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In this chapter we investigate local errors and condition numbers in the BEM.
The results of these investigations are important in guiding adaptive meshing
strategies and the solvability of linear systems in the BEM. We show that the
local error for the BEM with constant or linear elements decreases quadratically
with the boundary element mesh size. We also investigate better ways of
treating boundary conditions to reduce the local errors. The results of our
numerical experiments confirm the theory. The values of the condition numbers
of the matrices that appear in the BEM depend on the shape and size of
the domain on which a problem is defined. For certain critical domains, these
condition numbers can even become infinitely large. We show that, this holds for
several classes of boundary value problems and propose a number of strategies
to guarantee moderate condition numbers.

10.1. Introduction

The subject of errors in the boundary element method (BEM) is still a
very interesting one and some aspects have not yet been as explored as
they have been in other numerical methods like the finite element method
(FEM) and the finite difference method. Errors in BEM solutions may be
due to discretization or to inaccuracies in the solver that involves the use
of BEM matrices with high condition numbers. For a given discretization,
there are several ways to implement the BEM because of the choice in
collocation and nodal points. These will all influence the resulting error
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in the solution. In most cases where error measurement has been performed,
like in adaptive refinement, the main focus has been a measure of the
error rather than a fundamental analysis of the error and its behaviour,
This chapter presents recent results on such fundamental analysis on
local errors in BEM solutions. The results presented will not only be
helpful in choosing an implementation strategy but also in gniding adaptive
refinement techniques.

Several techniques have been used to measure BEM errors in the
area of adaptive refinement. For instance, the discretization error is
estimated by the difference between two solutions obtained using different
collocation points but the same discretization.! Another technique uses
the first (singular integral equation) and the second (hypersingular integral
equation) kinds of formulation to provide an error estimate.2 Data from
the first kind of equation is substituted into the second kind to obtain
a residual which is then used to estimate the error. Some authors have
used a posteriori error estimation in FEM as a guiding tool to develop
error estimates for the BEM.3 Unfortunately, such techniques are usually
restricted to the Galerkin BEM. In our case, we would like to start from
the basics of the boundary integral equation (BIE) discretization to develop
error analyses for collocation BEM for potential problems. Though the ideas
could easily be adapted to 3-D, we will discuss 2D problems and the Laplace
equation in particular.

It is well known that the Laplace equation in differential form with
either Dirichlet or mixed boundary conditions has a unique solution.
However, when the Laplace equation is transformed to a BIE it is not
straightforward that this carries over to the BIE. It is noted that the BIE for
the Dirichlet Laplace equation does not always have a unique solution. 7
Certain domains can be distinguished on which the BIE becomes singular
and a non-trivial solution of the homogeneous equations can be found.
A multiple of this solution can be added to the solution of the non-
homogeneous equations, which is then no longer unique. For each domain
there exists exactly one rescaled version of this domain for which the BIE
becomes singular. This introduces an extraordinary phenomenon for the
BIEs; uniqueness of the solutions depends on the scale of the domain.

After discretization of the boundary of the domain, the BIE transforms
into a linear system of equations. When the BIE is singular,” one may
expect that the linear system is also singular, or at least ill-conditioned.
This is reflected by the condition number of the system matrix. If this
condition number is infinitely large, then the linear system is singular.
As a consequence, the linear system does not have a unique solution. If the
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condition number is not infinitely large, but still large, the linear system
is ill-conditioned and difficult to solve. Hence the condition number also
greatly affects the local error in the BEM solution. Note that it is a matter
of taste to decide what ‘large’ means in the context of condition numbers.

The domains on which the BIE does not have a unique solution are
related to the so-called logarithmic capacity. The logarithmic capacity is a
real positive number being a function of the domain. This concept originates
from the field of measure theory, but it also appears in potential theory. The
concept of a capacity applied to a single domain may be a bit confusing,
as usnally the electrical capacity is defined as a charge difference between
two conducting objects. The logarithmic capacity, however, is related to a
single domain.

In potential theory, it is shown that when the logarithmic capacity of a
domain is equal to one, then the homogeneous BIE for the Dirichlet Laplace
equation on the boundary of that domain has a non-trivial solution.® 19
This allows us to a priori detect whether a BIE will become singular on a
certain domain. Namely, we have to compute the logarithmic capacity and
verify whether it is equal to one. Additionally, the logarithmic capacity also
enables us to modify the BIE such that it does not become singular. We can
scale the domain in such a way that its logarithmic capacity is not equal
to one. The BIE on the corresponding boundary will then be nonsingular.

The BIE for the Laplace equation with mixed boundary conditions did
not receive much attention until now.!! However, a similar phenomenon as
for the Dirichlet case takes place for mixed conditions. For each domain,
there exists exactly one rescaled version of this domain for which the BIE
becomes singular. In this chapter, we investigate both the BIE for the
Laplace equation with Dirichlet conditions and mixed conditions and the
related linear systems. We also extend the research to flow problems in
particular to BEM solutions of the Stokes equations.

This chapter is outlined as follows. Section 10.2 gives a recapitulation
of the BEM formulation. An outline of the integral equation formulation
for a Laplace problem and its discretization is presented. In Section 10.3,
we present a discussion on local errors in the BEM and give the theory
for the expected convergence rates of the local error for both constant and
linear elements. Numerical examples and results for a Dirichlet and mixed
problem are presented to illustrate the theory. Then a general insight into
the various ways to implement the BEM on a circle is presented.

In Section 10.4, we give a number of illustrative examples of BEM
matrices with large condition numbers. This motivates us to study the
condition numbers of BEM matrices in potential problems in Section 10.5.
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It is shown that these condition numbers may become infinitely large under
certain conditions. This is also true for the condition numbers of BEM
matrices in flow problems, which is the topic of Section 10.6. The chapter
is concluded with a discussion of the results presented.

10.2. BEM Formulation for Potential Problems

In this section, we briefly present a BEM formulation. This, we do here
only for potential problems but we will generalize it to Stokes equations
in a later section. The BEM is used to approximate solutions of boundary
value problems that can be formulated as integral equations. For the sake
of clarity, we consider potential problems governed by the Laplace equation
on a simply connected domain  in 2D with boundary I'. That is

Viu(r) =0, req. (10.1)

We will consider problems for which either the function u (Dirichlet) or its
outward normal derivative ¢ := du/dn (Neumann) is given on T, or the
mixed problem where on one part of the boundary w is given and on the
other g is given. The integral equation formulation of (10.1) reads

cu+Klu=Kq rel (10.2)

Here, K* and K? are the single and double layer operator, defined as
(a)r) = [ ar)Glrsr'yar,
(Ku)(r) : = /u(r’)—a—-(;‘(r; r)dly, (10.3)
r 31'?."

where r and 7’ are points at the boundary and n' is the unit outward
normal at ' at I'. The function G,

N 1
Grir') = E;log =
is the fundamental solution for the Laplace equation in 2D. The constant
e(r) = 1/2 if T' is a smooth boundary at r. Thus (10.2) expresses the
potential at any point » in terms of its values u(r’) and the values of its
outward normal derivatives g(r’) on the boundary. Some of this information
will be given as boundary conditions and the rest has to be solved for. We
note that the most important step of BEM is to approximate the missing
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Fig. 10.1. A BEM discretization in which a polygon of rectilinear elements is used to
represent a circular boundary.

boundary data as accurately as possible since the final step of computing
the unknown function in ) is merely a case of post-processing.

In a BEM discretization, the boundary I is divided into N partitions I" 3
such that U}_,I'; = I'. Each I'; is then represented by a numerical boundary
Sj (see Fig. 10.1 for a two-dimensional case of rectilinear elements). Then
on each 5;, the functions u(r’) and g(r') are assumed to vary as the
so-called shape functions. Let us denote these shape functions by f, (&)
and f,(£), respectively, where £ is a local coordinate on S;. For instance,
fu(€) and f, (&) are constant functions in the case of constant elements and
linear functions in the case of linear elements. Thus, the discretized integral
equation is

- ’ aG gl = gt '
clrutr) + 3 [ e triryds =3 / Gl fa(r)ds
(10.4)

where r; is a node on the 7-th element.

At this stage we would like to note two important sources of numerical
error. First, replacing the physical boundary by a numerical boundary and
second, representing the unknown functions by shape functions. The local
error should be a measure of how well the solution satisfies the original
integral equation on each element. In some geometries or discretization
S;j =T'j, thus eliminating one inherent source of error. The size of the local
error will be small depending on how well f,(£) and f,(£) represent the
original functions. Errors may also be due to integration and discontinuities
at element boundaries but these can be reduced to negligible amounts by
using suitable techniques. The integral equation (10.4) is written for N
collocation points r; and boundary conditions are appropriately applied to
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obtain a linear system of equations
Ax =D, (10.5)

where X is a vector of the unknown values of cither u or ¢ at the boundary.

10.3. Local Errors in Potential Problems
Consider a Dirichlet problem given by,

{VQu(r) =0, req,

u(r) =g(r), rerl. (10.6)

The unknown in this case is the outward normal derivative g(r’ ). Thus,
what we want to solve for using BEM are the values of the normal flux at
the boundary I'; Thatis, x = q = (g1 q2 --- qN)T, a vector of the unknown
values of g(r') at the boundary. Here we have introduced the notation

u(ri) =tu; and g(r)) =: q.

Let q:= (¢1 G2 - (}“N)T be the corresponding BEM solution and let g* :=
(¢F a5 --- q};-)'{ denote the exact solution at the corresponding nodes. The
global error e is defined as

e:=q —4, (10.7)
that is, pointwise,
f:’.j = (}; S (}j.

In order to advance our error investigations, let us define the exact values
of the integrals on the j-th element from source node i as

B [ B .
I ::/ G(r;;r)q(r") dr. (10.8b)
Ly

Let us also define the corresponding numerical estimates of (10.8) in the
BEM as

= n9G ,
I = [53‘ fulr )%;(*r'.;;r")db: (10.9a)

= [ Glrisr)fyfryas. (10.9b)
5;
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We then define the two contributions to the local error on element 5 due to
source node ¢ as

di; = I}, — Ifj, (10.10a)
d, = fg;. - (10.10D)

The total local error on element j due to source node 1 is
dij = gj + d;} (1(]11)

The cumulative local error for the i-th equation due to contributions from
all the elements is therefore given by

N

N
SN Y (10.12)
j=1 3=1

Consider the right-hand side of the system (10.5); if we were to compute
the vector b exactly, then the i-th component would be

b;p =G Zf ——('P“T‘)Cﬂ_‘

The one we actually use in the BEM is

b =S [ 1) Sty as
=1y on

Let us define

- & T 0B
ob = b — b; = —Z A —a};{m;r Ju(r')dl

+Z/ Fu

The local error in (10.12) can therefore be expressed as

Zdu. (10.13)

1,'.‘

N
d; = 8bs+ Y _df;. (10.14)
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If the right-hand side is evaluated exactly, then db; = 0 and the error (10.12)
would be

N
=5 (10.15)
Jj=1

Now, we will asses further the behaviour of these local errors.

Theorem 10.1. The error in constant elements BEM is second order with
respect to grid size.

Proof. We need to show that the local error is third order in grid size.
Take the case of an element with a Dirichlet boundary condition where the
unknown is g(r’). Consider the integral (10.8b), that is

o / Glrir el . (10.16)
Let I; be the length of S; and £ be a local coordinate on S; such that
—li/2< €< 1;/2.

Then (10.16) is transformed and evaluated in terms of &. Let & be the
midpoint of S;. Suppose we have a Taylor series expansion of ¢(£) about
&;, that is,

a(6) = a(es) + 1€~ &)+ L g g+ e g0
(10.17)
Then, if we use (10.17) in (10.16), we have
/2 /2
ontly= [ mir@lateac+ [ bl 6)6 ~ &)
i:/2 e
s [ @ e - e 1018)
—l3/2
where
r(€) = [lrs — ' (II.
In constant elements BEM, we only use the first term, that is,
’ | flal2 .
g [, blr©la) (10.19)
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So we have a truncation error whose principal term is the second term on
the right of (10.18). Let us consider the following integral of this term,

L;/2
e ] &) )€ — &) . (10.20)

=t

We note that
ro=rE=—U/2) ST Sr=r(E=1/2).  (1021)

We assume that r; is far enough such that r(¢) remains nonzero. The
distance r(£) can be expanded about the point &; as

r(§) = (&) +r'(6)(€ — &) + O((€ - &)%) (10.22)
We introduce the definitions

po = r(&),
P15,

so that we can write (10.22) as
#(e) < ps (1 + 2 eﬂ) +0((6 - &)?).
Then
Infr(€)] = In(po) + %(f — &)+ O((¢ — &)).

The integral I can now be evaluated as

li/2 I;/2
= [ mr@IE-gd= [ mioe-g)a

—Ej

/2 & % ik g8 o
¢ [ . |2-6)+0te-e))] €-)ae. 0y

Since we use the midpoint as &;, the first integral on the right of (10.23) is
zero so that we remain with

1;/2
B ] PLic— &) de +O((€ — )", (10.24)
~1;/2 Fo
Then using the mean value theorem,
Iy ~ %(g — &Vl Ce(=l/2, 1;/9). (10.25)
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For &; a midpoint of S

[~ & L 52, (10.26)
Putting (10.25) and (10.26) together we have
3

i
2l < o /pol,

which is third order in grid size. This shows that constant elements BEM
can be expected to be of second order. |

Theorem 10.2. The error in linear elements BEM is second order with
respect to grid size.

Proof. Likewise, we need to show that the local error is third order in grid
size. In linear elements, the unknown function is assumed to vary linearly
on the element, that is,

q(§) ~ p1(€) == ap + as&,

where ag and o, are constants and £ a local coordinate on S;. The error in
this case is due to the error when we interpolate by an order one polynomial
which is given by!?

a©) -m© = LR - e0)e-&), ne ).
Using this result, the local error in BEM will be
1 [lul?
Ba =g |, Rl @d n)(e - e -6 (10.27)

where & and & are the interpolation coordinates. Again using the second
mean value theorem, we have

In 1 L) 2
By~ 2O [P e gy ae

/2
3

= 5= Wl (B)lg" (), (10.28)

where &, = —1;/2, & = 1;/2 and 8 is an intermediate point. This result
shows that linear elements BEM can be expected to be of second order. [
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10.3.1. Numerical examples

In this section we will perform numerical experiments to illustrate the above
claims about the error. Results show that indeed we obtain second order
convergence of the error. Our experiments are performed on a circle which
rules out the errors caused by discontinuities at corners in other geometries
like a square. It would be a natural choice to work on a unit circle but in
our examples we avoid this choice for reasons that will become clear in later
sections.

Example 10.3.1. Consider the boundary value problem

{V2u{r) =0, reQ:={rek?:|r||<1.2},

u(r) =g(r), rel. (10.29)

The boundary condition function g(r') is chosen such that the exact

solution is

(v —r)-n(r')
|lr" — 7| |2

q(r') = , (10.30)
where the source point r, = (0.36, 1.8) is a fixed point outside €2 and n(r’)
is the outward normal at r’.

We will use this example to verify the results of theorems 10.1 and 10.2.
Since we have the analytic expression for the unknown g(r') we can compute
the global error in (10.7). As we see in Tables 10.1 and 10.2, the results show
that indeed the error for both constant and linear elements exhibits second
order behaviour.

In Table 10.1, we discretize as in Fig. 10.1 using an inscribed regular
polygon of N sides. We refine by a factor of three because we are using
constant elements with the midpoints as nodes and we would like to
compute the pointwise error as shown in the second column. For a better

Table 10.1. Errors to the Dirichlet problem (10.29) using
constant elements BEM with rectilinear elements.

i e = |g; — 4] llella/VN  e;(N)/e;(3N)
5 6.57E-02 2.80E-01 8.66
15 7.58E-03 3.53E-02 9.43
45 8.04E-04 5.40E-03 9.12
135 8.82E-05 6.58E-04 9.04
405 9.76E-06 7.53E-05 9.01
1,215 1.08E-06 8.45E-06 9.00

3,645 1.20E-07 9.42E-07 ==
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Table 10.2. Errors to the Dirichlet problem (10.29)
using linear elements BEM.

N e =|g; — @l |lell2/vVN  e;(N)/e;(3N)

5 1.39E-02 1.29E-01 70.1

15 1.98E-04 2.11E-02 12.9
45 L.53E-05 4.89E-03 10.7
135 1.42E-06 6.07E-04 9.6
405 1.47E-07 7.00E-05 9.2
1,215 1.59E-08 7.88L-06 9.2
3,645 L.72E-09 8.79E-07 ==

comparison, we use the same refinement factor for linear elements as well,
Both the pointwise error and the median 2-norm of the error show the same
trend of error convergence. The pointwise error is computed at the point
v’ = (-0.370820,—1.141268) on the circle. As we can see from the ratios of
consecutive errors, the convergence is second order.,

A discretization using arcs instead of rectilinear elements as shown in
Fig. 10.2 gives similar results, see Table 10.3.

p_o_j

Iy

Fig. 10.2. A BEM discretisation of a circle usilng circular arcs.

Table 10.3. Errors to Dirichlet problem (10.29) when we
use constant elements BEM with circular arc elements.

N lejl = lg; =@l llelle/vN  e;(N)/e;(3N)
5 5.54E-03 1.44E-001 13.6
15 4.06E-04 1.25E-002 10.8
45 3.TTE-05 2.55E-003 9.6
135 3.94E-06 3.55E-004 9.2
405 4.28F-07 4.21E-005 9.1
1,215 4.72E-08 4.78E-006 9.0

3,645 5.23E-09 5.34E-007 —=
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Example 10.3.2. Consider the Neumann boundary value problem

{\ﬂu(r) =0, reQ:={relk?:|r||<1.2},

g(r) =h(r"), brel. (10.31)

The boundary condition function h(r') is chosen such that the exact
solution is

u(r’) = log (||r" — rsl|)s (10.32)

where the source point r, = (0.36,1.8) is a fixed point outside Q and n(r’)
is the outward normal at #'. In the implementation, a Dirichlet boundary
condition is prescribed at the last node j = N as a remedy to obtain a well
posed problem. So, in actual sense, we solve a mixed boundary problem.
We also compute the pointwise and median 2-norm errors and the results
are shown in Table 10.4. The convergence behaviour is the same as that for
the Dirichlet problem. Both errors show a second order convergence as we
can see from the ratios of consecutive errors,

10.3.2. A detailed study of local errors

As mentioned earlier, the freedom to choose collocation points for a given
discretization suggests that there are several ways to implement the BEM.
In this section we survey the possibilities but restrict ourselves to a circular
domain.

Suppose we use rectilinear elements to discretize the circle such that the
numerical boundary is a polygon like the one shown in Fig. 10.3. Besides,
the way we treat the boundary conditions is also very important as we will
see in the survey that follows.

In the usual constant elements formulation, the nodes are the midpoints
of the elements and also function as the collocation points. For the

Table 10.4. Errors to the mixed (one Neumann boundary
node) problem using constant elements BEM.

N lesl = |uf — a5 |lell2/VN  e;(N)/e;(3N)
5 1.39E-01 4.66E-01 23.5
15 5.92E-03 2.25E-02 13.0
45 4.55E-04 2.88E-03 8.7
135 5.24E-05 3.27E-04 8.9
405 5.89E-06 3.65E-05 9.0
1,215 6.57TE-07 4.07E-06 9.0

3,645 7.31E-08 4.52E-07 —
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po_]

Fig. 10.3. Discretizsation of a circle by a six element polygon.

on S
r. onTy

Fig. 10.4. Numerical representation of boundary points; 7} the exact point and 7| its
numerical representation.

discretization shown in Fig. 10.3, the numerical boundary does not coincide
with the physical boundary and therefore we can talk of exact points !
and their numerical representations 7, as shown in Fig. 10.4. Since our
goal is to come up with a proper understanding of (local) errors for the
BEM, we would like to explore the various possibilities we have to choose
the collocation points and nodes. These possibilities are summarized in
Table 10.5.

As mentioned earlier, it is important to differentiate between nodal
points (the points used to approximate the functions) and the collocation
points (the points where the integral equation is applied). Nevertheless, the
boundary condition on S; shown in Fig. 10.4 is u(r/). We consider again the
Dirichlet problem, (10.29), and compute errors for some of the numbered
cases in the table. Similar to the examples of the previous section, the
pointwise error is computed at the point (—0.370820, —1.141267).
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Table 10.5.
circle.

379

Summary of possibilities on implements of constant elements BEM on a

Collocation on 5;  u constant

u exact

Collocation on I';  u constant

u exact

integration of b on S;

integration of b on I';

integration of b on S;

integration of b on I';

integration of b on S;

integration of b on T';

integration of b on Sy

integration of b on T';

integration of A on S
integration of A on I'y
integration of A on §;
integration of A on I';
integration of 4 on S
integration of A on ]"j-
integration of A on S;
integration of A on I';

integration of A on I';

integration of A on T';

(1)
(2
(3)
(4)

(5)

(6)

Case (1) in Table 10.5

is the traditional constant elements BEM, that

is, on Sj, u is constant and given by @; := u(r}). For the linear system of

equations, we have,

N
——c-ﬁ-—§ /ﬁ-%(i" '
1t § a7\ i
=155 on

G(7};r') dS.

S

)dS,

In case (3) in the table, we have the ‘exact’ right-hand side. But it is not
yet really exact because we integrate on S;, and not I'; thus the boundary
function is evaluated on the numerical boundary. The difference now is that
we make no assumptions on the given boundary function u. That is,

b;

Il

_.cz

Aij ==

& /% : G(F;r)

-3 [, e

ds.

i3

Case (5) is like the traditional BEM but with the integrations carried
out on the arcs. The fixed point ¢ is on the arc and the functions u(r) and
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q(r) are assumed constant on each element Vi

N
= SHOC . e
by = —6i — Z/r u:_.ag(ri,r ) dsS,
=1 4
s _/ G(rls ') dS.
l"‘.‘,-

In case (6) we integrate the exact boundary function u(r) as given.
Thus we use "the exact right-hand side’

L 8G
bi = —csu(r]) — / u(r')=—(r};r") ds,
(r}) ;:1 - (r') 8n’( )

A= —/ G(ri;r') dS.
Iy

We expect that the results of case (3) are better than those of case (1)
since case (3) should capture the variation of the boundary function better.
For the same reasons, the results of case (6) are expected to be better
than those of case (5). Since in cases (5) and (6) the numerical boundary
coincides with the physical boundary, the corresponding results should be
better than those of cases (1) and (3).

Comparing the results in Tables 10.6 and 10.7, we see that indeed we
obtain better results in case (3) than in case (1). The gain is not much in
this example and this is because of the smooth variation of the boundary
condition function on the large part of the boundary. This also explains
the small difference between the results in Tables 10.8 and 10.9. As we
expected, the results of cases (5) and (6) are better than those of cases (1)
and (3) respectively. We see that the pointwise errors in Table 10.8 are at
least one order smaller than those in Table 10.6.

Table 10.6. Errors for case (1) in Table 10.5.

N les] = la§ — g llel|2/vN
5 6.57E-02 2.81E-01
15 7.58E-03 3.53E-02
45 8.04E-04 5.40E-03
135 8.82E-05 6.58E-04
405 9.76E-06 7.53B-05
1,215 1.08E-06 8.45E-06

3,645 1.20E-07 9.42E-07
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Table 10.7. Errors for case (3) in Table 10.5.

N les| = la§ — 41 llell2/v'N

5 3.01E-01 4.57E-01

15 4.57E-03 2.17E-02

45 4.76E-04 3.70E-03
135 5.20E-05 4.73E-04
405 5.74E-06 5.49E-05
1,215 6.37E-07 6.19E-06
3,645 7.07E-08 6.91E-07

Table 10.8. Errors for case (5) in Table 10.5.

N lesl = lg5 — 4l llell2/vN

5 5.54E-03 1.44E-01

15 4.06E-04 1.25E-02
45 3.77B-05 2.55E-03
135 3.94E-06 3.55E-04
405 4.28E-07 4.21E-05
1,215 4.72E-08 4.78E-06
3,645 5.23E-00 5.34E-07

Table 10.9. Errors for case (6) in Table 10.5.

N lesl = g — &1 llellz/ VN
B 2.96E-02 1.59E-01
15 4.05E-04 1.24E-02
45 3.62E-05 2.40E-03
135 3.88E-06 3.49E-04
405 - 4.26E-07 4.19E-05
1,215 4.31E-08 4. 7T7TE-06
3,645 1.66E-08 5.34E-07

10.4. Large Condition Numbers

In all practical applications of the BEM, a linear system needs to be solved
eventually. In most cases it is assumed that the condition number of the
system matrix is moderate, i.e. the linear system has a unique solution and
can be solved accurately. However, it is not very clear if this is always true.

It is known that the condition number of the BEM matrix in potential
problems with Dirichlet conditions depends on the size and shape of the
domain on which the potential problem is defined.* " On most domains
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the condition number is moderate, but on certain domains the condition
number becomes infinitely large.

When the BEM is applied to the Laplace equation with Dirichlet
conditions on a circular domain, the condition number of the BEM matrix
can be computed analytically.!3:'* Here, rectilinear elements are used and
a constant approximation of the functions at each element. It can be shown
that the condition number depends on the radius R of the circle and the
number of boundary elements N according to

cond(G) = ___—_max(%, | log 1)
m min (3, |log R|)

This leads to the observation that the condition number is infinitely large
when the radius of the circle is equal to one. Hence, the size of the domain
affects the condition number of the BEM matrix and, consequently, it also
affects the solvability of the linear system. This introduces a remarkable
phenomenon: the solvability of a linear system in the BEM depends on the
size of the domain.

For the potential problem with Neumann conditions the corresponding
BEM matrix is always infinitely large, since this problem is ill-posed,
regardless of the size and shape of the domain. The question then arises
whether we may expect infinitely large condition numbers when solving
potential problems with mixed boundary conditions. In this case, the BEM
matrix is a composite matrix, consisting of a number of columns from the
Dirichlet BEM matrix, and a number of columns from the Neumann BEM
matrix. The first matrix is ill-conditioned on some domains, the latter is
ill-conditioned always. It is not clear how this affects the.condition number
of the composite matrix.

For the Laplace equation with mixed conditions on a circular domain,
it is possible to give an estimate for the BEM matrix.!5 Again, it shows
that for the unit circle the condition number is infinitely large. Hence, the
mixed problem seems to inherit the solvability problem from the Dirichlet
problem.

Figures 10.5 and 10.6 correspond to solving the Laplace equation
on a triangular domain and an ellipsoidal domain, respectively. The size
of the triangle is characterized by its side length I, whereas the ellipse
is characterized by the lengths of the semi-axes ¢ and a/2. We show
the condition numbers for the Dirichlet BEM matrix (squares) and the
mixed BEM matrix (circles). For the mixed problem, we set the number
of boundary elements with Dirichlet conditions equal to the number of

(10.33)
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—m— Dirichlet :

- ® - Mixed :

Fig. 10.5. The condition number of the matrices A (circles) and G (squares),
corresponding to the Laplace equation with mixed boundary conditions and Dirichlet
boundary conditions, respectively, for a triangular domain.

306 T T

—=— Dirichlet

- - Mixed

AOOF i

100

Fig. 10.6. The condition number of the matrices A (circles) and G (squares),
corresponding to the Laplace equation with mixed boundary conditions and Dirichlet
boundary conditions, respectively, for an ellipsoidal domain.

boundary elements with Neumann conditions. Again, we see that the
condition numbers are infinitely large for certain sizes of the domains.
Hence, again the size of the domain influences the solvability of the linear
systems in the BEM.

In the next section, we present the theory behind this remarkable
phenomenon by studying the boundary integral equations that lay the
foundations of the BEM. We show that, regardless of the shape of
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the domain, there always exists a particular size of that domain for which
the boundary integral equation becomes singular. We also propose a number
of strategies to avoid these singularities.

10.5. Condition Numbers in Potential Problems

This section investigates the condition numbers of the system matrices
that appear in the BEM when applied to potential problems. We analyse
potential problems with Dirichlet and mixed boundary counditions and show
that these problems do not always have a unique solution. This happens
when the domains on which the potential problems are defined have a
logarithmic capacity that is equal to one. We will proceed by introducing
the concept of logarithmic capacity.

10.5.1. Logarithmic capacity

To study the uniqueness properties of the Dirichlet and the mixed problem,
we need to introduce the notion of logarithmic capacity. We define the
energy integral I by a double integral over a contour T,

/flog ,”q{r q(r")dl,.dT ., (10.34)
and the logarithmic capacity Cj(T') is related to this integral by
—log Cy(T") := inf I(q). (10.35)
q

Here, the infimum is taken over all functions ¢, with the restriction that

/ g(r)dl, = 1. ' (10.36)
A

Let us give a physical interpretation of the logarithmic capacity. For
simplicity, let the domain §2 be contained in the disc with radius 1 /2. In that
case, it can be shown that the integral I(g) is positive. The function g
can be seen as a charge distribution over a conducting domain 2. Faraday
demonstrated that this charge will only reside at the exterior boundary of
the domain (‘cage’), in our case at I". We normalize ¢ in such a way that
the total amount of charge at I" is equal to one, cf. condition (10.36). The
function

1 1 p 14 ke .
ﬁ?/pk’g e o0 = e lis) (10.37)
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is identified as the potential due to the charge distribution g. Note that the
integral I can also be written as

10) = 2 [ (K*q)()a(r)r. (10.38)

Hence, I can be seen as the energy of the charge distribution ¢. The charge
will distribute itself over I' in such a way that the energy I is minimized,
so the quantity —log Cy(I") is the minimal amount of energy. Hence, the
logarithmic capacity Cy(I') is a measure for the capability of the boundary
I' to support a unit amount of charge.

For most boundaries the logarithmic capacity is not known explicitly.
It is only for a few elementary domains that the logarithmic capacity can
be calculated analytically”; we have listed some in Table 10.10.

There are also some useful properties that help us to determine or
estimate the logarithmic capacity.®:16

(1) If I is the outer boundary of a closed bounded domain 2, then C;(T") =
Ci(Q). This agrees with the idea of Faraday’s cage, mentioned above.

(2) Denote by dr the Euclidean diameter of €, then Cy(I') < dr. Hence,
the radius of the smallest circle in which I is contained is an upper
bound for the logarithmic capacity of I".

(3) IfI' = & 4+ al'y, then Cy(T") = aC)(T"; ). Hence, the logarithmic capacity
behaves linearly with respect to scaling and is invariant with respect to
translation.

(4) If 4 C 22, then Gy () < Cg(Qg).

(5) For a convex domain (2,

¥ 1/2

%(Q)) . (10.39)

Q) > (

Table 10.10. The logarithmic capacity of some domains. Note
that I'(-) represents the gamma-function.

Boundary I Logarithmic capacity
circle with radius R R
: : rgg)®
" ~ o~ .
square with side [ _4_47r3r"2 L =~ 0.59017 . L
ellipse with semi-axes a and b {a+b)/2
interval of length a Sa

4

33/4p(1 /42

isosceles right-angled triangle side { TR !~ 0.476 1
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If the properties from the list above do not supply accurate enough
estimates, the logarithmic capacity can also be approximated numerically
with the help of linear programming!? or using the BEM-matrices
explicitly. 18

10.5.2. Dirichlet problem

We  consider the Laplace equation (10.1) with Dirichlet boundary
conditions, with corresponding BIE (10.2). For the single layer operator
KC? in this BIE we have the following result.

Theorem 10.3. There exists g nonzero g. such that
1
(Kiqe)(r) = .- log C(T"), »el. (10.40)

Sketch of proof. In the following, we briefly present the major steps
in the proof of the theorem.®19:20 e observe that the energy integral
(10.34) takes values —oo < T (q) < oo. If the infimum of the energy integral
is infinitely large, then by definition the logarithmic capacity is equal to
zero. Suppose that Cy(I') > 0 and thus —co < I (g) < oo. It is proven in
Hille® (p. 282) that for each boundary T, there exists a unique minimizer
ge of I(q), i.e.

(qe) = inf I(g) = ~ log C\(T) with [r ge(r)dr, = 1. (10.41)

For the minimizer ¢, the following result in Hille® (p. 287) is proven. Let
I' be the boundary of a closed bounded domain with positive logarithmic
capacity and a connected complement. Then 2mK%g, < — log Cy(T") in the
whole plane and 27K*%g, = —log Cy(T) at T, except possibly for a subset
which has zero logarithmic capacity. ||

Theorem 10.3 leads to the following result.

Corollary 10.1. If CiT) = 1, there ewists & nonzero . such that
K = U,

Thus in the specific case that ¢ (I') = 1, the single layer operator K* admits
an eigenfunction ¢, with zero eigenvalue. Hence, K® is not positive definite
and the Dirichlet problem does not have g unique solution.

If the BIE does not have a unique solution, we may expect that its
discrete counterpart, the linear system, also does not have a unique solution.
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That is, the linear system is singular, or at least ill-conditioned. This
is reflected by the condition number of the system matrix, as shown in
Figs. 10.5 and 10.6. Here, the condition number of the BEM matrix is
plotted for two problems: the Laplace equation with Dirichlet conditions
on a triangular and an ellipsoidal domain. The triangle is an isosceles right-
angled triangle with sides of length . For such a triangle the logarithmic
capacity is given by

33/412(1/4)

C;(triangle) = W’

I~ 0.476 1. (10.42)

This implies that the condition number will be large when the scaling
parameter [ is close to the critical scaling I* := 1/0.476 =~ 2.1. The ellipse
has semi-axes of length a and a/2, which has a logarithmic capacity equal
to 3a/4. Hence, we may expect a large condition number when the scaling
parameter a is close to a* := 4/3. We observe that the condition number for
the Dirichlet case (solid line) is indeed infinitely large for these two critical
scalings.

If we rescale the domain such that the Euclidean diameter is smaller
than one, then the second property in Section 10.5.1 shows us that the
logarithmic capacity will also be smaller than one. In this way we can
guarantee a unique solution of the BIE and thus a low condition number.

Recall that the non-trivial solution ¢, of the homogeneous BIE K¢ = 0
has a contour integral equal to 1. At the same time we realize that a solution
g of K¢ = 0 has to satisfy

/qdl“ :/ Audf) =0, (10.43)
L 0

where we make use of Gauss’ theorem. By supplementing this requirement
for g to the BIE, we exclude the possibility that g. is a solution of
the homogeneous BIE. This provides a second strategy to ensure unique
solutions of the BIE.

A third option to guarantee a unique solution is to adjust the integral
operator K®. Note that the function G,

1 «
Gu(r;r') = —log——, acR* 10.44
"T( ! ) 9 g”'f"'—?""” ! ( )

is also a fundamental solution for the Laplace operator. The corresponding
gingle layer potential reads

Keq = /100 ra(r)dl = K°q IOga]qu“. (10.45)
— Q?T T
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For the minimizer ¢, we get

log

Kage = K°e +

oy /Pqedl" = —2—17}- log Cy(T") + 2—;_— log
1 «
- log bi_(fj (10.46)
This is only equal to zero if o = C(T"). We may choose for o any positive real
number unequal to Cy(T") and obtain Kage # 0. In that case, e 18 no longer
an eigenfunction of the single layer potential operator with zero eigenvalue,
Hence, the BIE (10.2) with Dirichlet conditions is uniquely solvable if IC¥
is replaced by K?.19:21 The advantage of this procedure is that we do not
need to rescale the domain or add an extra equation. Furthermore, we do
not need to know the logarithmic capacity explicitly: a rough estimate of
the capacity suffices to choose o such that a # C(T).

There are also ways to ensure a unique solution of the BIE for the
Laplace equation that can be used without having to know the logarithmic
capacity. For instance, adding an extra collocation node at the interior
or exterior of the domain can change the BIE in such a way that it is not
singular any longer22; although this does depend on the location of the extra,
collocation node. Another option is to use the hypersingular formulation of
the BIE.?® The hypersingular BIE is the normal derivative of the standard
BIE and does not involve the single layer operator. As a consequence, the
BIE does not become singular at certain domains.

10.5.3. Mized problem .
We consider the Laplace equation with mixed boundary conditions,
Viy = 0, req,
U= ﬁ-, o l—‘]_,
g=§, rely, (10.47)

where I' = T'; UT,. To investigate this boundary value problem we have to
rewrite the BIE in (10.2). For § = 1,2, we introduce the functions u; = ulp,
and ¢; := g|r, and the boundary integral operators

Kig)(r) := /1; G(r;r)g(r)dl, re I, (10.48a)

(Kdu)(r) = E%G(r;r’)u(r’)dl",,r, rel. (10.48b)
I'; i



Condition Numbers and Local Errors in the Boundary Element Method 389

Note that the boundary conditions in (10.47) provide u; = @ and ¢, = §. By
distinguishing r € I'y and r € I', we write (10.2) as a system of two BIEs,

Kéus — Kiq = K35 — %u — K4, rely, (10.49a)
1
U2+ KSua — Kiqu = K3§ — K¢a, »el,. (10.49b)

In this system, all prescribed boundary data are at the right-hand side of
the equations.

Theorem 10.4. If Cy(T') = 1, the homogeneous equations of (10.49a) and
(10.49b) have a non-trivial solution pair (g1, u2).

Sketch of proof. We have to find a non-trivial pair of functions (g1, u3)
such that the left-hand sides of (10.49a) and (10.49b) are equal to zero
when Cj(T") = 1. It can be shown that such a pair of functions exists by
using information from the Dirichlet problem.!! ]

Theorem 10.4 tells us that the BIE for the mixed problem does not
have a unique solution when C;(I') = 1, i.e. the BIE is singular. Moreover
the division of I' into a part I'; with Dirichlet conditions and a part T'y
with Neumann conditions does not play a role in this. It does not make a
difference whether we take I'y very small or very large; the singular BIE
relates solely to the whole boundary T.

In Figs. 10.5 and 10.6, we observe that indeed the condition number for
the mixed problems is infinitely large at (almost) the same scalings as for
the Dirichlet problems, agreeing with the theory. The small difference that
is present is caused by numerical inaccuracies due to the discretization.

To guarantee a unique solution for the mixed problem, we have the same
options as for the Dirichlet problem. The simplest remedy is to rescale the
domain, thus avoiding a unit logarithmic capacity. A second option is to
demand that the function ¢ have a zero contour integral. Since part of ¢
is already prescribed, this yields the following condition for the unknown
part of g,

/ qdl = — / Gdr. (10.50)
ST Sy

As a last option to obtain nonsingular BIEs, we can also replace the single
layer operator K¢ by K2, (see Section 10.5.2).
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10.6. Condition Numbers in Flow Problems

The Laplace equation and the Stokes equations have at least one thing in
common: the Laplace operator appears in both equations. As we have seen
in the previous section, the Laplace equation may lead to a singular BIE for
certain critical domains. The question arises whether this is also the case for
the equations in viscous flow problems: can the corresponding BIEs become
singular on certain critical domains?

In this section, we study the BIEs following from the Stokes equations.
In particular, we focus on the eigenvalues of the integral operators. It is
shown that for certain critical domains these integral operators admit zero
eigenvalues. Hence, again we find that the BIEs become singular for a
number of critical domains.

For the Laplace equation, it is possible to @ priori determine the critical
domains. For a number of simple domains, the logarithmic capacity can
be used to exactly compute the critical size. For more involved domains,
the logarithmic capacity can be used to estimate the critical size of the
domain. Unfortunately, the critical domains for the Stokes equations do
not. coincide with the critical domains for the Laplace equations. Hence,
we cannot use the logarithmic capacity to a priori determine the critical
domains on which the BIEs for Stokes equations become singular. It
is only by numerical experiments that we can distinguish the critical
domains.

Let Q be a two-dimensional simply-connected domain with a piece-wise
smooth boundary I'. The Stokes equations for a viscous flow in € read

Vy — Vp =0,

V.v =0, (10.51)
where v is the velocity field of the fluid and p its pressure. Let ' be divided
into a part I'r on which the velocity v is prescribed, and a part I'y on which
the pressure p is prescribed, I' = T, UI's. Hence, the Stokes equations are
subject to the boundary conditions

v=v, rel s
p=p, rel, (10.52)

Either I'y or T’y can be empty, leading to a purely Neumann or Dirichlet
problem, respectively. The Stokes equations in differential form can be
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transformed to a set of two BIEg;6:24,25

1 ' '
5?}1-(7')—1—/%5(7',? Ju;(r')dl'
r

:fuij(r,r’)bj(r')dl"rx, rell, i=1,2 (10.53)
-

Here, a repeated index means summation over all possible values of that
index. The vector function b is the normal stress at the fluid boundary,

b:=a(p,v)n, (10.54)

with 7 being the outward unit normal at the boundary and the stress tensor
o being defined by

Av; O,
oij (p,v) == —pdis; + (Eé; + a—é) (10.55)

Hence, the boundary integral formulation involves two wvariables: the
velocity v and the normal stress b. In correspondence to (10.52), at each
point of the boundary either v or b is prescribed:

V=7, rely,

10.5
b= —pn, reTls. (1038)

The kernels u;; and ¢;; in the integral operators are defined as

1 (@; — yi)(w5 — yi) (@6 — yu)n
1 B L 2 :
i (7'3 i o~ v — ,_,.r”4

1

(zi —yi)(xj —y5) &
e

o) = ﬁ {5;‘.,- log ir _1 T +
for 4,7 = 1, 2. We introduce boundary integral operators,
(G@(r) = [ wy(rrp (),
() 1= [ a0, (10.58)
which enables us to write (10.53) as
(%x g H) v = Gb. (10.59)

The operators G and H are called the single and double layer operator
for the Stokes equations. For the Dirichlet problem, the velocity v at the
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boundary is given (I'y = ) and we would like to reconstruct the normal
stress b at the boundary. To this end, we need to invert the operator §.
This can only be done when all eigenvalues of G are unequal to zero. In
this section we investigate the conditions under which G admits a ZeTo
eigenvalue.

For the mixed problem, the velocity at I’y is prescribed and the normal
stress at I'; is prescribed. We would like to reconstruct the unknown velocity
at I'z and the unknown normal stress at ;. After rearranging known and
unknown terms (see Section 10.6.2) we again need to invert a boundary
integral operator. This can only be done when all eigenvalues of the operator
are unequal to zero. We will show that zero eigenvalues occur under the
same conditions as for the Dirichlet problem.

10.6.1. Flow problems with dirichlet boundary conditions

In this subsection, we study the solvability of the BIE (10.59) with Dirichlet
conditions on a piece-wise smooth closed boundary T'. We search for
eigenfunctions b of the boundary integral operator G with zero eigenvalue,
hence Gb = 0. If such eigenfunctions exist, the boundary integral operator G
is not invertible and the integral equation (10.59) is not uniquely solvable.
First, we show that at least one such eigenfunction with zero eigenvalue
exists.

Theorem 10.5. For any smooth boundary T, the outward wnit normai
n(r) is an etgenfunction of the boundary integral operator G with eigen-
value zero.

Proof. The j-th component of Gn equals
(Gn); = ] uij(r, 7" )ny (r)dl
r

- [ {% B “T_lrw S (xé—yf)(mj—yj)J i

llr—#*][2
1 f o [ 1 (mﬁ—ys)(%*w}}
dr Jo By |78 e ] lr =2 ¢
Ly} ] 9]

Here, the vector u? is the velocity due to a Stokeslet,?® i.e. the velocity field
mmduced by a point force in the e;-direction. This velocity field satisfies the
incompressibility condition V.2t = (. |
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In the sequel to this section, we assume that the solutions of the
Dirichlet problem (10.59) are sought in a function space that excludes
the normal. Hence, the eigenfunctions b of G we are looking for are
perpendicular to 7.

We now show that for each boundary I' there exist (at most) two critical
scalings of the boundary such that the operator G in the Dirichlet problem
(10.59) is not invertible. This phenomenon has been observed and proven®®
and we will partly present the analysis here. The scaling for which the
operator G is not invertible is called a eritical scaling, and the corresponding
boundary a eritical boundary. The domain that is enclosed by the critical
boundary is referred to as the critical domain.

Theorem 10.6. For all given functions f and constant vectors d the
system of equations

{gb+c:f‘ (10.61)

J-bdl = d,

has a unique solution pair (b,c), where b is a function and e is a constant
vector.

Sketch of proof. The main idea is to show that the operator that maps
the pair (b, ¢) to the left-hand side of (10.61) is an isomorphism.2® B

We proceed by introducing the two unit vectors e; = [1,0]7 and e; =
[0,1]". Theorem 10.6 guarantees that two pairs (b, ') and (b%, c?) exist
that are the unique solutions to the two systems

1 i L, 2 v
{Qb +cl =0, {Qb 4+ =0, (10.62)

Job'dl = ey, Jp b%dl = es.
We define the matrix Cr as Cr := [¢!|e?].

Theorem 10.7. If det(Cr) = 0, then the operator G is nol invertible.

1

Proof. Suppose that det(Cr) = 0, then the colummns ¢' and ¢? are

dependent, say ¢! = ac? for some a € R, o # 0. In that case
0= (Gb' +c') —a(Gb° +c?)
= G(b" — ab®) + ac? — ac?

= Q(n‘.‘)1 x rxbz). (10.63)
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The function b' — ab? cannot be equal to zero, since this requires
j}(bl — ab?)dl to be equal to zero, while we have

/(bl — ab®)dl = ) — ae, # 0. (10.64)
r

So b' —ab? is an eigenfunction of G with zero eigenvalue. This eigenfunction
cannot be equal to the normal n, since n also requires _f[, ndl' = 0. 1

Corollary 10.2. There are (at most) two critical scalings of the domain
U for which the operator G is not invertible.

Proof. We rescale the domain T by a factor g, i.e. I' — aI'. With the
definition of the operator G, it can be shown that

1
Gb — G = —— / aloga bdll + aGh. (10.65)
dn Ji

Then the two systems in ( 10.62) change into

T L
aGt’ + ¢ — L [Laloga b:df‘ 0, ‘ ' (10.66)
a-frb dl'=e;; 3=1,2,
In defining bi = ab’ for 7 =1,2, we obtain
el e o Bl —
{Qba—l-o? i Jploga b?dI‘ 0, . (10.67)
S bldl =e;, j=1,2.
Substituting the second equation into the first equation, we get
Gbl, +¢ — Lloga e; =0,
: 10.6
{ .[1" bf‘:'.d]'—‘ = ej! ? = 1: 2. ( 8)

These systems have the same form as the original systems in (10.62), except
for the change ¢/ — ¢ — Z{}' loga e; for j = 1,2. Define the new matrix
CGF by

1
Cur :=Cp — e loga I, (10.69)

then G¢ is not invertible when det(Cur) = 0. Hence, when +loga is an
eigenvalue of Cr, the operator G is not invertible. This implies that when
Cr has two distincet eigenvalues, there are two critical scalings a for which
G is not invertible. If Cr has one eigenvalue with double multiplicity these
critical scalings coincide. O
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The result of corollary 10.2 shows that the BIEs for the Dirichlet Stokes
equations become singular for certain sizes of the domain. As a consequence,
the equations are not uniquely solvable. This solvability problem is an
artifact of the boundary integral formulation: the Stokes equations in
differential form always have a unique solution. In the previous section, a
similar phenomenon was observed for the Laplace equation with Dirichlet
conditions; in its differential form, the problem is well-posed, while the
corresponding BIE is not solvable at critical boundaries.

For the Laplace equation, the critical scaling is related to the
logarithmic capacity of the domain. By calculating or estimating the
logarithmic capacity one can determine or estimate the critical domains
without computing BEM matrices and evaluating their condition numbers.
It is this a priori information that allows us to modify the standard BEM
formulation such that the BIE becomes uniquely solvable.

For the Stokes equations, there does not exist an equivalent to the
logarithmic capacity. Hence we cannot a priori determine the critical
domains. One way to determine the critical domains is by computing the
BEM-matrices and evaluating their condition numbers. If the condition
number jumps to infinity for a certain domain, then this domain is a
critical domain. Hence, this strategy requires the solution of many BEM
problems.

Another possibility for determining the critical domaing is by solving
the systems in (10.62). This yields the matrix Cr and, subsequently, the
matrix C,r. By calculating the eigenvalues of the latter matrix, the critical
scalings can be found. Again, we have to solve two non-standard BEM
problems to compute the critical scalings.

Remark. The BlEs for the Stokes flow in 2D are similar to the equations
for plane elasticity. Hence, the BIEs for the latter equations suffer from
the same solvability problems as the Stokes equations. A proof of this
phenomenon for plane elasticity is found in the literature®” and is similar
to the proof sketched above.

10.6.2. Flow problems with mizxed boundary conditions

In the previous subsection, we showed that the boundary integral operator
G for the Dirichlet Stokes equations is not invertible for all domains. In this
subsection, we will show that this phenomenon extends to the Stokes
equations with mixed boundary conditions.
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The starting point is again the BIE for the Stokes equations,
il
FUT Hv =Gb, at T. (10.70)

Suppose that the boundary T is split into two parts, I' = I'y [ JT'3. On Iy,
we prescribe the velocity ! while the normal stress b' is unknown. On Iy,
we prescribe the normal stress b® while the velocity v? is unknown. The
boundary integral operators G and H are split accordingly,

[gb]; = ‘/r"ts.;jbjdl—‘ = /l; ’:'Lg'jb;dr—i-/r‘ ug‘jb?dr =3 [glbl]g—l— [9262]1&,
Laif e b4

[H‘U]i = / q%-jvjdf :/ q,;j'il;d]_ﬁ +f qtj@fdf =4 [Hlvlh + [Hz’{}ﬂi‘
r Iy rz
(10.71)

With these notations, the BIE is written in the following way:
T4 i
§vk + R = g 0%, et T k=12, (10.72)

We arrange the terms in such a way that all unknowns are at the left-hand
side and all knowns are at the right-hand side,

H2v? — G1b* = G282 — Hlp! _ %'vl, B

1
5—& + H?*0? — G0 = G%p® — Mo, at T, (10.73)
Now we can define an operator A that assigns to the pair (b', v?) the two
functions at the left-hand side of (10.73),

7 H2w? — glpt
[1}2} P %1.12 + H2? — glp! (10.74)
To study the invertibility of this operator, we need to study the
homogeneous version of the eqs in (10.73)

H: - G = 0, atIy,
%«92 +H2? —GB =0, at Ty, (10.75)

Theorem 10.8. There are (at most) two scalings of T' such that the
homogeneous eqs in (10.75) have a non-trivial solution, t.e. A is not
invertible.
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Sketch of proof. We have to find a non-trivial pair of functions (b, va)
such that the left-hand sides of (10.75) are equal to zero when Cj(I") = 1.
Similar to the Laplacian case, it can be shown that such a pair of functions
exists by using information from the Dirichlet problem.?® il

This result shows that the BIE for the Stokes equations with mixed
boundary conditions may also become singular. This happens for the same
critical boundaries as for the Stokes equations with Dirichlet boundary
conditions. Hence, the mixed problem inherits the singularities from the
Dirichlet problem. The division of the boundary into a Dirichlet and a
Neumann part does not play a role in this.

Note that the Laplace equation exhibits the same behaviour. The
boundary integral equation for the Laplace equation with mixed boundary
conditions also inherits the solvability problems from the BIE for the
Dirichlet case.!!

10.6.3. Numerical examples

To solve the BIEs (10.59), the boundary T' is discretized into a set of N
linear elements. At each element, the velocity v and normal stress b are
approximated linearly. In this way, the BIEs are transformed into a linear
system of algebraic equations. (For details about the discretization, refer
to any BEM handbook.?:3%) We introduce vectors v and b of length 2N
containing the coefficients of v and b at the nodal points. Then the system
of equations can be written in short-hand notation as

1
Gb = (-2—1 £ H) v. (10.76)

Here, G and H are the discrete counterparts of the single and double layer
operator.

If the boundary integral operator G is not invertible, then its discrete
counterpart, the matrix G, is ill-conditioned. To visualize this, we compute
the condition number of G: if the condition number is infinitely large, then
the matrix is not invertible. As a consequence, the linear system (10.76) is
singular and cannot be solved for arbitrary right-hand side vectors. If the
condition number is bounded but very large, then the problem (10.76) is
still difficult to solve accurately.

In the following examples, we construct the matrix G for a certain
boundary I' and compute the condition number of this matrix. Then
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we rescale the boundary I' by a factor a, ie. I' — al Again, we
compute the condition number of the matrix G. We do this for several
values of the scaling parameter a. According to the theory in the previous
sections, there are two critical scalings for which the integral operator G is
not invertible. For these two scalings the matrix G is not invertible, or at
least very ill-conditioned. Hence, we expect that the condition number of
G will jump to infinity at these two scalings. The scaling for which such
large condition numbers appear is called a critical scaling and has, ideally,
the same value as the critical scaling defined for the BIE in the previous
section. However, due to the discretization of the equations, the critical
scaling for the discrete problem may be slightly different from the critical
scaling for the BIE. In the limit N — 0o these differences vanish.

As the results for the Dirichlet and mixed problems are similar, we do
not present any examples for the mixed case here.

Example 10.6.1. In Fig. 10.7, we show the condition number as a
function of the scale a. We do this for an ellipse (ellipse 1) with aspect
ratio 0.4 and for an ellipse (ellipse 2) with aspect ratio 0.7. We observe that
for both cases two critical scalings exist for which the condition number
goes to infinity. Moreover, these critical scalings differ significantly for the
two ellipses. For ellipse 1, we find critical scalings 1.9 and 2.9 approximately,
while for ellipse 2 we find 1.8 and 2.1. Hence the shape of the ellipse, i.e.
its aspect ratio, greatly influences the values of the critical scalings.

= ® —qspect rafto = (L4
= oo atio = 0.7

16 1& 2 22 2.4 26 28 3 32
a

Fig. 10.7. Condition number of G for an ellipsoidal domain with aspect ratios 0.4 and
0.7 as a function of scaling parameter a.
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Fig. 10.8. The critical sizes of an ellipse for which the condition number of G is very
large.

Figure 10.8 visualizes all ellipses for which the condition number of
G is very large, i.e. all critical ellipses with different aspect ratios. At the
horizontal axis is the length @ of the horizontal semi-axis of the ellipse, at
the vertical axis is the length b of the vertical semi-axis of the ellipse. We
compute the condition number of G for several values of ¢ and b. We call the
values of @ and b for which the condition number goes to infinity the eritical
sizes and the corresponding ellipse the critical ellipse. At the erifical sizes
we plot a dot in the (a, b)—ﬁla.ne of Fig. 10.8. We see that the critical sizes
lie on two curved lines, which are symmetric around the line ¢ = b. It can
be concluded that for an ellipse with fixed aspect ratio d := a/b # 1, two
critical sizes exist. For a circle, where d = 1, only one critical size exists. The
values corresponding to this critical size are approximately ¢ = b = 1.65,
which agrees with the critical scale exp(1/2) = 1.649 that can be derived
analytically.?

10.7. Discussion

In this chapter, we have looked at the fundamental causes of error in the
BEM and provided expressions for local errors. A proper definition of error
will be at the core of any adaptive grid refinement strategy. We have shown
that the local error for both constant and linear elements is of quadratic
order, This is confirmed by the results in Tables 10.1 to 10.3. These results
plus those in Table 10.4 show that this error behaviour holds for Dirichlet
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as well as Neumann problems. These findings provide an informed guide for
choosing meshing strategies. Comparing the results of Tables 10.6 and 10.7
and those of Tables 10.8 and 10.9 shows that the exact treatment of
boundary conditions as we explained leads to more accurate results. This
will be particularly important in problems with localized regions of high
variations in the boundary condition where we need to capture the high
activity.

The value of the condition number of BEM matrices, apart from the
number of boundary elements and problem type, depends on the size and
shape of the domain. Critical domains exist for which the condition numbers
are infinitely large. For such domains, the corresponding linear systems are
singular and any resulting BEM solution is not unique. This phenomenon,
whereby the size and shape of the domain affect the solvability, is a typical
two-dimensional problem. In three dimensions this does not occur. The core
of the phenomenon is the logarithmic term in the 2D fundamental solution
for the differential operators that transforms a scaling of the domain into
an additive term. In three dimensions, such a logarithmic term does not
appear in the fundamental solution.

We have presented a number of strategies to avoid critical domains,
which can be implemented easily in existing BEM codes. This will guarantee
the uniqueness of the BEM solutions for domains of all sizes and shapes.

For potential problems, one can a priori determine or estimate the
critical domains on which the condition number of the BEM matrix is
infinitely large. This is achieved by exploiting the concept of logarithmic
capacity. Unfortunately, we cannot use this strategy to determine or
estimate the critical domains for flow problems, since an equivalent concept
of the logarithmic capacity for flow problems does not yet exist.

In this chapter, we have shown that critical domains exist for potential
problems and flow problems, and at the same time critical domains occur
when solving the biharmonic equation with the BEM.31"33 The question
arises whether critical domains exist for a broader class of boundary value
problems. To the authors’ knowledge this is still an open question.
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