G.D. Manolis
D. Polyzos
Editors

‘Recent Advances in

Boundary Element
Methods

- AVolume to Honor
Professor Dimitri Beskos

@ Springer




Development of the Fast Multipole Boundary
Element Method for Acoustic Wave Problems

Yijun Liu, Liang Shen and Milind Bapat

Abstract In this chapter, we review some recent development of the fast multipole
boundary element method (BEM) for solving large-scale acoustic wave problems in
both 2-D and 3-D domains. First, we review the boundary integral equation (BIE)
formulations for acoustic wave problems. The Burton-Miller BIE formulation is
emphasized, which uses a linear combination of the conventional BIE and hypersin-
gular BIE. Next, the fast multipole formulations for solving the BEM equations are
provided for both 2-D and 3-D problems. Several numerical examples are presented
to demonstrate the effectiveness and efficiency of the developed fast multipole BEM
for solving large-scale acoustic wave problems, including scattering and radiation
problems, and half-space problems.

1 Introduction

Solving acoustic wave problems is one of the most important applications of the
BEM, which can be used in analyzing sound fields for noise controls in automo-
biles, airplanes, and many other consumer products. Acoustic waves often exist in
an infinite medium outside a structure which is in vibration (a radiation problem)
or impinged upon by an incident wave (a scattering problem). With the BEM, only
the boundary of the structure needs to be discretized. In addition, the boundary
conditions at infinity can be taken into account analytically in the boundary inte-
gral equation formulations and thus these conditions can be satisfied exactly. The
governing equation for acoustic wave problems is the Helmholtz equation, which
has been solved using the BIE/BEM for more than four decades (see, e.g., some of
the early work in Schenck 1968; Burton and Miller 1971; Ursell 1973; Kleinman
and Roach 1974; Jones 1974; Meyer et al. 1978; Seybert et al. 1985; Kress 1985;
Seybert and Rengarajan 1987; Cunefare and Koopmann 1989, 1991; Everstine and
Henderson 1990; Martinez 1991; Cunefare and Koopmann 1991)). Especially, the
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work by Burton and Miller (1971) has been regarded as a classical one which pro-
vides a very elegant way to overcome the so called fictitious frequency difficulties
existing in the conventional BIE for exterior acoustic wave problems. The Burton
and Miller’s BIE formulation has been used by many others in their research on
the BEM for acoustic problems (e.g., Krishnasamy et al. 1990; Amini 1990; Wu
etal. 1991; Liu and Rizzo 1992; Liu 1992; Yang 1997; Liu and Chen 1999).

The fast multipole method (FMM) developed by Rokhlin and Greengard (Rokhlin
1985; Greengard and Rokhlin 1987; Greengard 1988) has been extended to solving
Helmholtz equation for quite some time (see, e.g., Rokhlin 1990; Rokhlin 1993;
Coifman et al. 1993; Engheta et al. 1992; Lu and Chew 1993; Wagner and Chew
1994; Epton and Dembart 1995; Koc and Chew 1998; Gyure and Stalzer 1998;
Greengard et al. 1998; Tournour and Atalla 1999; Gumerov and Duraiswami 2003;
Darve and Havé 2004; Fischer et al. 2004; Chen and Chen 2004: Shen and Liu
2007). Most of these works are good for solving acoustic wave problems at either
low frequencies or high frequencies. For example, Greengard et al., (1998) sug-
gested a diagonal translation in the FMM for low frequency range. Rokhlin (1993)
and Lu and Chew (1993) proposed diagonal form of the translation matrices for
high frequency range for the Helmholtz equation. Wagner and Chew (1994) used
ray propagation approach to further accelerate the FMM for high frequency range.
A new adaptive fast multipole BEM for 3-D acoustic wave problems was given in
Shen and Liu (2007) and large acoustic models with degrees of freedom (in complex
variables) above 200,000 have been solved successfully on laptop PCs (Shen and
Liu 2007).

2 Basic Equations for Acoustic Wave Problems

Consider the Helmholtz equation governing time-harmonic acoustic wave fields:
Vg +k’p=0 VYxekE, (1)

where ¢ = ¢(x, w) is the complex acoustic pressure, k = @/c the wavenumber, @

the circular frequency, ¢ the speed of sound, and V?( ) = 4%( Viaxidxe = (). The

acoustic domain £ can be an infinite domain exterior to a body V (Fig. 1) or a finite
domain interior to a closed surface,

b ‘
}1
Fig. 1 The acoustic medium

E, body V and boundary § E
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The boundary conditions for acoustic wave problems can be classifizd as follows:

(@) Pressure is given : ¢ = ¢, Vx € §; (2)
d
(b) Velocity is given : g = ; =q =iwpv,, Vxed; (3)
I
(c) Impedance is given : ¢ = Zv,, ¥xe S (4)

in which p is the mass density, v, the normal velocity, Z the specific impedance,
and the barred quantities indicate given values. For exterior (infinite domain) acous-
tic wave problems, the field at infinity must also satisfy the Sommerfeld radiation
condition.

For 2-D problems, the fundamental solution is given by:

G(x, ¥, w) = ;;Hé”(kr), (5)
, dG(X, ¥, w) ik : .
F(x,y,w) = T -Ihff'?’(kr)r,; nuy), (6)

where r is the distance between x and y, and H{"() denotes the Hankel function of
the first kind (Abramowitz and Stegun 1972). For 3-D problems, the fundamental
solution is given by:

] ;
G, y, ®) = —e*, (7)
dmr
_ dG(X, ¥, w) L' .
F(x,y, o) = Foe Az B = Unyns(9)e™ (8)

3 BIE Formulations

The solution of the Helmholtz equation is given by the representation integral:
400 = [ 16y, 000~ Fx 3, 0)p01dSH) + 9/, e E, O
s

where ¢ = d¢/dn and ¢'(x) is an incident wave. Equation (9) is the representation
integral of the solution ¢ inside the domain E for Helmholtz equation (1) for both
exterior and interior domain problems. Once the values of both ¢ and ¢ are known
on S, Eq. (9) can be applied to calculate ¢ everywhere in E, if needed.
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Let the source point x approach the boundary S. We obtain the following
conventional boundary integral equation (CBIE) for acoustic wave problems:

c(X)p(x) = / [G(x,y, w)g(y) — F(X,¥, )¢V dS¥) + ¢' (x), Vx € S, (10)
&

where the constant c(x) = 1/2, if S is smooth around x. The integral with the G
kernel is a weakly-singular integral, while the one with the F kernel is a strongly-
singular (CPV) integral. It is well known that this CBIE has a major defect for
exterior domain problems, that is, it has nonunique solutions at a set of fictitious
eigenfrequencies associated with the resonate frequencies of the corresponding inte-
rior problems (Burton and Miller 1971). This difficulty is referred to as the fictitious
eigenfrequency difficulty. A remedy to this problem is to use the normal derivative
BIE in conjunction with this CBIE. Taking the derivative of integral representation
(9) with respect to the normal at the point x and letting x approach §, we obtain the
following hypersingular boundary integral equation (HBIE):

c(x)g(x) = / [K(x, ¥, @)g(y) — HX, ¥y, ©)p(¥)]dSF) + ¢’ (x), ¥xe S (11)
%y

where ¢(x) = 1/2if § is smooth. For 2-D problems, the two new kernels are:

E}G(}L ¥. fﬂ) ik (1 ;
R Qaps — bl "(kr)r,; nj(x), (12)
AF(X, ¥, ) ik
H(x,y, @) = — 0 = 2 H{(ern; 00m;(9)
ikr o
— TH2 (kr)r, j 0 (X)r, ng(y). (13)
For 3-D problems, the two new kernels are:
a(;(xs }rs {U) ] . ihr ;
K(x,y,w) = e & ~4Hr2(:kr — Dr,jnj(x)e™, (14)
dF (X, ¥, w 1 :
oo PR L NN WL

an(x) 3
+ [K2r% = 3(1 — ikr)] 7, v nidy) ) n (XD (15)
In HBIE (11), the integral with the kernel K is a strongly-singular (CPV)

integral, while the one with the H kernel is a hypersingular (HFP) integral. For
exterior acoustic wave problems, a dual BIE (CHBIE, or composite BIE (Liu
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and Rizzo 1992)) formulation using a linear combination of the CBIFE (10) and
HBIE (11) can be written as:

CBIE + SHBIE = 0, (16)

where 8 is the coupling constant. This dual BIE formulation is called the Burton-
Miller formulation (Burton and Miller 1971) for acoustic wave problems and has
been shown by Burton and Miller to yield unique solutions at all frequencies,
if § is a complex number (which, for example, can be chosen as 8 = i/k
(Kress 1985)).

CBIE (10) and HBIE (11) contain singular integrals that are difficult to evalu-
ate analytically even on constant elements. Numerical integration can be employed
to compute all the singular integrals with proper care, but it has been found
not very efficient computationally with higher-order elements. As in all the other
problems using the BIE/BEM, the best approach in such cases is to use the weakly-
singular forms of these BIEs, which are obtained analytically and do not introduce
any approximations. The weakly-ssingular forms of the BIEs for acoustic wave
problems can be found in Liu and Rizzo (1992) and Liu and Chen (1999).

The discretized equations of the CBIE, HBIE, or the Burton-Miller’s BIE formu-
lation, in either singular or weakly-singular forms, can be written as:

Cay a1 .o any ][ A ) B2

a1 Ay -+ AN Ao by
1 . de=t . ke BE Ade=b, (17)

Ay o - Ay Aoy by

where A is the system matrix, » the vector of unknown boundary variables at the
nodes, b the known vector, and N the number of nodes on the boundary. For acoustic
wave problems, this system of equations is in complex numbers, that is, all the
coefficients and variables are complex numbers and thus the memory requirement
is four times as large as its counterpart in potential problems. As a result of this,
only small models have been solved using the conventional BEM.

4 Fast Multipole Formulation for 2-D Acoustic
Wave Problems

We first discuss the fast multipole BEM formiulation for 2-D acoustic wave prob-
lems (Nishimura 2002). Iterative solver GMRES will be used to solve the system of
equations (17) in which the far field contributions will be evaluated using the fast
multipole method.

The 2-D formulation is based on Graf’s equation (Abramowitz and Stegun 1972)
(page 363, equation (9.1.79)) for the kernel, that is, the far field expansion for the G
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kernel can be represented as the following:

1
Gy, @) =7 ), O§e®GeY). IX=Yel>ly—3l|, (8

H=-00Q

where y, Is the expansion point close to y and the two auxiliary functions O and 7
are given by:

Ou(X, y) = i" H"(kr)e'™, (19)
Li(X,y) = (=) Ju(kr)e™, (20)

In the above two expressions, J,() denotes the Bessel-J function (Abramowitz
~and Stegun 1972) and « is the polar angle of the vector ¥ from x to y. Using
Eq. (18), the far field expansion for the F kernel is given by:

| (e, y)
Fix,y, o) = Zo,x(yc af)y, X—yol>ly—yl, @

nz—m
in which the derivative is obtained by the formula:

a1, (X, —i)"k i —idq ina
a}f_fy)”)z( ’2) (i1 (kr)e™ — Jy_i(kr)e %16, (22)

with & being the angle between the vector 7 from X to y and the outward normal.

Applying expansions in Eqgs. (18) and (21), one can evaluate the G and Fintegrals
in CBIE (10) on S (a subset of § that is away from the source point x) with the
following multipole expansions:

/ G(X, ¥, 0)gWASE) = ) O0ulye, OMu(¥e). X —ye| > |y —¥el, (23)

g, " o

/ FX Y. 0)pMdSE) = Y One, DMy X — el > Iy —yel,  (24)
Se

H==0DC

where M, and M, are the multipole moments centered at y. and given by:

Mo =g / LYo, a@S), (25)
5,
af—ﬁ' LA ~
M, (y.) = - 3 / —(;?r)—wtfi(y)dé(}’)v (26)

5.
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When the multipole expansion center is moved from y. to y.., we have the
following M2M translations for both M, and M,

Mi¥) = ) Tiom(Yer YoOMu(yo), 27)

m=—0c
which is derived using the following identity:
o2
Ler =) Do ¥)bae ). (28)
m=—00
The local expansion for the G kernel integral in CBIE (10) is given as follows:

[ Gy oumis = 3 1t 0L, 29)

g N=—00
e

where x is the local expansion point close to x (|x — x| < |y — x;|) and the
expansion coefficients are given by the following M2L translation:

LaXr)= ) (=1)"Op(Xs. y)Mpu(¥e). (30)

=

This result, which is different from that given in (Nishimura 2002), is derived
based on the following identity:

On(xe, V)= ) (=1)" O (X, YO (¥e, ). (31)

mM=—00

Similarly, the local expansion for the # kernel integral in CBIE (10) is given by:

[ Py b@ds = 3 L, 0L, (32)

5. RH=—00
with M, replacing M, in the M2L translation (30).

The local expansion center in expansion (29) can be shifted from x;, to x; using
the following L2L transiations:

o0

Lo(Xe) = D In(Xp, X0)Lyop(Xy), (33)

M=—00
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which is derived using the following identity:

o0

On(xet, Y) = D In(Xe, X1)On_m(X1, ¥). (34)

m=—00

For the HBIE (11), the local expansion of the K kernel integral can be written as:

e BB

/ K@y, o)) = 3 = ~8=La(x0), (35)

nH=-00

with the same local expansion coefficient L,(x;) given by Eq. (30). Similarly, the
local expansion for the H kernel integral is given by:

c

/H(x, ¥, 0)p(y)dS = Z af‘”(x"’x)Ln(x;,), (36)
5.

dn(x)

H=—00

with ffﬂ replacing M, in Eq. (30) for evaluating L, (x;). Therefore, the same
moments, M2M, M2L and L2L translations as used for the G and F integrals in
the CBIE are used for the K and H integrals in the HBIE, respectively.

3 Fast Multipole Formulation for 3-D Acoustic Wave Problems

The fast multipole method for solving the Burton-Miller’s BIE (16) is discussed
in this section for the 3-D cases (Shen and Liu 2007). The fundamental solution
G (X, ¥, w) for Helmholtz equations in 3-D can be expanded as (see, e.g., Epton and
Dembart 1993; Yoshida 2001):

- ik = - b ] Fm
Gy, @)=_—> @n+1) ) Optkx—yol 'k, y—¥o),

a={ Hi=—n

(37)
X — ¥l = |y — Yel ,

where k is the wavenumber, y. an expansion point near y, O™ the outer function
and /" the inner function. Similarly, the kernel F(x, ¥, w) can be expanded as:

Mk, y —ye)
n(y) (38)

.i_rk o ] mn
F(x,y,w) = o Z Z Crn+ 1Ok, x—¥,)

H=) thi=—n

X — ¥l > |y —v.|.

Using Egs. (37) and (38), we can evaluate the G and F integrals in CBIE (10) on
5. with the following multipole expansions:
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' I-k 3 & i :
/ Gy, S = 123 D0 Cn+ DO X = YoMy (k. ¥o)

n={) m=—n

(39)
IX— Y| > |¥ — ¥l ;

k o i -
/ F(x, y, 0)py)dS(y) = E Y. D CrA DOk, x— YoMy k. ¥e),

Se f=) m=—n {40}
|x_?c| = |F_Yc|:
where M,, ,, and ﬂ'n,m are the multipole moments centered at y. and given by:
My m(k, ¥c) = / L'k, y — ¥)q(y)dS(y), (41)
8
o= &F::t(k!‘ ¥ = yf:) :
Wk 30 = | HASE). (2)
. an(y)

The M2M, M2L and L2L translations for 3-D Helmholtz BIEs can be found in
Shen and Liu (2007) and Yoshida (2001). Adaptive fast multipole algorithms (Shen
and Liu 2007) have also been employed to further accelerate the solutions of the fast
multipole BEM.

6 Numerical Examples

Several 2-D and 3-D examples of acoustic wave problems are presented in this sec-
tion. Constant triangular elements are used in all these examples, for which one
can use singularity subtraction approach to analytically evaluate the singular and
hypersingular integrals involving the static kernels. In all the 3-D examples, the
maximum number of elements in a leaf is set to 100, the number of multipole and
local expansion terms set to 10 and the tolerance to 1073, All the computations
for the 3-D examples were done on a 1*1pmp PC with an Intel 1.6 GHz Centrino
processor and 512 MB memory.

6.1 Scattering from Cylinders in 2-D Medium

A 2-D scattering problem with a rigid cylinder and the incident wave coming from
the right is considered first (Fig. 2). The cylinder has a radius @ = 1 and is
discretized with line elements. A relative error of 0.01% is achieved with 1,000 ele-
ments for ka = 1. Figure 2 shows the magnitude of the scattered pressure field
outside the cylinder in a square region. Figure 3 shows the computed scattered field
by an array of multiple cylinders with ka = 0.1.
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Fig. 2 Scattering from a
single cylinder

Fig. 3 Scattering from
multiple cylinders

6.2 Radiation from a Pulsating Sphere

A pulsating sphere with radius ¢ = 1 m is used to verify the fast multipole BEM
code for 3-D radiation problems. The normalized wave number kq varies from 1 to
10. The total number of elements is 1,200. The velocity potentials at (5a, 0, 0) are
plotted in Fig. 4, which shows that the conventional BEM with the CBIE fails to
predict the surface velocity potential at the fictitious frequencies (ka = 7, 2m, ...,
for this case). The results using the conventional BEM with the Burton-Miller’s
(CHBIE) formulation agree well with the analytical solution at all wavenumbers.
The fast multipole BEM with the CHBIE also yields very close results to those of
the conventional BEM with the CHBIE, which suggests that the truncation error
introduced in multipole expansions is very small for problems with ka ranging from
I to 10.



Development of the Fast Multipole BEM for Acoustic Wave Problems 297

2500 -
e —— Analytical solution =)
2250 + A oo L sy
_ —e— Conventional BEM (CEIE)
2000 1+ § ENRa, —s#— Conventional BEM (CHBIE)
—— Adaptive FMBEM (CHBIE)
1750 + T o et sanlise o i, snn S SR B === -
o
1500 +==-==s=c=amna- = e e e e SRS RIS S e
& 1250 - s S S M - PSRNk T R e S 3
1000

750

500

250 o= -

Fig. 4 Frequency sweep plot for the pulsating sphere model

6.3 Scattering from a Rigid Sphere

A rigid sphere with radius ¢ = 1 m centered at (0, 0, 0) is used to test the fast multi-
pole BEM code for scattering problems. The sphere is meshed with 1,200 elements
and impinged upon by an incident wave of unit amplitude ¢/ (x, v, z) = ¢, with
ka = g, one of the fictitious eigenfrequencies for the CBIE, and traveling along
the negative z axis. Sample field points are evenly distributed on a semicircle of
r = 5a, centered at (0, 0, 0). The velocity potential curves plotted in Fig. 5 shows
that the adaptive FMBEM using Burton-Miller formulation successfully overcomes
the non-uniqueness difficulties at this fictitious frequency and yields very accurate
results.

6.4 Scattering from Multiple Objects

A multi-scatterer model containing 1,000 randomly distributed capsule-like rigid
scatterers in a 2 x 2 x 2 m domain is studied next. Each scatterer is meshed with 200
boundary elements, with a total of 200,000 elements for the entire model. The inci-
dent wave is e ~** with k = 1. Sample points are taken at an annular data collection
surface with inner and outer radius equal to 5 and 10, respectively. The computed
velocity potential distribution contour i1s shown in Fig. 6 for this discretization. Total
CPU time used to solve this large model is 3,352 s using the laptop PC.
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Fig. 5 Scattering from the rigid sphere at the fictitious eigenfrequency ka = nt

Fig. 6 Computed velocity
potential for the multiple
scatterer model

To study the computational efficiency of the fast multipole BEM, the BEM model
is rerun with an increasing number of scatterers in the model. The numbers of ele-
ments are increased from 1,600 to 200,000, corresponding to 8 to 1,000 scatterers
in the model. The total CPU time used to solve these multiple scatterer problems on
the laptop PC is shown in Fig. 7, which exhibits a linear behavior and thus suggests
the O(N) efficiency of the developed fast multipole BEM code.
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Fig. 7 Total CPU time used to solve the multiple scatterer problem

6.5 Analysis of Sound Barriers — A Half-Space Acoustic
Wave Problem

Many of the acoustic problems are present in half spaces, such as noise control
problems due to airplane takeoff or landing near an airport, or due to traffic on
highway near a residential area. Using the BEM, these half-space acoustic wave
problems can also be modeled readily. In these cases, half-space Green’s function
need to be employed and the same adaptive algorithm for the full-space problems
can be employed. Detailed formulations of the adaptive fast multipole BEM for 3-D
half-space acoustic wave problems can be found in Shen and Liu (2009).

Figures 8 and 9 show the evaluated sound levels (in dB) for a BEM model of
three buildings near a highway without and with a sound barrier, respectively, using
the fast multipole BEM for half-space acoustic wave problems (Shen and Liu 2009).
The dimensions (L x W x H) of the three buildings are 30 x 10 x 20, 20 x 12 x 15
and 9.5 x 9 x 8 (in m), respectively. The barrier has a height of 6 m and length of
255.94m. One source point load with 20 Hz frequency is located 13 m away from
the middle point of the barrier and 1 m above the ground. The BEM model contains
56,465 triangular elements. In the case with no sound barrier, the surface of the
larger building closest to the source has the maximum sound level of 94 dB, while
the smaller building that is furthest away from the source registers the smallest dB,
as shown in Fig. 8. After inserting the barrier in the model, the maximum sound
level on the surfaces of the buildings is reduced to 90 dB. as shown in Fig. 9. The
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Fig. 8 Noise level (dB) on the buildings without the barrier

e
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Fig. 9 Noise level (dB) on the buildings with the barrier

effect of the sound barriers in reducing the noise levels near highways is evident
from this BEM simulation.

7 Conclusions

Some of the recent development of the fast multipole BEM for both 2-D and
3-D acoustic wave problems are reviewed in this paper. The basic formulations
are provided and the numerical examples clearly demonstrate the potentials of the
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fast multipole BEM for solving large-scale acoustic wave problems. Improvements
are still need be made to the fast multipole BEM discussed in this chapter. For
example, adaptive tree structures can be implemented which can handle slender
structure more effectively. For M2L translations, the recursive relations of the trans-
lation operators and use rotation-coaxial translation decomposition of the translation
operators given by Gumerov and Duraiswami (2003) can be applied to reduce the
computational complexity. The developed fast multipole BEM can also be extended
to solve many other coupled acoustic problems, such as acoustic waves interacting
with elastic structures (Chen and Liu 1999; Chen et al. 2000), and multi-domain
acoustic wave problems as in biological applications.
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