, they also pro-
vided the results for modulus ratios of 0.25 and 4. For the case A
as shown in Fig. 9a, the normal stresses on the matrix surface of
the second inclusion with respective to different ratio of shear
moduli (uz/o=1, 2 and 10°) are shown in Fig. 10a. Also, the
single-inclusion case (u; = po) is considered by using the present
approach. After comparing with the results of Noda and Matsuo
as shown in Fig. 10b, good agreements are made. Fig. 11a shows
the tangential stresses on the matrix surface of the second inclu-
sion. After comparing with the results of Noda and Matsuo shown
in Fig. 11b, we found that our result deviates from Noda and Mat-
suo’s data when the ratio of shear moduli (/1o = 10%) is consid-
ered. However, our results compare well with those of Noda and
Matsuo for the other ratio of shear moduli (u/po =1, 2). When
the case p/uo =1 is considered, it can be seen as a special case
of an infinite plane without any holes or inclusions. Regarding
the deviation between the result of Noda and Matsuo and ours
for the modulus ratio of 10, the issue is open for discussion. For
the case B as shown in Figs. 9b, 12a and 13a show the normal stres-
ses and tangential stress, respectively, on the matrix surface of the
second inclusion with respective to different ratio of shear moduli
(12/p0 =1, 0.5 and 10~>). A single-inclusion case (1 = o) was also
taken into consideration. After comparing with the results of Noda
and Matsuo as shown in Figs. 12b and 13b, good agreements are
made. When the case p,/po=10"> is considered, it can be seen
as a special case of an infinite plane containing two holes. The last
case as shown in Fig. 9c is two identical inclusions and located on
the x-axis with different orientation. Fig. 14a shows the normal
stresses on matrix surface of the second inclusion with respective

3 "
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- G/Gp=0.5 B
C —  G/Gy=1 i

]| T (N [ G1/Gy=10 (single)
AN B Gy/Gyy=0.5 (single) s
— 4 n
- ‘ —
4
C 4 n
1 Z
— / n
— / n
— / n
T(Bz 0 B N -
— \ n
\ g

L AN 7 N
L \ \\ 2/ 7 N
A AN o ]
N \ _ e / —

N 7/
L N s 7
— ~ - 4 n
20— ]
| I E— — — ——

) 90 180 270 360
Angle (degree)

Fig. 13a. Tangential stress distribution of case B (the present approach).
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Fig. 13b. Tangential stress distribution of case B by Noda and Matsuo [21].

to different inclination angle (i = 0°, 30°, 60° and 90°). The results
of single-inclusion (u; = lo) are also shown in Fig. 14a. It is found
that our results are consistent with those of Noda and Matsuo after
comparing with Fig. 14b. Besides, we also found the description of
the inclusion size in the figure sketch is not consistency with the
figure caption in the paper of Noda and Matsuo [21]. Here, we
adopt the size description in the figure caption and compare our
results well.

In the all cases, the elliptical inclusions are not very oblate.
When elliptical inclusions become more oblate, the stress field
has a larger varying gradient near elliptical inclusions. The present
work is implemented by using the elliptical coordinates. When an
elliptical inclusion becomes more oblate, there is no difficulty for
the present approach. However, a larger number of truncation
terms of eigenfunction for more oblate case may be taken in the
semi-analytical approach.
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Fig. 14a. Normal stress distribution of case C (the present approach).
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Fig. 14b. Tangential stress distribution of case C by Noda and Matsuo [21].

5. Concluding remarks

We have successfully proposed a systematic method by using
the null-field integral formulation in conjunction with degenerate
kernels and eigenfunction expansion for solving the infinite plane
with elliptical holes and/or inclusions under remote shear. The fun-
damental solution was expanded to a degenerate kernel by using
the elliptical coordinates. Although Jacobian term may appear in
the degenerate kernel, boundary density and boundary contour
integral by using the elliptical coordinates, it can be cancelled
out in our formulation to preserve the orthogonal condition. Free
of calculating principal value of using the small circular bump
method is our advantage over the conventional boundary integral
equation. After employing the collocation method, the linear alge-
braic equation can be established and the Fourier coefficients are
easily determined although the addition theorems are mostly men-
tioned when they are used to analytically set up the system of
equations. Besides, our series solutions for the antiplane problem
are found to agree with the closed-form solution of Smith. The
present approach can be seen as an alternative, natural and logical
method to solve antiplane problems with elliptical boundaries. Be-
sides, its extension to three dimensional problems may be possible
if the degenerate kernel is available. Finally, a general program is
developed for the antiplane problem with elliptical inclusions of
arbitrary number, position, size and inclination angle. Good agree-
ment is made after comparing with those in the literature.

Acknowledgement

Financial support from the National Science Council under
Grant No. NSC-100-2811-E-019-001 for National Taiwan Ocean
University is gratefully acknowledged.

References

[1] Goree ]JG, Wilson HB. Transverse shear loading in an elastic matrix containing
two circular cylindrical inclusions. ASME ] Appl Mech 1967;34:511-3.

[2] Budiansky B, Carrier GF. High shear stresses in stiff-fiber composites. ASME ]
Appl Mech 1984;51:733-5.

[3] Steif PS. Shear stress concentration between holes. ASME ] Appl Mech 1989;56:
719-21.



294 Y.-T. Lee, ].-T. Chen/Composites: Part B 44 (2013) 283-294

[4] Zimmerman RW. Second-order approximation for the compression of an
elastic plate containing a pair of circular holes. Z Angew Math Mech 1998;68:
575-7.

[5] Gong SX. Antiplane interaction among multiple circular inclusions. Mech Res
Commun 1995;22(3):257-62.

[6] Chao CK, Young CW. On the general treatment of multiple inclusions in
antiplane elastostatics. Int J Solids Struct 1998;35:3573-93.

[7] Wu LZ. Interaction of two circular cylindrical inhomogeneities under anti-
plane shear. Compos Sci Technol 2000;60:2609-15.

[8] Steif PS. Longitudinal shearing of a weakly bonded fiber composite. ASME ]
Appl Mech 1998;55:618-23.

[9] Sendeckyj GP. Multiple circular inclusion problems in longitudinal shear
deformation. J Elast 1971;1(1):83-6.

[10] Honein E, Honein T, Herrmann G. On two circular inclusions in harmonic
problems. Q Appl Math 1992;50:479-99.

[11] Chen JT, Chou KH, Lee YT. A novel method for solving the displacement and
stress fields of an infinite domain with circular holes and/or inclusions. Acta
Mech 2011;218:115-32.

[12] Chou SI. Stress field around holes in antiplane shear using complex variable
boundary element method. ASME ] Appl Mech 1997;64:432-5.

[13] Mogilevskaya SG, Crouch SL. A Galerkin boundary integral method for multiple
circular elastic inclusions. Int ] Numer Methods Eng 2001;52:1069-106.

[14] Chen JT, Shen WC, Wu AC. Null-field integral equations for stress field
around circular holes under antiplane shear. Eng Anal Bound Elem 2006;30:
205-17.

[15] Chen JT, Wu AC. Null-field approach for the multi-inclusion problem under
anti-plane shears. ASME J Appl Mech 2007;74:469-87.

[16] Chen JT, Wu AC. Null-field approach for piezoelectricity problems with
arbitrary circular inclusions. Eng Anal Bound Elem 2006;30:971-93.

[17] Gong SX, Meguid SA. A general treatment of the elastic field of an elliptical
inhomogeneity under antiplane shear. ASME ] Appl Mech 1992;59:131-5.

[18] Gong SX. A unified treatment of the elastic elliptical inhomogeneity under
antiplane shear. Arch Appl Mech 1995;65:55-64.

[19] Ru CQ, Schiavone P. On the elliptic inclusion in anti-plane shear. Math Mech
Solids 1996;1:327-33.

[20] Shen H, Schiavone P, Ru CQ, Mioduchowski A. An elliptic inclusion with
imperfect interface in anti-plane shear. Int ] Solids Struct 2000;37:4557-75.

[21] Noda NA, Matsuo T. Stress analysis of arbitrarily distributed elliptical
inclusions under longitudinal shear loading. Int J Fract 2000;106:81-93.

[22] Lee J, Kim HR. Volume integral equation method for multiple circular and
elliptical inclusion problems in antiplane elastostatics. Composites-B 2012;43:
1224-43.

[23] Ting K, Chen KT, Yang WS. Boundary element alternating method applied to
analyze the stress concentration problems of multiple elliptical holes in an
infinite domain. Nucl Eng Des 1999;187(3):303-13.

[24] Kushch VI, Shmegera SV, Buryachenko VA. Interacting elliptic inclusions by the
method of complex potentials. Int ] Solids Struct 2005;42:5491-512.

[25] Kushch VI, Shmegera SV, Buryachenko VA. Elastic equilibrium of a half plane
containing a finite array of elliptic inclusions. Int ] Solids Struct 2006;43:
3459-83.

[26] Kuo H-Y. Electrostatic interactions of arbitrarily dispersed multicoated elliptic
cylinders. Int ] Eng Sci 2010;48:370-82.

[27] Smith E. The interaction between dislocations and inhomogeneities - I. Int ]
Eng Sci 1968;6:129-43.

[28] Kane JH. Boundary element analysis in engineering continuum
mechanics. NJ: Prentice Hall; 1994.

[29] Banerjee PK, Butterfield R. Boundary element methods in engineering
science. London: McGraw-Hill; 1981.

[30] Wrobel LC. The boundary element method. New York: John Wiley; 2002.

[31] Kellogg OD. Foundations of potential theory. Dover Publications; 1969.

[32] Mikhlin SG. Mathematical physics: an advanced course. Amsterdam: North-
Holland Publishing Company; 1970.



	Null-field approach for the antiplane problem with elliptical holes and/or inclusions
	1 Introduction
	2 Problem statement
	3 Dual null-field integral formulation
	3.1 Dual null-field integral equations – the conventional version
	3.2 Dual null-field integral formulation – the present version
	3.3 Expansions of fundamental solution and boundary density
	3.4 Linear algebraic system
	3.5 Solution procedures and interface conditions

	4 Illustrative examples and discussions
	4.1 Example 1: an infinite plane with an elliptical hole or an elliptical rigid inclusion
	4.2 Example 2: an infinite plane with two elliptical inclusions

	5 Concluding remarks
	Acknowledgement
	References


