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Abstract

This paper is devoted to finding analytic particular solutions to a class of fourth-order partial differential equations (PDEs). This is

done by using polyharmonic spline approximations to the inhomogeneity. Both the 2-D and the 3-D cases are considered, the 3-D case

being simpler than the 2-D one. The solutions to the 3-D case are obtained by using the Neumann expansion of the inverse of the

homogeneous operator. For the 2-D case, in addition to the finding of the solutions to the inhomogeneous equation, it is necessary to

find an appropriate basis for the radial form of the homogeneous equation. These solutions may have independent interest in obtaining

t-Trefftz solutions to the homogeneous multi-Helmholtz-type equation.

Published by Elsevier Ltd.
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1. Introduction

In recent years, there has been considerable interest in
obtaining particular solutions to a variety of partial
differential equations (PDEs.) Among these have been
the Poisson equation [1], the inhomogeneous Helmholtz
and modified Helmholtz equations [1], the inhomogeneous
bi-harmonic equation [2], and others. The main reason for
doing this has been to eliminate the inhomogeneity of these
equations, so that boundary-type methods, such as the
boundary element method (BEM), the method of funda-
mental solutions (MFS), and other Trefftz methods can be
employed to solve the resulting homogeneous equations.
An important application of these ideas occurs when one
wishes to solve time-dependent PDEs, such as the diffusion
and wave equations. Various discretization techniques lead
one to solve a sequence of inhomogeneous modified
Helmholtz equations. As indicated above, to solve the
inhomogeneous equation, one needs to find particular
solutions for these equations. Over the last 25 years, a
variety of techniques have been proposed for doing this.
e front matter Published by Elsevier Ltd.
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Among these have been integral methods, as proposed by
Atkinson [3], domain embedding methods [4], polynomial
approximation methods [4], and others. However, prob-
ably the most popular method for doing this is the DRM
(dual reciprocity method), which uses radial bases func-
tions (RBFs) to approximate the right-hand side. Then,
approximate particular solutions are obtained by analyti-
cally determining the particular solution corresponding to
each basis element. As shown in [5], this required some
considerable mathematical skill when thin plate and higher
order splines are used as approximating basis functions.
In this paper, we extend this approach to calculate

particular solutions for the fourth-order PDE

D2uðPÞ þ �l4uðPÞ ¼ f ðPÞð� ¼ �1Þ, (1)

where D denotes the Laplacian and P 2 Rd (d ¼ 2 or 3).
We refer to Eq. (1) as the multi-Helmholtz equation

when � ¼ 1 and the modified multi-Helmholtz equation
when � ¼ �1. Eq. (1) arises in the theory of free flexural
vibration of a loaded uniform thin plate [6] and, as a
result of applying various discretization techniques or the
Laplace transform to the equation [7],

DD2wðx; y; tÞ ¼ Pðx; y; tÞ �m
q2

qt2
wðx; y; tÞ. (2)
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D is the rigidity of the plate, m is the mass of the plate,
Pðx; y; tÞ is the applied force, and wðx; y; tÞ is the vertical
displacement as described in [7].

One can also consider equations similar to Eqs. (1) and
(2) for the 3-D case, describing vibrations of a shell/solid.

The paper is structured in the following way: In Section 2,
we give a brief description of the DRM, including
approximation methods by splines. In Section 3, we obtain
a particular solution for the 3-D case, as the 3-D case
happens to be much easier than the 2-D one.

To calculate a particular solution in the 2-D case, we
have to first consider obtaining a basis for the radially
symmetric version of Eq. (1). This is done in Section 4. In
Section 5, we complete the derivation of particular
solutions when the right-hand side of Eq. (1) is approxi-
mated by radial splines. Finally, in Section 6, we give our
conclusions and some directions for future research.

2. The dual reciprocity method (DRM)

The DRM is a technique for obtaining particular
solutions to an inhomogeneous PDE. For this purpose,
we consider the equation

Lu ¼ f , (3)

where L is a linear operator. The DRM is based on the
classical technique of using particular solutions to solve
Eq. (3). In this case, we decompose the solution of Eq. (3)
into the sum

u ¼ vþ up, (4)

where up is a particular solution to Eq. (3), which does not
necessarily satisfy any of the boundary conditions and v

satisfies the homogeneous equation

Lv ¼ 0. (5)

When L is a linear partial differential operator, one can
often solve Eq. (5) by boundary integral or Trefftz
methods. In general, the task of obtaining up is a difficult
one and usually, only approximate particular solutions can
be obtained. As it was pointed out in the Introduction, a
number of techniques have been proposed for doing this.
Details of many of these can be found in [8]. In this paper,
we focus on the DRM as originally given in the paper of
Nardini and Brebia [9]. In this method, we first approx-
imate f in Eq. (3) by a function f̂ N where

f̂ N ¼
XN

j¼1

ajNfjN , (6)

where {fjN} is a set of linearly independent basis elements.
Then, an approximate particular solution, ûpN , is given by

ûpN ¼
XN

j¼1

ajNcjN , (7)

where cjN is an analytical solution to the equation

LcjN ¼ fjN ; j ¼ 1; 2; . . . ;N. (8)
In this paper, we approximate f by radial spline of the
form

f̂ N ¼
XN

j¼1

ajNr2n
jN ln rjN þ pðx; yÞ (9)

in R2, where rjN ¼ kP� PjNk is the Euclidean distance
between P and PjN and pðx; yÞ is a polynomial of degree n.
In R3, the radial spline is of the form

f̂ N ¼
XN

j¼1

ajNr2n�1
jN þ pðx; y; zÞ; (10)

where again rjN ¼ kP� PjNk and pðx; y; zÞ is a polynomial
of degree n. In Eqs. (9) and (10), and the remaining
equations of this section, n is fixed and could take any
positive integer value. In these cases, to find approximate
particular solutions, we further decompose f̂ N as

f̂ N ¼ vN þ p, (11)

where

vN ¼
XN

j¼1

ajNr2n�1
jN , (12)

in R3 and

vN ¼
XN

j¼1

ajNr2n�1
jN ln rjN (13)

in R2. Hence, to complete the derivation of the particular
solution, we need to solve the equations

LcjN ¼ r2n
jN ln rjN ; j ¼ 1; 2; . . . ;N (14)

and

LcNþ1 ¼ pðx; yÞ (15)

in R2. In R3, we have to solve the equations

LcjN ¼ r2n�1
jN ; j ¼ 1; 2; . . . ;N (16)

and

LcNþ1 ¼ pðx; y; zÞ. (17)

In Sections 3 and 5, we will consider the solutions of
Eqs. (14) and (16). To obtain the solutions of Eqs. (15) and
(17), one can proceed in two ways. In the first, the solutions
are obtained by the method of undetermined coefficients.
In the second, we specialize to the case when L is the multi-
Helmholtz-type operator

L ¼ D2 þ �l4 ¼ �l4 1þ
D2

�l4

� �
. (18)

In this paper, we use the second way. Then, to solve (15)
and (17), we obtain

cNþ1 ¼ L�1p, (19)



ARTICLE IN PRESS
A.S. Muleshkov, M.A. Golberg / Engineering Analysis with Boundary Elements 31 (2007) 624–630626
where

L�1 ¼
1

�l4
1þ

D2

�l4

� ��1
¼ �

X1
k¼1

D2k

ð��l4Þkþ1
. (20)

Since D2 is a fourth-order operator and p is a
polynomial, then D2kp ¼ 0 when k is sufficiently big. So,
actually, the series in (20) is a finite sum.
3. Particular solutions to the multi-Helmholtz-type equation

in R3

In this section, we will calculate particular solutions to
the multi-Helmholtz-type equation, Eq. (1), when the right-
hand side is a radial spline. Since, in the previous section,
we calculated the particular solution for the polynomial
part of the right-hand side, it suffices to obtain the
particular solution to the equation

D2uþ �l4u ¼ r2n�1. (21)

Since the right-hand side is radially symmetric, it suffices
to find particular solutions to the ODE

D2
r;3uþ �l

4u ¼ r2n�1, (22)

where Dr,3 is the operator

Dr;3 ¼
1

r2
d

dr
r2

d

dr

� �
. (23)

To solve Eq. (22), we use a technique analogous to the
one used to obtain the particular solution for the
polynomial part in the previous section. Denoting the
particular solution by up, some algebraic manipulation
yields

up ¼
1

�l4
1�
��D2

r;3

l4

 !�1
r2n�1. (24)

Then, expanding the inverse operator in Eq. (24), we
obtain

up ¼
1

�l4
X1
k¼0

ð��Þk

l4k
D2k

r;3ðr
2n�1Þ

¼
X½ð2n�1Þ=4�

k¼0

ð��Þkþ1

l4kþ4
D2k

r;3ðr
2n�1Þ, ð25Þ

where [x] is the biggest integer that is less than or equal
to x.

By successive differentiation, we find Dr;3ðr
2n�1Þ ¼

ð2nÞð2n� 1Þr2n�3, D2
r;3ðr

2n�1Þ ¼ ð2nÞð2n� 1Þð2n� 2Þð2n� 3Þ

r2n�5 ¼
ð2nÞ!
ð2n�4Þ! r

2n�5, D4
r;3ðr

2n�1Þ ¼ (2n)(2n�1)(2n�2)(2n�3)

(2n�4)(2n�5) (2n�6)(2n�7)r2n�9
¼
ð2nÞ!
ð2n�8Þ! r

2n�9. By indica-

tion, it follows that

D2k
r;3ðr

2n�1Þ ¼
ð2nÞ!

ð2n� 4kÞ!
r2n�4k�1. (26)
Finally, substituting Eq. (26) into Eq. (25) gives the
particular solution up in the form

up ¼ �
X½ð2n�1Þ=4�

k¼0

ð��Þkþ1

l4kþ4

ð2nÞ!

ð2n� 4kÞ!
r2n�4k�1. (27)

4. Particular solutions to the multi-Helmholtz-type equation

in R2

4.1. Multi-Bessel-type ordinary differential equation

In order to find a particular solution to the 2-D multi-
Helmholtz equation with a radial spline as the right-hand
side, it is necessary to find an appropriate basis to the
homogeneous ODE

D2
r uþ �u ¼ 0; ð� ¼ �1Þ, (28)

which we call the multi-Bessel-type ODE. If � ¼ 1, we refer
to Eq. (28) as the multi-Bessel ODE and, if � ¼ �1, we refer
to Eq. (28) as the modified multi- Bessel ODE. Our goal is
to find four linearly independent particular solutions,
which we denote BBk(r), k ¼ 1, 2, 3, 4. Then, the general
solution of Eq. (28) is given by

uðrÞ ¼
X4
k¼1

CkBBkðrÞ, (29)

where Ck (k ¼ 1, 2, 3, 4) are arbitrary real constants. We
know that, for the case of � ¼ 1, Eq. (28) was treated in
[10]. However, the basis given in this reference happens to
create difficulties while trying to find particular solutions to
the inhomogeneous multi-Bessel-type/multi-Helmholtz-
type equation in R2. Using the method of Frobenius, we
look for a solution in the form

u ¼
X1
n¼0

anrnþa. (30)

By straightforward differentiation, we find

Dru ¼
X1
n¼0

ðnþ aÞ2anrnþa�2 (31)

and

D2
r u ¼

X1
n¼0

ðnþ aÞ2ðnþ a� 2Þ2anrnþa�4. (32)

Substituting Eq. (32) into Eq. (28), we get

X1
n¼0

ðnþ aÞ2ðnþ a� 2Þ2anrnþa�4

þ �
X1
n¼4

ðnþ aÞ2ðnþ a� 2Þ2an�4rnþa�4 ¼ 0. ð33Þ

For n ¼ 0, we obtain the indicial equation of the multi-
Bessel-type ODE

a2ða� 2Þ2 ¼ 0. (34)
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For the case a ¼ 0, we can start solving Eq. (28) by
finding a solution u1 ¼ BB1ðrÞ in the form of a power series

BB1ðrÞ ¼
X1
n¼0

anrn. (35)

By repeated differentiation, we find that

D2
r u1 ¼

a1

r
þ
X1
n¼3

n2ðn� 2Þ2anrn�4. (36)

Substituting Eq. (36) into Eq. (28), the coefficients an

(n ¼ 0, 1, 2,y) can be determined from

a1

r
þ
X1
n¼3

n2ðn� 2Þ2anrn�4 þ �
X1
n¼0

anrn ¼ 0. (37)

Hence, choosing a0 ¼ 1 and a1 ¼ a2 ¼ a3 ¼ 0, an satisfy
the equation

n2ðn� 2Þ2an þ �an�4 ¼ 0; ðn ¼ 4; 5; 6; . . .Þ. (38)

Since a1 ¼ a2 ¼ a3 ¼ 0, it follows that a4nþ1 ¼ a4nþ2 ¼

a4nþ3 ¼ 0 (n ¼ 0, 1, 2,y). For a4n, from Eq. (38), it follows
that

ð4nÞ2ð4n� 2Þ2a4n þ �a4n�4 ¼ 0; ðn ¼ 1; 2; 3; . . .Þ. (39)

Eq. (39) can be rewritten as

a4k

a4k�4
¼

��

24ð2kÞ2ð2k � 1Þ2
. (40)

Hence, using Eq. (40), we find

a4n ¼ a0

Yn

k¼1

a4k

a4k�4
¼ ð1Þ

Yn

k¼1

ð��Þ

24ð2kÞ2ð2k � 1Þ2

¼
ð��Þn

24nð2nÞ!2
. ð41Þ

So, finally, we obtain a particular solution to the multi-
Bessel-type ODE as

u1 ¼ BB1ðrÞ ¼
X1
n¼0

ð��Þnr4n

24nð2nÞ!2
. (42)

Next, we look for another particular solution in the form

u3 ¼ BB3ðrÞ ¼ ðln rÞ
X1
n¼0

a4nr4n þ
X1
n¼0

bnr4n. (43)

By successive differentiation, we obtain

D2
r u3 ¼ ðln rÞ

X1
n¼1

ð4nÞ2ð4n� 2Þ2a4nr4n�4

þ
X1
n¼1

4ð4nÞð4n� 1Þð4n� 2Þa4nr4n�4

þ
X1
n¼1

ð4nÞ2ð4n� 2Þ2bnr4n�4. ð44Þ

To find the coefficients bn, we begin by simplifying
the first term in Eq. (44) using the known values of a4n
from Eq. (41).

X1
n¼1

ð4nÞ2ð4n� 2Þ2a4nr4n�4

¼
X1
n¼1

24ð2nÞ2ð2n� 1Þð��Þn

24nð2nÞ!2
r4n�4 ¼

X1
n¼1

ð��Þnr4n�4

24n�4ð2n� 2Þ!2

¼
X1
n¼0

ð��Þnþ1r4n

24nð2nÞ!2
¼ ��u1. ð45Þ

Using Eqs. (43)–(45), it follows that

D2
r u3 þ �u3 ¼ �

X1
n¼0

bnr4n þ
X1
n¼0

ð4nþ 4Þ2ð4nþ 2Þ2bnþ1r
4n

þ
X1
n¼0

4ð4nþ 4Þð4nþ 3Þð4nþ 2Þa4nþ4r4n�4 ¼ 0.

ð46Þ

Comparing the coefficients of the like terms in Eq. (46)
yields the difference equation

ð4nþ 4Þ2ð4nþ 2Þ2bnþ1 þ �bn

þ 4ð4nþ 4Þð4nþ 3Þð4nþ 2Þa4nþ4 ¼ 0. ð47Þ

Multiplying Eq. (47) by ð4nÞ!!2ð��Þnþ1 and using the
values of a4nþ4 from Eqs. (41), (47) becomes

ð4nþ 4Þ!!2ð��Þnþ1bnþ1 � �
2ð��Þnð4nÞ!!2bn

¼
�ð��Þnþ14ð4nþ 3Þð4nÞ!!ð4nþ 4Þ!!ð��Þnþ1

24nþ4ð2nþ 2Þ!2
. ð48Þ

Simplification of Eq. (48) and the substitution

cn ¼ 24nð2nÞ!2ð��Þnbn, (49)

transforms Eq. (48) into

cnþ1 � cn ¼ �
1

2nþ 1
�

1

2nþ 2
. (50)

Choosing b0 ¼ 0, i.e. c0 ¼ 0, one can telescope Eq. (50)
to get

cn ¼ c0 þ
Xn�1
k¼0

ðckþ1 � ckÞ

¼ 0þ
Xn�1
k¼0

�
1

2k þ 1
�

1

2k þ 2

� �
¼ �

X2n

k¼1

1

k
: ð51Þ

Hence,

bn ¼
�ð��Þ2

P2n
k¼1ð1=kÞ

24nð2nÞ!2
. (52)

Finally, we obtain the formula for u3 as

u3 ¼ BB3ðrÞ ¼ BB1ðrÞ ln r�
X1
n¼1

ð��Þn
P2n

k¼1ð1=kÞ

24nð2nÞ!2
r4n, (53)

where BB1(r) is given by Eq. (42).
Next, we define u2 and u4 as follows:

u2 ¼ BB2ðrÞ ¼ �4�DrBB1ðrÞ (54)
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and

u4 ¼ BB4ðrÞ ¼ �4�DrBB3ðrÞ. (55)

Theorem 1. BB2(r) and BB4(r) are particular solutions of the

multi-Bessel-type Equation (28).

Proof. We already know that

D2
r BBkðrÞ þ �BBkðrÞ ¼ 0; k ¼ 1; 3. (56)

Applying the operator �4�Dr to both sides of Eq. (56),
we obtain

D2
r ð�4�DrBBkðrÞÞ þ �ð�4�DrBBkðrÞÞ ¼ 0. (57)

Recalling the definitions of Eqs. (54) and (55), one can
rewrite Eq. (57) as

D2
r BBkþ1ðrÞ þ �BBkþ1ðrÞ ¼ 0; k ¼ 1; 3. (58)

This is what we needed to prove. ’

Using the definitions, Eqs. (54) and (55), we find the
formulas for u2 and u4 as follows:

u2 ¼ BB2ðrÞ ¼
X1
n¼0

ð��Þnr4nþ2

24nð2nþ 1Þ!2
(59)

and

u4 ¼ BB4ðrÞ þ BB2ðrÞ ln rþ
X1
n¼0

ð��Þnr4nþ2

24nð2nþ 1Þ!ð2nþ 2Þ!

�
X1
n¼1

ð��Þnþ1
P2n

k¼1ð1=kÞ

24n�4ð2n� 1Þ!2
r4n�3. ð60Þ

Theorem 2. BBkðrÞ ¼
1
4
DrBBkþ1ðrÞ, k ¼ 1, 3.

Proof. Applying the operator 1
4
Dr, to Eqs. (54) and (55),

we obtain 1
4
DrBBkþ1ðrÞ¼��D2

r BBkðrÞ¼��ðD2
r BBkðrÞ þ

�BBkðrÞÞþ BBkðrÞ ¼ BBkðrÞ. This concludes the proof of
Theorem 2. ’

Theorem 3. BB1(r) and BB2(r) are entire functions (analytic

for all finite complex values of r). BB3(r) and BB4(r) have

branch points at r ¼ 0 and r ¼ infinity and are analytic

elsewhere in the complex r-plane.

Proof. The statements in Theorem 3 are justified by the
facts that all power series in Eqs. (42), (53), (59), and (60)
have radii of convergence N and the presence of ln(r) in
BB3(r) and BB4(r). ’

Theorem 4. BBkðrÞ, (k ¼ 1, 2, 3, 4) are linearly independent

and hence, the general solution of the multi-Bessel-

type ODE, Eq. (28), is given by uðrÞ ¼
P4

k¼1ckBBkðrÞ, i.e.
Eq. (29).

Proof. The proof is derived directly from Theorem 3 and
the presence of different powers of r in BB1(r) and BB3(r)
on one side and BB2(r) and BB4(r) on the other side. ’
4.2. Particular solution to the multi-Bessel-type

inhomogeneous equation with spline right-hand side

We consider the equation

D2
r uþ �l4u ¼ r2m ln r. (61)

In order to find a solution of maximum differentiability,
we look for a solution of the form

u ¼ A3BB3ðlrÞ þ A4BB4ðlrÞ þ w, (62)

where

w ¼
Xm

n¼0

cnr2n ln rþ
Xm

n¼0

dnr2n. (63)

Separating the odd and the even indices, Eq. (63) could
be rewritten as

w ¼
X½ðm�1Þ=2�
n¼0

c2nþ1r4nþ2 ln rþ
X½m=2�
n¼0

c2nr4n ln r

þ
X½ðm�1Þ=2�
n¼0

d2nþ1r4nþ2 þ
X½m=2�
n¼0

d2nr4n, ð64Þ

as w satisfies the equation

D2
r wþ �l4w ¼ r2m ln r. (65)

Separating the singular terms of the form Cr4n ln r of u in
Eq. (62), we get the function g(r) defined by

gðrÞ ¼ A3BB3ðlrÞ þ
X½m=2��1
n¼0

c2nr4n ln rþ c2½m=2�r
4½m=2� ln r

¼ Analyt1ðrÞ þ A3

X½m=2�
n¼0

ð��Þnl4nr4n ln r

24nð2nÞ!2

þ
X½m=2�
n¼0

c2nr4n ln rþO r4½m=2�þ4 ln r
� �

, ð66Þ

where Analyt1(r) is an analytic function of r. In order to
cancel out the lowest order singular terms in Eq. (66), we
choose

c2n ¼
�A3ð��Þ

nl4n

24nð2nÞ!2
; n ¼ 0; 1; 2; . . . ; ½m=2� � 1
� �

. (67)

In a similar fashion, we separate the singular terms of u

in Eq. (62) that are of the form Cr4nþ2 ln r getting the
function h(r) defined by

hðrÞ ¼ A4BB4ðlrÞ þ
X½ðm�1Þ=2�
n¼0

c2nþ1r
4nþ2 ln r

¼ A4

X½ðm�1Þ=2�
n¼0

ð��Þnl4nþ2r4nþ2 ln r

24nð2nþ 1Þ!2

þ
X½ðm�3Þ=2�
n¼0

c2nþ1r4nþ2 ln rþ c2½ðm�1Þ=2�þ1r4½ðm�1Þ=2�þ2 ln r

þO r4½ðm�1Þ=2�þ6 ln r
� �

þ Analyt2ðrÞ, ð68Þ
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where Analyt2(r) is an analytic function of r. In order to
cancel out the lowest order singular terms in Eq. (68), we
choose

c2nþ1 ¼
�A4ð��Þ

nl4nþ2

24nð2nþ 1Þ!2
; n ¼ 0; 1; 2; . . . ; ½ðm� 3Þ=2�
� �

.

(69)

With the values of cn found in Eqs. (67) and (69), the
solution u of Eq. (62) is guaranteed to be 2m times
differentiable at point r ¼ 0. Next, we need to find the
values of A3, A4, and dn ðn ¼ 0; 1; . . . ; mÞ by substituting
Eq. (64) into Eq. (65). After finding the necessary
derivatives of w, substituting into Eq. (65) and cancelation
of some of the terms, Eq. (65) becomes

�
X½ðm�3Þ=2�
n¼0

A4ð��Þ
nþ1
ð4nþ 5Þl4nþ6r4nþ2

24nð2nþ 3Þ!ð2nþ 1Þ!

�
X½ðm�2Þ=2�
n¼0

A3ð��Þ
nþ1
ð4nþ 3Þl4nþ4r4n

24nð2nÞ!ð2nþ 2Þ!

þ
X½ðm�3Þ=2�
n¼0

d2nþ3ð4nþ 4Þ2ð4nþ 6Þ2r4nþ2

þ
X½ðm�2Þ=2�
n¼0

d2nþ2ð4nþ 4Þ2ð4nþ 2Þ2r4n

þ �l4
X½ðm�3Þ=2�
n¼0

d2nþ1r
4nþ2

þ �l4
X½ðm�2Þ=2�
n¼0

d2nr4n þ �l4dm�1r
2m�1 þ �l4dmr2m

þ
A4ð��Þ

½ðmþ1Þ=2�l4½ðm�1Þ=2�þ6r4½ðm�1Þ=2�þ2 ln r

24½ðm�1Þ=2� 2½ðm� 1Þ=2� þ 1
� �

!2

þ
A3ð��Þ

½m=2�þ1l4½m=2�þ4r4½m=2� ln r

24½m=2� 2½m=2�
� �

!2
¼ r2m ln r. ð70Þ

Equating the coefficients of the like terms in Eq. (70), we
obtain the system given by Eqs. (71)–(74):

�l4d2nþ1 þ 24ð2nþ 3Þ2ð2nþ 2Þ2d2nþ3 ¼ �
A4ð��Þ

nþ1l4nþ6

24nð2nþ 1Þ!2

�
1

2nþ 2
þ

1

2nþ 3

� �
; n ¼ 0; 1; 2; . . . ; ½ðm� 3Þ=2�, ð71Þ

�l4d2n þ 24ð2nþ 1Þ2ð2nþ 2Þ2d2nþ2 ¼ �
A3ð��Þ

nþ1l4nþ4

24nð2nÞ!2

�
1

2nþ 2
þ

1

2nþ 1

� �
; n ¼ 0; 1; 2; . . . ; ½ðm� 2Þ=2�, ð72Þ

dm ¼ 0; dm�1 ¼ 0, (73)
A4ð��Þ
½ðmþ1Þ=2�l4½ðm�1Þ=2�þ6r4½ðm�1Þ=2�þ2

24½ðm�1Þ=2� 2½ðm� 1Þ=2� þ 1
� �

!2

þ
A3ð��Þ

½m=2�þ1l4½m=2�þ4r4½m=2�

24½m=2� 2½m=2�
� �

!2
¼ r2m. ð74Þ

In the case when m is even, Eq. (74) becomes

A4ð��Þ
m=2l2mþ2r2m�2

22m�4ðm� 1Þ!2
þ

A3ð��Þ
ðm=2Þþ1l2mþ4r2m

22mm!2
¼ r2m. (75)

Equating the coefficients of the like terms in Eq. (75), we
obtain

A3 ¼ ð��Þ
ðm=2Þþ1l�2m�422mm!2; A4 ¼ 0. (76)

In the case when m is odd, Eq. (74) becomes

A4ð��Þ
ðmþ1Þ=2l2mþ4r2m

22m�2ðmÞ!2
þ

A3ð��Þ
ðmþ1Þ=2l2mþ2r2m�2

22m�2m!2
¼ r2m.

(77)

Equating the coefficients of the like terms in Eq. (77), we
obtain

A3 ¼ 0; A4 ¼ ð��Þ
ðmþ1Þ=2l�2m�222m�2m!2. (78)

Comparing Eqs. (76) and (78), we obtain general
formulas for A3 and A4 as follows:

A3 ¼
ð�1Þm þ 1

2
ð��Þðmþ2Þ=2l�2m�422mm!2 (79)

and

A4 ¼
ð�1Þm�1 þ 1

2
ð��Þðmþ1Þ=2l�2m�222m�2m!2. (80)

Using the values of A3 and A4 from Eqs. (79) and (80),
we return to solving Eqs. (71)–(73). Defining gn by

gn ¼ ð��Þ
½n=2� 2

l

� �2n

n!2dn, (81)

Eqs. (71)–(73) convert to

g2nþ1 � g2nþ3 ¼ 4A4
1

2nþ 2
þ

1

2nþ 3

� �
,

n ¼ 0; 1; 2; . . . ; ½ðm� 3Þ=2�, ð82Þ

g2n � g2nþ2 ¼ A3
1

2nþ 2
þ

1

2nþ 1

� �
,

n ¼ 0; 1; 2; . . . ; ½ðm� 2Þ=2�, ð83Þ

g2½ðm�3Þ=2�þ3 ¼ 0; g2½ðm�2Þ=2�þ2 ¼ 0. (84)

Telescoping Eqs. (82) and (83), we get

g2nþ1 ¼ g2½ðm�1Þ=2�þ1 þ
X½ðm�3Þ=2�
k¼n

g2kþ1 � g2kþ3

� �

¼ 4A4

X½ðm�3Þ=2�
k¼n

1

2k þ 2
þ

1

2k þ 3

� �
ð85Þ
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and

g2n ¼ g2½m=2� þ
X½m=2��1
k¼n

g2k � g2kþ2

� �

¼ A3

X½m=2��1
k¼n

1

2k þ 1
þ

1

2k þ 2

� �
. ð86Þ

The above telescoping is based also on the following
observation:

2 m�3
2

� 	
þ 3 ¼ 2 m�1

2

� 	
þ 1 ¼ m or m� 1

2 m�2
2

� 	
þ 2 ¼ 2 m

2

� 	
¼ m or m� 1:

(87)

Since am ¼ am�1 ¼ 0, then a2½ðm�3Þ=2�þ3 ¼ a2½ðm�2Þ=2�þ2 ¼

a2½ðm�1Þ=2�þ1 ¼ a2½m=2� ¼ 0.

Going back to the case when m is even, we obtain the
final formulas for the coefficients dn in that case as follows:

d2nþ1 ¼ 0,

d2n ¼ ð��Þ
ðm=2Þþnþ122m�4nl4n�2m�4 m!2

ð2nÞ!2

Xm

k¼2nþ1

1

k
. ð88Þ

In the case when m is odd, we obtain the final formulas
for the coefficients dn in that case as follows:

d2n ¼ 0,

d2nþ1 ¼ ð��Þ
ððmþ1Þ=2Þþn22m�4n�2l4n�2m m!2

ð2nþ 1Þ!2

Xm

k¼2nþ2

1

k
.

ð89Þ

5. Conclusions

In this paper, we considered finding analytic particular
solutions to a class of fourth order PDEs which we refer to
as multi-Helmholtz-type PDE. These equations, as we
pointed out in the introduction, occur in various problems
in elasticity, may be viewed as fourth order generalizations
of the classical Helmholtz-type equations. The particular
solutions found in this paper are, to the best of our
knowledge, new and can be considered as generalizations
of the particular solutions obtained in [5]. These particular
solutions are expected to be useful in numerically solving
the above mentioned equations by the BEM and other
boundary methods such as MFS.

Although there are many possible choices of basis
functions that can be used to calculate particular solutions,
we have chosen a particular class of RBFs, the poly-
harmonic splines, since such functions seem to be most
popular with the engineers for solving inhomogeneous
PDEs by DRM or MFS. For completeness, we consider
both the 2-D and 3-D cases. Curiously, as with the classical
Helmholtz-type equations, the 3-D case is easier to
calculate than the 2-D one. Particular solutions for the
3-D case are obtained by the use of the Neumann series
expansion of the inverse of the multi-Helmholtz-type
operator and similar to the technique used in [8]. The
2-D case turns out to be analytically complex and requires
not only a solution to the inhomogeneous equation, but
also solutions to the homogeneous case. This is necessary
in order to cancel singularities which occur in the solution
of the inhomogeneous equation. Both of these calculations
use the radial symmetry of the underlying operator. In
particular, the homogeneous equation is reduced to a
fourth order ODE, which we refer to as a multi-Bessel-type
equation and the basis we obtain for this equation appears
to be new. This basis may have independent use in
constructing t-Trefftz basis for the homogeneous equation
in [10]. Future work will be devoted to solving inhomoge-
neous and time-dependent problems in elasticity [6,7,10].
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