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Abstract

Recent research has paid great attention to the exact calculation of physical values on and near the boundaries of
engineering problems. In the boundary element method (BEM), this problem demands special attention because
various kinds of singularity may occur when these values are calculated. Despite extensive research, this problem
has not yet been solved well. In the present paper, the elimination of various kinds of singular integrals in
displacement boundary integral equations and their derivative forms is studied in detail. Firstly, a modified
treatment which uses rigid body displacement solutions is introduced to calculate displacements near the boundary.
Then derivative formulations of the displacement boundary integral equations are deduced, which form the basis of
an investigation of the related hypersingular and nearly singular integrals. Similarly, a modified treatment, which
uses the unit displacement derivative solutions together with some general numerical techniques, is proposed for the
calculation of displacement derivatives on and near the boundary considered. Finally, strains and stresses are
obtained from the calculated displacement derivatives by the use of the compatibility and constitutive equations.
Numerical examples show that the proposed method is simple, regular and accurate in treating most singular or
nearly singular integrals in the elastic BEM. 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction indicating a significant singularity effect. In such cases,
conventional treatment causes calculation errors.
In the boundary element method (BEM) analysis, Furthermore, some physical variables on the boundary
effective calculation of the values on or near con- are also difficult to calculate directly by the conven-
sidered boundaries has received increased attention tional BEM. For example, stresses on boundaries in
because of practical engineering requirements. In the elasticity generally have to be calculated indirectly,
conventional BEM, interior values are usually calcu- which also causes considerable errors. To a certain
lated directly according to proper physical relation- degree, these shortcomings restrict the application of
ships, after the boundary unknowns have been the BEM.
obtained. However, as points of interest, or source Many researchers have contributed to overcoming
points, approach a boundary, the integral kernels will these difficulties. Ghosh et al. [1] proposed a boundary
fluctuate in the boundary elements close to the points, element formulation in which, instead of boundary dis-

placements, the displacement derivatives along a
boundary are chosen as the basic unknowns, in order
to reduce the singularity order of the boundary inte-
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for displacement and traction, respectively. This kind
of treatment provides a good approach for analysing
potential problems (e.g. fluid and crack problems) [3, 4],
three-dimensional (3D) problems [5] and fracture
problems [6,7]. Zhang and Lou [8] provided a treat-
ment for calculating stresses close to boundaries.
Wang et al. [9,10] proposed a particular solution
method to calculate stresses and displacements on and
near boundaries, which was developed further by Chen
et al. [I1] to treat elastoplastic problems. Guiggiani
and co-workers [12-16] presented several methods for
the direct evaluation of hypersingular integrals in the 2
and 3D BEMs. To summarise, these authors have
improved the calculation of values on or near con-
sidered boundaries in boundary element analysis by
attacking the problem from several different directions.
However, the problems have not been addressed com-
pletely. In the dual BEM, only smooth boundaries are
considered for the traction boundary integral
equations. The direct calculation approaches [8, 12-16]
are relatively complicated to implement. The indirect
approach [9,10] is inaccurate when calculating the
stresses for stress concentration problems, because
extreme inaccuracy occurs when calculated points are
very close to the boundary.

In the present paper, the situations of singular and
nearly singular integrals in displacement boundary
integral equations and their derivative forms are stu-
died carefully. A systematic treatment of these singular
and nearly singular integrals is presented for elastic
problems based on an indirect approach. As a prelimi-
nary step, the displacements near a boundary are dis-
cussed first, and the relevant nearly singular integrals
are determined indirectly by use of the rigid body dis-
placement solutions. Then the derivative formulations
of displacement boundary integral equations are de-
rived rigorously in a concise form, and corresponding
modifications are given to avoid the hypersingular inte-
grals which appear in the derivative boundary integral
equations. The modified method gives good accuracy
when calculating the higher order variables, i.e. displa-
cement derivatives, strains and stresses, on and near
the boundary. Compared with other direct or indirect
approaches, e.g. those in the previous paragraph, the
method in this paper is simple, regular and efficient in
treating most singular and nearly singular integrals in
the BEM. Hence, the method presented provides an
alternative effective treatment for the calculation of
values on and near boundaries, which could be used in
boundary element analysis.

2. Calculation of displacements close to the boundary

Once boundary unknowns, i.e. either the surface dis-
placements u; or the surface tractions p;, are obtained

for a domain Q that has surface I', the interior values
of displacements u; in elasticity can be calculated
from [17]:
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where uj; and p; are Kelvin's fundamental solutions
given by:
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for plane strain problems. Here, b{(x) are body forces;
¢ and x indicate source and field points, respectively; n
is the unit outward normal vector to the boundary; G
is the shear modulus; v is Poisson’s ratio; d; is the
Kronecker delta; and

r=Jriri, r;
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If the b{(x) are due to gravity, the body force integral
terms in Eq. (1) can be converted into surface integrals
to give:

j W&, X)bi(x)dQ = J fil&, x)dr,
Q r

where
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for plane strain problems and
1 |
Jil&. )= o [b,—r Ui Tyt ij]

for 3D problems. It can easily be seen from the above
that the gravitational integral terms do not have singu-
larities whether the source point ¢ is in the domain Q
or on the boundary I

Numerical analysis requires discretization of the
integral Eq. (1), such that it can be written in a matrix
notation as [17]
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u(¢) = GP — HU + b, (2)

where u = [uy, w]" or [uy, us, u3]" for 2- or 3D pro-
blems, respectively; U and P are boundary displace-
ments and tractions, respectively, taken at the
boundary nodes; b are the known body force integrals;
G = [gél' vy Begr ooy géN] and H = [hg], R héq, Ceey
h:y}; the sub-matrices ge, and hg, (g =1, 2, ..., N)
are both of order § x f; 8 is the dimension of domain
Q; and N is the total number of boundary nodes.

When ¢ is an interior point, the numerical integrals
in matrices G and H are all non-singular and can be
treated simply by Gaussian quadrature. However,
when ¢ approaches a boundary, singularity effects
appear gradually in G and H. This is why values calcu-
lated near the boundary by the BEM are generally
worse than values obtained at interior points.
Therefore, Eq. (2) should be modified for calculation
of values near a boundary. Analysis of the singularities
of the matrices G and H shows that the kernels to be
integrated in G have logarithmic singularities, which
can be eliminated even if ¢ is on the boundary.
However, the kernel functions in H are Cauchy singu-
larities, which have to be treated specially. Therefore,
if Eq. (2) is used to calculate displacements near the
boundary, the errors will be caused mainly by singular
integrals related to the matrix H. In particular, as the
source point & in Eq. (2) approaches any boundary
node, say node p, the integral errors in H will be con-
tributed mainly by the sub-matrix related to node p,
i.e. hg,. In this case, the sub-matrix h;, could be deter-
mined indirectly by applying the rigid body displace-
ment condition [17] to avoid the errors, i.e. if I is the
unit matrix,

by, = — I+Zhéq : (3)

4Fp

Numerical examples show that this treatment is better
than using direct integration for hg,.

For problems with unbounded area, an additional
term
lim J (U*P — P*U)drI
o dr,
should be added to the right-hand side of Eq. (2), in
which U* and P* are matrices composed of the funda-
mental solutions w; and pj;., see below Eq. (1). It can
be verified that this additional term becomes zero at
the limit for general load conditions. Therefore, Eq. (2)
is still valid for unbounded problems, except that the
rigid body displacement condition of Eq. (3) should be
modified to

N
hy, = — ) hy, )
a=1

qFP

3. Derivative formulation of boundary integral equations

To calculate the stresses at interior or boundary
points, derivatives of the displacements w; should first
be obtained. Consideration is now given to the partial
differentiation of Eq. (1) with respect to the interior
source point ¢ along coordinate x;, i.e.

(9] f aui(&, x) fap,*.(é, x)

= ——pi(0)dl — | —L———u(x)dr
@ = o PO e

ui(E, x)
+ | == b(x)dQ,
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or, in simplified form,
Uik :J i wp Al —J Prxwdl +J fikdr, (5)
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in which « = 1, § = 2 and y = 4 for plane strain pro-
blems, and « = 2, § = 3 and y = 5 for 3D problems.
The body force terms f;; in Eq. (5) is given by:

1

or 1
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1
—_ -1 [ 7 .
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for plane strain problems, and by

ik = 1 e = et = o = ra )|
for 3D probilems.

When the source point £ is on the boundary, integral
Eq. (5) should be modified because of singularities.
Therefore, consideration is now given to a small inden-
tation consisting of a hemispherical (or semicircular
for 2D problems) region with boundary point & as its
centre and € as its radius. The region intersects bound-
ary I on AT' and makes a cutting surface I',, as shown
in Fig. 1.
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L/

Fig. 1. Sperical (or circular) region around ¢.

By taking integrals along I' — Al + I',, with the
point ¢ as an out-of-domain point, Eq. (5) becomes:

lim [ (W5 4y — Pt + fra) AT =0 (6)
0 Jr_Arer,

where p; =0 as ¢ -0, and the corresponding
integrals are hypersingular, and so are difficult to treat
in numerical calculations. To reduce the order of the
hypersingular integrals of the second term of Eq. (6) to
that of the Cauchy principal value integrals of the first
term, Eq. (6) can be written as:

0
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+ lim J Piwi(€)dr — lim j fiedl
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=tim | G- ol — u@N dr
Jrear

+limJ fiwdl, (7)
—0Jr-ar

where 6,(¢) is the stress components at &. Since r = ¢
on I, dI' = 00", u—uf)—uA&)r,=0(7) and
p—0;{&n;= O(r;). Therefore, the first integral on the
left-hand side in Eq. (7) becomes zero as ¢ — 0. The
third integral on the left-hand side is also zero because
the surface traction resultants of the fundamental sol-
utions are zero on any enclosed boundary that
excludes the singular point £. The body force integrals
in Eq. (7) gives:

—0

limJ fixdl =0, limJ Jigdl = J Jiwdl
0 )r, r-ar r

Since pyit; AW 1 40,4E)n= O on I, the second
integral on the left-hand side of Eq. (7) can be written
as:

iy | 15 = ol = O 0. (8)
where the ¢ ;'kj/ will be called derivative free coefficients,
and are given in the Appendix for the case when the
source point ¢ is at corners on a boundary. For a
smooth boundary, they are simply

/ 1 Voik=j1

(@) = 5 dunn = [5 s ©
The only integral in Eq. (7) remaining to be deter-
mined is the first integral on the right-hand side, 7 say,
which is now shown to exist. Let

147,',/( = ;‘_’(P?;'k’ P;k = ;ﬁ‘ﬁ;k-
and let 7 be separated into the two parts
I=1+ I,

where
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Since pp(&) = O() and wuf?) — w, A= 0D, 1
is a weakly singular integral, which is absolutely con-
vergent, and equals —(f;,dI’ at the limit ¢— 0.
Furthermore, the integral 7, also exists and is bounded
because the ¢,(¢) and u;(¢) are constants on the
boundary I' — AI". To obtain I, a uniform stress field
with the constant stress components ¢,(¢) is con-
sidered. Under this condition, the following identity
equation exists

[ 10O = oEnar =0,
Comparing the above equation with Eq. (8) gives
12=c;kj/(é)u,-.;(é). Hence, the existence of the integral 7,
i.e. of I} and I, has been verified. Therefore, the de-
rivatives of the boundary integral equations when the
source point ¢ is on the boundary can finally be writ-
ten, by using Eq. (6) and all of the equations between
it and here, as:
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) = | i ar = | phuly — winar

+ J Jixdrl. (10)
r

4. Numerical treatment of singular integrals in derivative
boundary integral equations

After discretization and numerical interpolations,
the derivative boundary integrals of Eq. (10) can be
written in matrix notation as:

C(pw'(p) =GP —-HU+V, (11

where, U and P are the vectors of surface node displa-
cements and tractions of Eq. (2); u' = [uy.1, a2, 42,
u,5]" for 2D problems (8 = 2), or u’ = [e1.15 w20, U33,
Un 3, U2, U3y, U3, U2 s Ul.z]T for 3D ones (B = 3);
C'(p) is the singular free coefficient matrix of the de-
rivative BIE with order f°xf8% G’ = g - -SSR
g,yland H" =h},. ... h . ... h)\] are derivatives of
the matrices G and H of Eq. (2), so that sub-matrices
g,, and h; are all of order B>xp; p; indicates the
boundary node at which the source point ¢ is located,
g(=1. ..., N) is the number of a certain boundary
node; and b’ is the known derivative of the surface
vector converted from the body force integral. It can
be seen from Eq. (10) that the principal sub-matrix h,,
in H', which involves hypersingular integrals, can be
expressed as

N
/ !
hPI’ - Z rg

=1
g

(12)

which is simply the rigid body displacement condition
often used in boundary element analysis. Thus, the
direct numerical integrals of the hypersingular terms in
Eq. (11) can be avoided.

Matrix C” in Eq. (11) can also be obtained indirectly
by applying a set of unit derivative displacement fields
to Eq. (11). By observing the linear transformation re-
lationships that exist between the derivatives of displa-
cements and the surface tractions, the principal block
g,,P,, in G'P can then be absorbed into C'w'( p), which
avoids the direct numerical calculations of the Cauchy
principal integrals in G’. In this way, the derivative free
coefficients can be expressed as:

N
=) g, P, - U 13

q=1
aEn

where P;, and U, are the traction and non-rigid move-

ment displacement matrices at the boundary node ¢,

respectively, under the action of a set of unit displace-

ment derivative fields, and are given by:
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for 3D problems, where r,=x{q)— x(h), and ¢ is the
boundary node at which the field point v is located.

To obtain the off-principal sub-matrices g, and h,,
in G’ and H’, singular integrals must be evaluated nu-
merically. To do so, a polar coordinate transformation
technique should be introduced among the boundary
elements around the singular point p. For 3D pro-
blems, for instance, the general distorted quadrilateral
boundary elements connected to the singular point p
can be firstly transformed into simple square elements
with unit side length, and then should be further ima-
ginarily divided into several triangular elements, as
shown in Fig. 2. Each triangular element, say pl2 in
Fig. 2, in the Cartesian coordinate system (5, {) can
then be transformed into a sector in a polar coordinate
system (p, 6) by using proper transformation relation-
ships, ie. n = p and { = pO for triangle pl2. Since
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N v
N ’
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N 7
~ 4
~ -,
~ rd
~ ’
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~ s
~ ’
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d N
s ~
d ~
7 N
. ~
N

Fig. 2. Transformations of the boundary elements connected
to singularity point p.

<
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both n and { vary between 0 and 1, the variables p and
0 must also vary in this range. With this coordinate
transformation, the corresponding Jacobian determi-
nants, among the elements connected to node p, are
|/ = an.0)/8(p.0) = p = O(r), which cancel the first-
order singularities which previously existed in the
boundary element integrals connected to the singular
point p.

With the general treatments given above, all the
singular integrals in the integral Eq. (11) can be evalu-
ated effectively, and the errors caused by direct nu-
merical calculation of singular integrals can be
avoided. This is particularly significant when calculat-
ing the derivative BIEs, which contain integrals of
higher order singularity.

For problems with infinite boundaries, an additional
term should be added in Eq. (11), as indicated between
Eqgs. (3) and (4) in the second section. The limit of this
additional term is zero under general load or rigid
movement fields, but is equal to the unit displacement
derivative under a unit displacement derivative field.
Therefore, Eqgs. (11) and (12) are still valid for infinite
problems, with Eq. (13) modified to become:

N
€= g Py =~ Uy +1. (14)

YEP

5. Numerical treatment of displacement derivatives at a
point close to a boundary

When the source point ¢ is in the domain, the dis-
crete derivative boundary integral Eq. (11) can be
reduced to

w(E) =GP-HU+YD, (15)
in which all numerical integrals are non-singular and

can be treated simply by ordinary Gaussian quadra-

Table 1

T T T T T 1T 2x
DEFG H

Fig. 3. Thick-walled cylinder subjected to internal pressure.

ture. However, as ¢ approaches the boundary, the inte-
gral kernels in Eq. (15) will fluctuate violently in the
boundary elements close to point ¢, demonstrating a
significant singularity effect. In this case, the direct use
of Eq. (15) will cause a large calculation error. To
reduce the singularity effect, Eq. (15) must be modified
according to the previous section to give:

C'(EW'(E) =GP-HU+V, (16)

which has the same form as Eq. (11). However, here ¢
is an interior source point close to the boundary and
C’'(&) could be called a singularity effect matrix, which
is introduced to adjust the deviation of the coefficient
matrices, i.e. G’ and H’, caused by the singularity
effect of the boundary layer. Matrix C'(£) can be cal-
culated from Eq. (13), but with its point p replaced by
the interior point &, and with the term with subscript
g = ¢ included in the summation, i.e.

Boundary node stresses for thick-walled cylinder of Example 1 calculated by the
method presented, with the exact results of Ref. [18] shown in brackets

Solution
node a1 022 12
A 19.472 (19.048) 19.472 (19.048) —118.830 (—119.048)
B —39.831 (—40.476) 78.905 (78.571) —102.960 (—103.098)
C —83.325 (—84.051) 123.590 (122.146) —59.084 (—59.524)
D ~100.430 (—100.000) 137.150 (138.095) —1.599 (0.000)
E —57.623 (—57.143) 94.577 (95.238) —0.441 (0.000)
F —33.967 (—33.862) 71.491 (71.958) ~0.081 (0.000)
G —19.895 (—19.825) 57.539 (57.920) —0.013 (0.000)
H 0.048 (0.000) 38.013 (38.095) 0.174 (0.000)
I 18.918 (19.048) 18.918 (19.048) —18.938 (—19.048)
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Fig. 5. An infinite plate with a hole subjected to uniform tensile stress at infinity, showing only those nodes at which results are

given.

C©) =3 (g,P, -~ h,U,). a7
1

q=
Therefore, the corresponding sub-matrix in G'P of
Eq. (16) no longer needs to be separated. Other tech-
niques for eliminating singular effects used in the pre-
vious section should still be used here.

For infinite problems, the above treatments are also

available. except that Eq. (17) should be modified to:

N
C@E =) (g,/P,-hU)+L (18)

g=1
As soon as the derivatives of the displacements at any
point in the domain or on its boundary are obtained
by the method suggested above, the strains at any
point can be calculated according to the displacement—
strain relationships

1
G = 5(“:‘,/ + ;). (19)

and stresses can then be obtained from the stress—

Table 2

strain relationships

’

0 = Guij + uy) +

5
1 -2y (20)

U 10y

6. Numerical examples

Two examples taken from Ref. [18] are given to
show the validity of the treatments given above, for
which the elastic modulus £ = 200 GPa and v = 0.25.
The cubic spline interpolation is introduced on the
boundary elements and the impractical numbers in the
examples (very large size with low loads) are unimpor-
tant because the problems are both linear.

6.1. Example 1

A long thick-walled circular cylinder has an inner
radius of 10 m, and an outer radius of 25 m. It under-
goes plane strain deformation due to an internal press-
ure, 100 Pa. Fig. 3 shows the problem and its
discretization.

Hole boundary node stresses for infinite plate with hole of Example 2 calculated
by the method presented. with the exact results of Ref. [18] shown in brackets

Solution

node a1 022 G2

A 2.997 (3.000) 0.004 (0.000) 0.000 (0.000)
B 2.549 (2.549) 0.185 (0.183) —0.680 (—0.683)
C 1.503 (1.500) 0.501 (0.500) —0.862 (—0.866)
D 0.507 (0.500) 0.500 (0.500) —0.497 (—0.500)
E 0.009 (0.000) 0.001 (0.000) 0.002 (0.000)
F —-0.039 (—0.049) —0.679 (—0.683) 0.184 (0.183)
G 0.010 (0.000) —-0.997 (—1.000) 0.000 (0.000)
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Fig. 6. Displacements u, ans u,, strains ¢;, ¢;» and —¢;; and —u;; on and near the boundary of the hole, measured along line OD
of Example 2, see Fig. 5. Key: —exact {18); [J calculated directly; A from Ref. [10]: and x method presented.

Table 1 gives stresses calculated by the modified
method given above at the boundary points shown in
Fig. 3. The results compare well with the exact
ones [18] also given in Table 1. Fig. 4 shows a set of
comparable results for displacements, stresses and
strains near and on the inner boundary along the line
OI shown in Fig. 3, for which, because of symmetry,
on =0y and cp=3u 2+ uz1) = Ui

It can be seen that there is excellent agreement
between the results obtained by the proposed method
and the exact ones, whereas the results obtained by the
conventional BEM treatment, i.e. by direct calculation
with inner point formulations without any modifi-
cation, are very inaccurate as the point considered gets
close to the inner boundary. It can also be seen that
the strains and stresses, which involve derivatives of
the displacements, have much larger errors than do the
displacements.

6.2. Example 2

An infinite plate with a hole of radius 10 m is sub-
jected to a uniform tensile stress of 1.0 MPa at infinity,
see Fig. 5.

Table 2 gives the stresses calculated by the method
presented and by the exact method [18], which can be
seen to be in good agreement. Fig. 6 shows a set of
comparable results given by four different methods.
Again, it can be seen that there is excellent agreement
between the results of the proposed method and the
exact ones, even close to the boundary considered
(indeed, in the limit the proposed method gives good

results even at the boundary itself). Since stresses and
strains both involve first derivatives of the displace-
ments and can be expressed in terms of each other by
the constitutive relations, for simplicity results for
stresses are not plotted. Three of the graphs of Fig. 6
give the results calculated by the method of Ref. [10],
which can be seen to have considerable errors for ¢,
and ¢, close to the boundary. The curve for —¢,> can
be obtained as %(u1‘2+u2‘|), The two parts of the shear
strain, #,> and u»,, can be separated by the present
treatment and this may be quite important when calcu-
lating the J integral of fracture mechanics.

X

Fig. 7. Tangents at a corner node.
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Table 3

Parameters (l}kf, for derivative free term coefficients

12

21

11

ikl

sin®0 — 2sin*

S—4v
2

~ sin%0 — 2sin*0

7_— 4y
2

sin 46

!
1

5
l;(rl"“;; §in20 —
—2v

i
1 sin40

sin 20 +

2

3~ Tv+4v
2(1 —2v)

2001 — v) +

11
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sin’6 + 2sin*0

I +4y

sin?@ + 2sin*0

3+4v

1
i sin 40

sin 20 +

3—Tv+ 4
2(1 —2v)

2001 —v) +

- 2
L+v—dv sin20—% sin40

2(1 - 2v)

sin 40

. 1
sin26 — 3

4y

5—

3—-4v

201 —v) +

sin?0 + 2sin'6

2—v—&?

sin 260 — % sin 46

sin?8 — 2sin*6

2

P

2-5v 44
1-2v

1—2v

sin 40

!
a

sin 260 —

3 -4y
4

2001 —v) —

sin 20 — ‘—11 sin 460

—5+4y
2

sin6 + 2sin*0

1-2v

24 Tv— 47

sin”0 — 2sin*0

6 — 13v + 4?2
12y

7. Conclusions

The present paper has given a derivation of the de-
rivative formulations of displacement boundary inte-
gral equations, including the corresponding treatments
needed to avoid the hypersingular integrals usually
present in the derivative boundary integral equations.
The resulting method is an effective way to calculate
displacements, strains and stresses on and near bound-
aries. Hence, problems often encountered in the con-
ventional BEM calculations are overcome. Numerical
examples show that this modified method has a higher
computational accuracy when compared with other nu-
merical methods for calculating the variables on and
near the boundary considered. Therefore, the method
proposed in the paper provides an important modifi-
cation to the conventional BEM. It makes the calcu-
lation of variables on and near boundaries both easy
and accurate, which is of significance for practical ap-
plications of the BEM.
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Appendix A

A.l. Appendix: derivative free term coefficients ¢y,

In this Appendix, the free term coeflicients of the de-
rivative boundary integral equations at corners are
given for plane strain problems. Let & be a general cor-
ner node on a boundary and let 6, and 8, be the
angles between the x-axis and tangent vectors at the
corner, respectively, as shown in Fig. 7. The considered
free term coefficients can be expressed as:

r_ 1 ’ 02
Cit = mdfk// 0,

in which the @}, are functions of ¢ given in Table 3.
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