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Abstract

This paper presents a boundary element formulation for the analysis of linear elastic fracture mechanics problems involving anisotropic
bimaterials. The most important feature associated with the present formulation is that it is a single domain method, and yet it is accurate,
efficient and versatile. In this formulation, the displacement integral equation is collocated on the uncracked boundary only, and the traction
integral equation is collocated on one side of the crack surface only. The complete Green’s functions for anisotropic bimaterials are also
derived and implemented into the boundary integral formulation so that discretization along the interface can be avoided except for the
interfacial crack part. A special crack-tip element is introduced to capture exactly the crack-tip behavior.

Numerical examples are presented for the calculations of stress intensity factors for a straight crack with various locations in infinite
bimaterials. It is found that very accurate results can be obtained by the proposed method even with relatively coarse discretization.
Numerical results also show that material anisotropy can greatly affect the stress intensity factor.q 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Fracture mechanics in bimaterials is getting increasing
attention because of its direct applications to composite
laminates which are widely used in aircraft and space struc-
tures. It is well known that laminated structures are prone to
defects such as broken fibers, cracks in the matrix material,
and interface delaminating. Premature failure due to the
existence of delamination is one of the most common failure
modes in composite materials and bonded joints.

Theoretically, interfacial crack problems in isotropic
bimaterials were studied [1–3] where the authors showed
that the stresses possess the singularity ofr21=2^i1. Rice [4]
re-examined the elastic fracture mechanics concepts for the
isotropic interfacial crack and introduced an intrinsic mate-
rial length scale so that the definition of the stress intensity
factor (SIF) possesses the same physical significance as
those for the homogeneous cracks. Clements [5] and Willis
[6] studied interfacial crack problems in dissimilar aniso-
tropic materials. They showed that the oscillatory behavior
of the stresses and the phenomenon of interpenetrating of

the crack faces were also present near the crack-tips for
anisotropic interface cracks. Recent studies on interfacial
cracks in anisotropic materials have been conducted by
many authors [7–16] and different definitions for the stress
intensity factor exist. By introducing a characteristic length,
however, the definition given by Wu [12,13] and Gao et al.
[16] is consistent with Rice’s general definition [4] and
appears to be more explicit than other definitions.

The Boundary element method (BEM) is particularly
suited to cases where better accuracy is required due to
problems such as stress concentrations at the crack-tip.
Another important feature associated with the BEM is that
it only requires discretization of the boundary rather than the
domain. Previously, the BEM has been applied to interfacial
cracks in isotropic bimaterials [17,18] and in anisotropic
bimaterials [19,20]. It is noted that, however, in these
previous BEM formulations, the Green’s functions in an
infinite-plane were used, which therefore require discretiza-
tion along the interface. Although Yuuki and Cho [17] used
Hetenyi’s solution for isotropic bimaterials, their BEM
formulation still requires the subdivision of the whole bima-
terial domain. Furthermore, the off-interface crack or the
crack across the interface in bimaterials cannot be studied
easily with their BEM formulations.
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In this paper, we present a BEM formulation for the
analysis of linear elastic fractures in anisotropic bimaterials.
First, we derive the complete Green’s functions for aniso-
tropic bimaterials and show their implementation into our
BEM formulation so that discretization along the interface
is avoided except for the interfacial crack part. Since the
interfacial crack has an oscillation singular behavior, we
introduce a special crack-tip element to exactly capture
this behavior. The most important feature of the present
analysis is that it is a single-domain method, and yet it is
accurate, efficient and versatile. This single-domain formu-
lation resembles the dual boundary element method [21–23]
and is a direct extension of the authors’ recent BEM work
for homogeneous and anisotropic media [24,25] where the
displacement and traction integral equations are collocated,
respectively, on the uncracked boundary only and on one
side of the crack surface only.

Calculation of the SIFs is conducted for several situa-
tions, like cracks along or off an interface. Numerical
results show that the proposed method is very accurate
even with relatively coarse mesh discretization. This is
the first time that the single-domain BEM method developed
for homogeneous media has been extended to the bimaterial
case.

2. Green’s functions in anisotropic bimaterials

The complex variable function method has been found to
be very suitable for the study of 2D anisotropic elastic
media [26]. Notably, Eshelby et al. [27], Stroh [28] and
Lekhnitskii [26] have studied the Green’s functions in infi-
nite planes using the complex function method. The
complete Green’s functions in an elastic, anisotropic, and
infinite-plane are well known, and their expressions can be
found, for instance, in Ting’s book [29]. For an anisotropic
half-plane, the Green’s functions were studied by Suo [11]
using the one-complex function method, and by Ting [29]
based on the Stroh formalism. Using the one-complex func-
tion method, the authors derived thecompleteGreen’s func-
tions and incorporated them into their anisotropic half-plane
BEM formulation [30].

Green’s functions in anisotropic and elastic bimaterials
were studied previously by Tewary et al. [10] using the
Fourier transform method, by Suo [11] using the one-
complex function method, and by Ting [29] using the
Stroh formalism. Recently, the first author, [31] derived
thecompleteGreen’s functions for anisotropic piezoelectric
infinite plane, half plane and two joined dissimilar half
planes. In the following we present briefly the Green’s func-
tion solution for a point force in an anisotropic and elastic
bimaterial. The procedure is similar to that used by Suo [11]
and Pan [31].

With three complex analytical functionsfi�zi�, one can, in
general, express displacements, stresses, and tractions as

follows [11,26,29]

ui � 2Re�
X3
i�1

Aij fj�zj�� s2i � 2Re�
X3
j�1

Bij f
0
j�zj��

s1i � 22Re�
X3
i�1

Bijmj f
0
j�zj�� Ti � 22Re�

X3
j�1

Bij fj�zj��
�1�

wherezj � x 1 mjy; Re denotes the real part of a complex
variable or function; a prime denotes the derivative; the
three complex numbermj�j � 1;2; 3� and the elements of
the complex matricesB andA are functions of the elastic
properties [11,26,29].

Assume that the medium is composed of two joined
dissimilar anisotropic and elastic half-planes. We let the
interface be along thex-axis, and the upper�y . 0� and
lower �y , 0� half-planes be occupied by materials #1 and
#2, respectively.

For concentrated force acting at the point�x0
; y0� in mate-

rial #2 �y0 , 0�, we express the complex vector function as
[11]

f �z� � f U�z� z [ 1

f L�z�1 f 0
�2��z� z [ 2

8<: �2�

where the vector function

f �z� � �f1�z�; f2�z�; f3�z��T �3�
with the argument having the generic formz� x 1 my.

In Eq. (2), f 0
�2� is a singular solution corresponding to a

point force acting at the point�x0
; y0� in an anisotropic infi-

nite plane with the elastic properties of material #2. This
singular solution can be expressed as [11,29]

fj�z� � 21
2p

{ Hp} j ln�z2 sj� �4�

wheresj � x0 1 mjy
0, p is the point force vector, andH is

given by

H � A21�Y21 1 �Y21�21; Y � iAB21 �5�
There are two unknown vector functions to be solved in

Eq. (2), that isf U�z� andf L�z�. While the former is analytic
in the upper (material #1) half plane, the latter is analytic in
the lower (material #2) half-plane. These expressions can be
found by requiring continuity of the resultant traction and
displacement across the interface, along with the standard
analytic continuation arguments. Following this approach
and after some complex algebraic manipulation, the
complex vector functions in materials #1 and #2 are
obtained as

f �z� �
B21
�1� �Y�1� 1 �Y�2��21� �Y�2� 1 Y�2��B�2�f0

�2��z� z [ 1

B21
�2� � �Y�1� 1 Y�2��21� �Y�2� 2 �Y�1�� �B�2� �f0

�2��z�1 f 0
�2��z� z [ 2

:

8<:
�6�
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In Eq. (6), the special subscript (1) and (2) are used exclusively
to denote that the corresponding matrix or vector is in
material #1�y . 0� and material #2�y , 0�, respectively.

Similarly, for a point force in material #1�y0 . 0�, these
complex functions can be found as

f �z� �
B21
�1� � �Y�2� 1 Y�1��21� �Y�1� 2 �Y�2�� �B�1� �f 0

�1��z�1 f0
�1��z� z [ 1

B21
�2� �Y�2� 1 �Y�1��21� �Y�1� 1 Y�1��B�1�f 0

�1��z� z [ 2
:

8<:
�7�

where the vector functionsf 0
�1� is the infinite-plane solution

given in Eq. (4) but with the elastic properties of material
#1.

With the complex functions given in Eqs. (6) and (7), the
Green’s functions of the displacement and traction can be
obtained by substituting these complex functions into Eq.
(1). These Green’s functions have four different forms
depending on the relative locations of the field and source
points. Their complete expressions are given in Appendix
A.

It is noteworthy that these Green’s functions can be used
to solve both plane stress and plane strain problems in aniso-
tropic bimaterials. Although the isotropic solution cannot be
analytically reduced from these Green’s functions, one can
numerically approximate it by selecting a very weak aniso-
tropic (or nearly isotropic) medium [24,32].

3. BEM formulation for 2D cracked anisotropic
bimaterials

It is well known that a cracked domain poses certain
difficulties for BEM modeling [33]. Previously, fracture
mechanics problems in isotropic or anisotropic bimaterials
were mostly handled by the multi-domain method in which
each side of the crack surface is put into different domains
and artificial boundaries are introduced to connect the crack
surface to the uncracked boundary. For the bimaterial case,
discretization along the interface is also required if one uses
the Kelvin-type (infinite domain) Green’s functions.

In this section, we present a single-domain BEM formu-
lation in which neither the artificial boundary nor the discre-
tization along the uncracked interface is necessary. This
single-domain BEM formulation was widely used recently

[23,34] for homogeneous materials and is now extended to
anisotropic bimaterials.

For a pointPs on the uncracked boundary, the following
displacement integral equation can be derived [24]

bij u
t
j�Ps�1

Z
s
Tp

ij �Ps;Xs�ut
j�Xs� dS�Xs�1

Z
G

Tp
ij �Ps;XG1�

� �ut
j�XG1�2 ut

j�XG2�� dG�XG1�

�
Z

s
Up

ij �Ps;Xs�Tt
j �Xs� dS�Xs�1

Z
s
Tp

ij �Ps;Xs��up
j �Xs�

2 up
i �Ps�� dS�Xs�

2
Z

s
Up

ij �Ps;Xs�Tp
j �Xs� dS�Xs�

�8�
where the superscripts t and p denote the total and
particular solutions, respectively;bij are coefficients
that depend only upon the local geometry of the
uncracked boundary atPs; dS and dG are the line
elements on the uncracked boundary and crack surface,
respectively, with the corresponding points being denoted
by subscripts andG; Up

ij andTp
ij are the bimaterial Green’s

displacements and tractions given in Appendix A; and a
point on the positive (or negative) side of a crack is denoted
by XG1 (or XG2). In deriving Eq. (8), we have assumed that
the tractions on the two faces of a crack are equal and
opposite. We emphasize here that since the bimaterial
Green’s functions are included in Eq. (8), discretization
along the interface can be avoided, with the exception of
the interfacial crack part which will be treated by the trac-
tion integral equation presented below.

It is noted that all the terms on the right-hand side of Eq.
(8) have only weak singularities, thus, are integrable.
Although the second term on the left-hand side of Eq. (8)
has a strong singularity, it can be treated by the rigid-body
motion method. At the same time, the calculation ofbij ,
which is geometry dependent, can also be avoided.

Since, for a cracked domain, Eq. (8) does not have a
unique solution for the unknowns [23,33,34], we introduce
a traction integral equation [25] for the anisotropic medium.
Assume thatPG is a smooth point on the crack, the traction
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Table 1
Comparison of the SIFs (horizontal crack)

G2/G1 d/2a KI =p
����
pa
p

KII =p
����
pa
p

Isida and Noguchi [37] Yuuki and Cho [17] Present Isida and Noguchi [37] Yuuki and Cho [17] Present

0.25 0.05 1.468 1.4684 1.4773 0.286 0.2923 0.2862
0.25 0.5 1.197 1.1964 1.1982 0.071 0.0717 0.0706
2.0 0.05 0.872 0.8693 0.8712 20.087 20.0848 20.0869
2.0 0.5 0.935 0.9341 0.9354 20.024 20.0226 20.0235



integral equation can be derived as

0:5�Tt
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l �PG2��

1 nm�PG1�
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Z

s
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Z
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2 nm�PG1�
Z

s
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ij ;k�PG1;Xs�Tp
j �Xs� dS�Xs�

�9�

wherenm is the outward normal at the crack surfacePG1 and
clmik is the fourth order stiffness tensor.

Eqs. (8) and (9) form a pair of boundary integral equa-
tions [23,25,35] and can be used for the calculation of SIFs
in anisotropic bimaterials. The main feature of this BEM
formulation is that it is a single-domain formulation with the
displacement integral Eq. (8) being collocated on the
uncracked boundary only and the traction integral Eq. (9)
on one side of the crack surface only. For problems without
cracks, one needs Eq. (8) only, with the integral on the crack
surface being discarded. Eq. (8) then reduces to the well-
known displacement integral equation. On the other hand,
for problems containing crack surface only, one needs Eq.
(9) only, with the integral on the uncracked boundary being
discarded. Eq. (9) then reduces to the well-known DDM
formulation [35].

For given particular solutions (related to the body force of
gravity, rotational forces, and the far-field stresses), the
boundary integral equations (8) and (9) can be discretized
and solved numerically for the unknown boundary displace-
ments (or displacement discontinuities on the crack surface)
and tractions. In solving these equations, the hypersingular
integral term involved in Eq. (9) can be handled by an
accurate and efficient Gauss quadrature formulae which is
similar to the traditional weighted Gauss quadrature but
with a different weight [24,36].

4. Crack-tip modelling

In fracture mechanics analysis, especially in the calcula-
tion of the SIFs, one needs to know the asymptotic behavior
of the displacements and stresses near the crack-tip. In our
BEM analysis of the SIFs, we propose to use the extrapola-
tion method of the crack-tip displacements. We therefore
need to know the exact asymptotic behavior of the relative

crack displacements behind the crack-tip. This asymptotic
expression has different forms depending on the location of
the crack-tip. In this paper, two cases will be discussed, that
is, a crack-tip within the homogeneous material and an
interfacial crack-tip. Inclined cracks terminated at the inter-
face will be discussed in a future paper.

4.1. A crack-tip within a homogeneous material

Assume that the crack-tip is within material #1, the
asymptotic behavior of the relative displacement at a
distancer behind the crack-tip can be expressed in terms
of the three SIFs as [11]:

Du�r� � 2

�����
2r
p

r
Re�Y�1��K �10�

where

K � �KII ;KI ;KIII �T �11�
is the SIF vector, andY is a matrix with elements related to
the anisotropic properties in material #1, as defined in Eq.
(5).

In order to capture the square-root characteristics of the
relative crack open displacements (COD) near the crack-tip,
we construct the following new crack-tip element with the
tip at s� 21:

Dui �
X3
k�1

fkDuk
i �12�

where the subscripti denotes the relative COD component
and the superscriptk�� 1;2; 3� denotes the relative CODs at
nodess� 22=3;0; 2=3, respectively. The shape functionsfk

are those introduced by Pan [25]

f1 � 3
��
3
p
8

�������
s1 1
p �5 2 8�s1 1�1 3�s1 1�2�

f2 � 1
4

�������
s1 1
p �25 1 18�s1 1�2 9�s1 1�2�

f3 � 3
��
3
p

8
��
5
p

�������
s1 1
p �1 2 4�s1 1�1 3�s1 1�2�

�13�

The node displacements in Eq. (12) are obtained in
solving the discretized formulations of the boundary inte-
gral equations (8) and (9). Equating these displacements to
those given in Eq. (10) and extrapolating to the crack-tip
gives the SIFs.

4.2. An interfacial crack-tip

For this case, the relative crack displacements at a
distancer behind the interfacial crack-tip can be expressed,
in terms of the three SIFs, as [16]

Du�r� � �
X3
j�1

cjDQj e2pdj r1=21idj �K �14�

with cj , dj , Qj andD being defined in Appendix B. Compar-
ing this equation to Eq. (10), we notice that while the
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relative crack displacement behaves as a square-root for a
crack-tip within a homogeneous medium, for an interfacial
crack-tip, its behavior isr1=21id, a square-root feature multi-
plied by weak oscillatory behaviors.

Eq. (14) can be recast into the following form, which is
more convenient for the current numerical applications:

Du�r� �
�����
2r
p

r
M

r
d

� �
K �15�

whered is the characteristic length, andM is a matrix func-
tion with its expression being given in Appendix B.

Again, in order to capture the square-root and the weak
oscillatory behavior, we construct a crack-tip element with
tip at s� 21 in terms of which the relative crack displace-
ment is expressed as

Du�r� � M
r
d

� � f1Du1
1 1 f2Du2

1 1 f3Du3
1

f1Du1
2 1 f2Du2

2 1 f3Du3
2

f1Du1
3 1 f2Du2

3 1 f3Du3
3

26664
37775 �16�

It is noted that this expression of the interfacial crack-tip
displacement is similar to that proposed by Tan et al. [19].
Once the nodal displacements in Eq. (16) are solved, the
interfacial SIFs can then be obtained by equating the relative
displacements in equation (16) to those in Eq. (15), and by
extrapolating to the crack-tip.

5. Numerical examples

The aforementioned Green’s functions and the particular
crack-tip elements have been incorporated into the bound-
ary integral equations presented above, and the results have
been programmed. In this section, three numerical
examples are presented to verify the formulation and
to show the efficiency and versatility of the present
BEM method for problems related to fracture in anisotropic
bimaterial full-space.

Example 1. Horizontal crack in material #1
A horizontal crack under a uniform pressurep is shown in

Fig. 1. The crack has a length,2a, and is located at a

distance,d, to the interface. The Poisson ratios for both
materials #1 and 2 are the same, i.e.n1 � n2 � 0:3, while
the ratio of the shear moduliG2=G1 varies. A plane stress
condition is assumed. In order to calculate the SIFs at the
crack tip A or B, 20 quadratic elements were used to discre-
tize the crack surface. The results are given in Table 1 for
various values of the shear moduli ratio. They are compared
to the results given by Isida and Noguchi [37] using a body-
force integral equation method and those by Yuuki and Cho
[17] using a multi-domain BEM formulation. As can be
observed from this table, the results compare quite well.

The mode III SIF was also calculated when the crack
surface is loaded by a uniform anti-shear stressq. The
SIFs calculated by the present method are:KIII =q

����
pa
p �

1:3648 and 1.0534 ford=2a� 0:05 and 0.5, respectively
when G2=G1 � 0:25; andKIII =q

����
pa
p � 0:8927 and 0.9739

for d=2a� 0:05 and 0.5, respectively, whenG2=G1 � 2:0.
The effect of material anisotropy on the SIFs was also

studied for this example. The anisotropic elastic properties
in material #1 were assumed to be those of glass/epoxy with
E1 � 48:26 GPa; E2 � 17:24 GPa; G12 � 6:89 GPa;
n12 � 0:29. For material #2, a graphite/epoxy withE1 �
144:8 GPa; E2 � 11:7 GPa; G12 � 9:66 GPa; n12 � 0:21
was selected [38]. The material axisE1 in materials #1
and #2 makes anglesa1 anda2, respectively, with respect
to the horizontal direction (Fig. 1).

Figs. 2–4 show the variation of the SIFs at tips A and B
with the anglea2 as it varies between 0 and 908. In these
figures,a1 is 0, 45 and 908, respectively. These figures show
that while K1 decreases with increasinga2, KII reaches a
minimum betweena2 � 0 anda2 � 90:

Example 2. Vertical crack intersecting an interface
Consider a vertical crack intersecting an interface and

subjected to far-field horizontal stresses as shown in Fig.
5. The horizontal far field stresses applied in materials #1
and #2 are, respectively,s1 ands2 �� s1G2=G1�: The Pois-
son ratiosn1 andn2 are again assumed to be equal to 0.3 and
the shear modulus ratioG2=G1 is assumed to vary. The
distance of the crack tips A and B to the interface are the
same, i.e.d1 � d2 � a; the half-length of the crack. Again, a
plane stress condition is assumed and 20 quadratic elements
were used to discretize the crack surface. The SIFs at the
crack tips A and B are listed in Table 2 for several values of
the shear modulus ratio, and are compared to those given by
Isida and Noguchi [37]. Again, the results between the two
numerical analyses compare quite well.

Example 3. Interfacial horizontal crack in infinite bima-
terials

An interfacial crack along thex-axis of length 2a is shown
in Fig. 6. The crack surface is under a uniform pressurep
and the materials can be either isotropic or anisotropic.
Twenty quadratic elements were used to discretize the
crack and the characteristic length is assumed as 2a.

The normalized SIFs under plane stress condition are

E. Pan, B. Amadei / Engineering Analysis with Boundary Elements 23 (1999) 683–691 687

Fig. 1. A horizontal crack under uniform pressure within material #1 of an
infinite bimaterials.



listed in Table 3 for various values of the shear modulus
ratio G1=G2 (with n1 � n2 � 0:3�; and are compared to the
exact solution proposed by Rice [4]. A very good agreement
is found between the numerical analysis and the exact solu-
tion.

The SIFs at the crack tips of an interfacial crack were also
calculated for the anisotropic bimaterial case. The anisotro-
pic elastic properties in materials #1 and #2 are the same as
those in Example 1. While the material axisE1 in material
#2 was assumed to be along the horizontal direction (i.e.
a2 � 0�; theE1-axis in material #1 makes an anglea1 with
respect to the horizontal direction. The interfacial SIFs at
crack tip B obtained by the present method are listed in

Table 4 and compared to the exact solutions proposed by
Wu [12]. Table 5 lists the results when theE1-axis in mate-
rial #1 is along the horizontal direction�a1 � 0� and theE1-
axis in material #2 makes an anglea2 with respect to the
horizontal direction. Tables 4 and 5 indicate that the present
method can also be used to calculate accurately the inter-
facial SIFs.

6. Conclusions

A BEM formulation has been proposed for fracture
mechanics analysis of cracked 2D anisotropic elastic bima-
terials in which the displacement and traction integral equa-
tions are collocated on the outside boundary (uncracked
boundary) only and on one side of the crack surface only,
respectively. Since in the present BEM formulation, the
displacements or tractions are used as unknowns on the
outside boundary and displacement differences as
unknowns along the crack surface, the method proposed
herein combines the best attributes of the traditional displa-
cement BEM and the DDM. While the Cauchy singularity in
the displacement equation is avoided by the common rigid-
body motion method, the hyper-singularity in the traction

E. Pan, B. Amadei / Engineering Analysis with Boundary Elements 23 (1999) 683–691688

Fig. 2. Variation of the SIFs at crack tips A and B of Fig. 1 with material
anglea2 when material anglea1 � 08:

Fig. 3. Same as in Fig. 2, but with material anglea1 � 458:

Fig. 4. Same as in Fig. 2, but with material anglea1 � 908:

Fig. 5. Vertical crack intersecting an interface under far-field stresses.



equation is handled by introducing a new Gauss quadrature
formulae which is very similar to the traditional weighted
Gauss quadrature but with a different weight.

Three numerical examples related to a crack in an infinite
bimaterial full-space were selected to show that with the
current BEM formulation, very accurate SIFs can be
obtained. These examples also show the effect of material
anisotropy on the SIFs. Since the present method is simple
and can be used for curved cracks, it will be straightforward
to extend the current BEM formulation to analyze fracture
propagation in 2D anisotropic bimaterials, which is
currently under investigation by the authors.
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Appendix A. Complete Green’s functions for anisotropic
elastic bimaterials

In this appendix, we present the complete Green’s func-
tions for the displacementUp

kl and tractionTp
kl: Special

superscripts and subscripts (1) and (2) are used exclusively
to denote that the corresponding quantities are in materials
#1 �y . 0� and #2�y , 0�, respectively.

A.1. For source (s) and field (z) points in materials #1
�y . 0�

Up
kl � 21

p
Re{

X3
j�1

A�1�lj �ln�z�1�j 2 s�1�j �H�1�jk

1
X3
i�1

W11
ji ln�z�1�j 2 �s�1�i � �H�1�ik �} �A1�

Tp
kl � 1

p
Re

(X3
j�1

B�1�lj

"
m�1�j nx 2 ny

z�1�j 2 s�1�j

H�1�jk

1
X3
i�1

W11
ji

m�1�j nx 2 ny

z�1�j 2 �s�1�i
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where the matrixH is defined in Eq. (5) with the anisotropic
elastic properties of material #1, and

W11 � B21
�1� �Y�1� 1 �Y�2��21� �Y�1� 2 �Y�2�� �B�1� �A3�
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Table 2
Comparison of the SIFs (vertical crack)

G2/G1 Isida and Noguchi [37] Present

KA
I =s1

����
pa
p

KB
I =s2

����
pa
p

KA
I =s1

����
pa
p

KB
I =s2

����
pa
p

0.1 1.062 1.153 1.063 1.156
0.3 1.015 1.064 1.016 1.066
0.5 1.000 1.028 1.001 1.029
0.8 0.997 1.006 0.998 1.007

Fig. 6. Interfacial crack within infinite bimaterials.

Table 3
Comparison of the SIFs for isotropic case (interfacial crack)

G1/G2 Exact [4] Numerical

KI =p
����
pa
p

KII =p
����
pa
p

KI =p
����
pa
p

KII =p
����
pa
p

2.0 1.0000 0.0746 1.0038 0.0747
3.0 1.0000 0.1126 1.0055 0.1122
4.0 1.0000 0.1357 0.9999 0.1347
5.0 1.0000 0.1513 0.9986 0.1497
10.0 1.0000 0.1875 0.9954 0.1839
100.0 1.0000 0.2276 0.9917 0.2206

Table 4
Comparison of the SIFs for anisotropic casea2 � 08 (interfacial crack)

a1 Exact [12] Numerical

KI =p
����
pa
p

KII =p
����
pa
p

KI =p
����
pa
p

KII =p
����
pa
p

0 1.0000 2 0.0382 1.0054 2 0.0384
30 0.9968 2 0.0349 1.0022 2 0.0351
45 0.9965 2 0.0318 1.0019 2 0.0320
60 0.9971 2 0.0290 1.0025 2 0.0291
90 1.0000 2 0.0264 1.0054 2 0.0265

Table 5
Comparison of the SIFs for anisotropic casea1 � 08 (interfacial crack)

a2 Exact [12] Numerical

KI =p
����
pa
p

KII =p
����
pa
p

KI =p
����
pa
p

KII =p
����
pa
p

0 1.0000 2 0.0383 1.0054 2 0.0384
30 0.9941 2 0.0334 0.9995 2 0.0335
45 0.9936 2 0.0289 0.9989 2 0.0290
60 0.9946 2 0.0247 1.0000 2 0.0248
90 1.0000 2 0.0208 1.0054 2 0.0209



A.2. For source point (s) in material #1�y . 0� and field
point (z) in material #2�y , 0�

Up
kl � 21

p
Re{
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ji ln�z�2�j 2 s�1�i �H�1�ik �} �A4�

Tp
kl � 1

p
Re
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W12
ji

m�2�j nx 2 ny
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" #8<:
9=; �A5�

with

W12 � B21
�2� �Y�2� 1 �Y�1��21� �Y�1� 1 Y�1��B�1� �A6�

A.3. For source (s) and field (z) points in material #2�y , 0�
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kl � 21

p
Re{
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where the matrixH is defined in Eq. (5) with the anisotropic
material properties of material #2, and

W22 � B21
�2� �Y�2� 1 �Y�1��21� �Y�2� 2 �Y�1�� �B�2� �A9�

A.4. For source point (s) in material #2�y , 0� and field
point (z) in material #1�y . 0�

Up
kl � 21

p
Re{

X3
j�1

A�1�lj �
X3
i�1

W21
ji ln�z�1�j 2 s�2�i �H�2�ik �} �A10�
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with

W21 � B21
�1� �Y�1� 1 �Y�2��21� �Y�2� 1 Y�2��B�2� �A12�

Appendix B. Asymptotic expressions of displacements at
an interfacial crack-tip

The derivative of the interfacial crack displacements

follows that of Gao et al.[16]. The relative displacement
vector on the crack face was given by Eq. (14) in which

c1 � 2����
2p
p

b2
; c2 � 2e2p1di1����

2p
p �1 1 2i1�b2 cosh�p1� ;

c3 � 2ep1di1����
2p
p �1 2 2i1�b2 cosh�p1�

�B1�

b �
�������������
2

1
2

tr�P2�
r

�B2�

1 � 1
2p

ln
1 1 b

1 2 b
� 1

p
tanh21b �B3�

d1 � 0; d2 � 1; d3 � 21 �B4�

Q1 � P2 1 b2I ; Q2 � P�P 2 ibI �; Q3 � P�P 1 ibI � �B5�
whereI is a 3× 3 identity matrix. In Eqs. (B2) and (B5), the
matrix P is given by

P� 2D21V �B6�
where D and V are two real matrices obtained from the
following relation:

Y�1� 1 �Y�2� � D 2 iV �B7�
In Eq. (16), the matrix function is given by

M �x� � D
b2

(
�P2 1 b2I �

2
�cos�1 ln x�1 21 sin�1 ln x��P2 1 b�sin�1 ln x�2 21 cos�1 ln x��P

�1 1 412� cosh�p1�

)
�B8�
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