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Solutions for one dimensional elastic waves in a continuously heterogeneous layer
are derived under fairly general material parameter constraints. These solutions
are further developed for the case corresponding to horizontally polarized
shear wave propagation under time harmonic conditions and a versatile Green’s
function due to a point source is derived, which includes material damping and
the presence of a traction-free horizontal surface. Subsequently, randomness in
the layer’s material parameters is introduced and the perturbation technique is
used for deriving mean values and covariances for the Green’s function. Through
a series of numerical example, this Green’s function approach is contrasted
with conventional formulations for layered media employing transfer matrix
techniques. The present approach is shown to be an efficient alternative which can
be used not only in conjunction with boundary element formulations for wave
scattering problems, but also in spectral representations of waves propagating
through layered media. © 1997 Elsevier Science Ltd
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INTRODUCTION

The propagation of waves in naturally occurring media
is the theoretical cornerstone of many diverse fields such
as seismology and earthquake engineering, acoustic and
electromagnetic signal transmission, noise control, sub-
surface exploration, etc. Since the focus of the present
work is one dimensional wave propagation in a con-
tinuously inhomogeneous and stochastic layer, the
most closely related field of application is seismically-
induced ground motions on the earth’s surface. The
estimation of ground shaking at a particular site is,
at present, an open problem as discussed in Bard,’
but its importance in earthquake hazard mitigation
and earthquake resistant design is paramount.

It is well known that local geological structure plays
an important role on the resulting seismic motions?
and recent major earthquakes have all provided
fresh evidence of this. The basic approaches for esti-
mation of site effects (excluding statistical techniques
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aimed at assessing certain gross site characteristics)
can be classified as follows: (i) instrument recordings
which produce measurements that are either reference
site specific or reference site independent.’ In addition,
there exist microtremor recordings, especially in
Japan, but their use remains controversial! since it is
difficult to discriminate seismic source effects from
local site effects; (ii) analytical/numerical methods
have been extensively used in recent years® and are
continuously developed in view of rapid advances in
electronic computer technology. Four basic categories
can be distinguished, namely theoretical solutions
which may be used for a limited number of problems,
ray methods which are essential high frequency
approximations, boundary techniques such as bound-
ary integrals, boundary elements and wave function
expansions and finally domain techniques such as
finite elements and finite differences. All these methods
have their advantages and disadvantages and each of
them can be effectively applied to a certain range or
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class of problems (e.g. Refs 5-10); (iii) physical mod-
elling, with very few exceptions, is basically underdeve-
loped probably because of economic reasons. It seems
possible, however, to conduct site response tests within
the context of shaking table and pseudodynamic
tests currently performed for earthquake engineering
studies."!

The factors which influence site effects are numerous
but the most important ones appear to be the follow-
ing: (i) surface topography, which can be classified
into ‘convex’ (hills, cliff borders) and ‘concave’ (valleys,
foothills). This change from conventional smooth,
rolling topography produces seismic motion amplifi-
cation at the crests and deamplification at the troughs
and the wave mechanisms responsible are diffraction,
focusing/defocusing and incident angle sensitivity;'>~!4
(ii) nonlinear behavior of soft soil deposits, which can
be classified as either sand or clay, when peak ground
accelerations are in the range 0-1-0-3g or higher;">~"’
(iii) trapping of seismic energy in soft layers bounded
by stiff layers, which leads to increased amplification
and is due to wave diffraction by subsurface topog-
raphy;? (iv) ground failures such as liquefaction and
earthquake-triggered landslides can have very important
consequences in earthquake engineering, but their
underlying physical mechanisms are very different and
have little to do with wave propagation; (iv) soil-
structure interaction is a rather localized phenomenon
which depends on the presence of large-size structures
or massive ones built on soft soil deposits;18 (v) various
phenomena associated with the general propagation of
seismic waves as they travel through soil layers (such
as geometric spreading, absorption, dispersion, energy
reflection, refraction and diffraction) which are due to
soil heterogeneity, layering, the presence of dis-
continuities or gross impurities, the presence of a
second phase in the ground such as water and general
randomness in the structure of the soil, all contribute
in modifying the seismic signals emanating from
bedrock.'®~2® Implicit in the study of these phenom-
ena is the ability to produce an accurate description
of the soil’s properties based on in-situ or laboratory
testing. 2%

Local site effects and the study of seismic wave propa-
gation through soil forms the link between seismology
and earthquake engineering. Furthermore, the influence
of the last few hundred meters of soil in modifying
incoming earthquake signals (that can be recorded at
rock outcroppings) is beyond dispute and all recent
destructive earthquakes have confirmed it. It is therefore
necessary to continue the development of wave propaga-
tion models through layered (e.g. Refs 5, 6 and 19) and
heterogeneous media (e.g. Refs 9 and 22). Besides eluci-
dating some of the various seismically-induced phenom-
ena observed at ground surface, these types of studies
have practical applications such as estimation of modi-
fied free field motions for soil-structure interaction,'®

construction of site-dependent response spectra for
earthquake resistant design,® etc.

In order to model randomness in local site effects, a
conceptually simple but computationally intense statis-
tical simulation of ground motions induced by seismicity
can be accomplished through use of conventional Monte
Carlo simulations.”” Newer, improved Monte Carlo
simulations involving up to three spatial coordinates
and capable of representing medium anisotropy through
the use of spatial coherency functions can be found in
the work of Ramadan and Novak.?® Alternatively, it is
possible to trace the filtering of the power spectral
density function of ground motions through topsoil by
modelling the upper soil layers as filters. For a linear
system under random loading with conventional dis-
tributions (such as Gaussian), the methodologies
developed for the corresponding deterministic problem
can easily be recycled, especially if stationary condi-
tions can be assumed and if the problem is solved in
the frequency domain. Since the structure of geological
media is extremely complicated and imprecisely known,
unless very detailed physical measurernents are carried
out, an dttractive alternative to sophisticated deter-
ministic analyses is to introduce stochasticity by
considering soil to have random material properties
and/or random layer geometry. A detailed review on
the representation of the ground as a stochastic
medium with emphasis on seismically induced motions
can be found in Manolis.”? As far as modelling of
uncertainties in the material properties and layer
geometry of the local site is concerned, the perturbation
approach is widely used in conjunction with appropriate
analytical or numerical techniques originally developed
for deterministic analyses. For instance, Kiyono et
al*® employ the discrete wave number technique origin-
ally introduced by Aki and Larner’! with perturbations
for evaluating the seismic response of layered soil strata
with irregular interfaces that fluctuate stochastically.
Examples focus on sites with two or three layers of
random thickness and of periodic structure in the hori-
zontal direction, while the results are in the form of
means and variances for the individual layer transfer
functions.

Most numerical work, however, employs the finite
element method. More conventional approaches follow
Taylor series expansions of the random states about
the deterministic one, as originally outlined in structural
mechanics by Vanmarke et al. [32] and Liu et al® As
examples we cite Refs 34 and 35 which employ the prob-
abilistic finite element method to examine layered soil
with random density, damping and wave speed as well
as a strain-dependent shear modulus under stochastic
input represented by the Kanai—Tajimi filter. In the
former reference, the mean and variance of the shear
strain is obtained through a Taylor series expansion of
the system matrices in the frequency domain. Also,
wave propagation through layered soil with random
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properties is examined in Ref. 36 by a Taylor series
expansion of the complex frequency response function
of each layer, which is subsequently compared with
Monte Carlo simulations. More novel finite element
approaches are based on expansions in the spatial
coordinate using stochastic functionals, such as the
polynomial chaos expansions pioneered in Ghanem
and Spanos.*” As an example, we cite the use of such
expansions in conjunction with a Fourier transform
with respect to time to model layered soil with stochastic
properties and resting on bedrock.”® In general, the
efficient solution of meaningful engineering problems
regarding local site effects and soil-structure inter-
action phenomena necessitates the use of coupled finite
clement-boundary element techniques.® A necessary
ingredient for the latter method is the existence of
appropriate fundamental solutions that are capable of
representing both radiation and material damping
effects so that only part of the far field that abuts the
near field needs to be modelled. Furthermore, the
introduction of material stochasticity in these numerical
models® allows for an overall representation of the
inevitable fluctuations in the structure of the geological
medium that are difficult, if not impossible, to quantify.

In brief, the paper is structured as follows: at first,
vector wave propagation in a three dimensional, con-
tinuously inhomogeneous medium is examined under
the restriction of wave dependence in only one of the
three orthogonal coordinates and for time-harmonic
conditions. Subsequently, an algebraic transformation
is applied to the uncoupled system of equations for the
three displacement components and a solution is
obtained subject to certain constraints on the variation
of the elastic modulus and density profiles. These con-
straints yield quite general and realistic wavespeed
profiles. Furthermore, the solution is cast in terms of a
Green’s function which includes the effect of a hori-
zontal, traction-free surface. Since it is of interest to
compare the continuously inhomogeneous medium
with the more commonly used layered one, a discussion
of the well-known transfer function approach for hori-
zontal layers is included. Finally, perturbations are
introduced for an efficient determination of Green’s
functions for wave propagation in viscoelastic hetero-
geneous media that exhibit small randomness in their
material properties. Closed form solutions for the
mean value and covariance of the wave speed profile
and of the corresponding fundamental solutions are
obtained that can be used within the context of
boundary element formulations for wave scattering
problems, as discussed in Refs such as 10 and 39. The
examples focus on a comparison of the afore-
mentioned models and the conditions under which
similarities in the response between continuously hetero-
geneous and layered geological media are observed are
discussed. Finally, numerical results are obtained for
stochastic wave propagation through heterogeneous

ground which are then compared with Monte Carlo
simulations.

GOVERNING EQUATIONS

The equations governing elastic waves in a hetero-
geneous medium [see Fig. 1(a)] are (e.g. Aki and
Richards?),

Pux n = [)‘e + 2.u'ux,x],x + [u(ux,y + uy,x)],y

+ [l s + 12)) 2 (la)
puy, = [Ae +2uuy | + [y, +us )] .

+ [y, x + e )] x (1b)
puz o = [Ae+ 2uu; o] o+ [p(uy x + Uy )]

+ lu(uz,y, +u,2)] (Ic)

where the dilatation, e, is u, x + 4, , + u, , and there are
no body forces. For time harmonic waves, of the form
exp [—iwt], where w = 27f is the frequency in rad/s, in
a layered medium, i.e. one in which the material param-
eters vary only in one direction (taken to be the x
direction here for convenience in the mathematical
manipulations rather than the usual physically based
choice of the z direction), these equations reduce to

—puluty = [Ne + 2pu ] x + ity y + Uy, ),y

+ g,z U ) 2 (2a)
—pwiu, = Xe , + 2uu, ,, + p(uy,, +u, )

+ [u(uy, x +uxy)] (2b)
—pulu, = Ne ; + 2ty o, + [y« + 1 )]

+ pls,y +uy2) (2¢)
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Fig. 1. (a) Depth variation of shear wave speed ¢(z) in a
continuously heterogeneous medium; (b) typical source—
receiver configuration.
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ONE DIMENSIONAL WAVES

For waves with only an x dependence, these equations
further reduce to

_pwzux = [(/\ + zﬂ)ux,x],x (3a)
—pwzuy = [ﬂuy,x],x (3b)
—pw2uz = [uuz,x],x (3(:)

These form an uncoupled system of equations on u,, u,

and u, of the form discussed by Shaw and Makris*
for an analogous acoustic problem reduced to one
dimension,

d[K;(x) duy(x)/dx]/dx + Ny(x)u;(x) = 0 4)

where u;, u, and u3 are u,, u, and u;, respectively, and
K, is (A\+2p) and K, = K; = p with N equal to puw?
in all these cases.

A transformation,
implied) leads to

K& T;/dx" + [(dK;/dx)?/(4K7)
— (Ki/dx")/(2K) + (N/K) T} =0 (5)
If the coefficient of the second term is a constant, ﬂf, i.e.
((dKi/dx)?/ (4K?) - (d*Ki/dx")/(2K) + (N/K)]| =
(6)

and N(x) is related to K;(x), or more conveniently, to
W, = Kil/ 2 through

N(x) = 4;(x)W; + B;W} (7)

the material relationship between density and the Lamé
parameters would be defined by

d*W,/dx* + (67 — BY)W,; = A;(x) (8)

where B; is a set of arbitrary constants and A4;(x) is a set
of arbitrary functions, chosen so that this equation may
be easily solved for W;(x). Then the equation in 7;(x) is

d*T;(x)/dx? + B Ti(x) = 0 (9)
whose solution is, for real 47,
(2)

1/2 .
T; :Ki/ u; (no summation

Ty(x) = ¢ exp [iB;x] + ¢{”) exp [~iB;x] (10)

representing waves in the =+x direction. Note that
displacements and strains travel with constant phase
speed (. Since the original displacements are wu; =
K,._l ZT,-, this provides a position dependent wave
amplitude, i.e.

u(x) = K2 (x){c!" exp [iBix] + ¢ exp [—iBix]}

(11)
The actual material variation is found by fitting observa-
tions to solve eqn (8) for W; and eqn (7) for N, essen-

tially simultaneously. Some examples of the acoustic
case, i.e. one dependent variable, are given in Shaw

and Makris,®® for such forms as

M
4(0) = + 8%+ 3" (@) exp (—();x)  (12)
j=1

leading to forms for W;(x) such as

Wi(x) = —(a¥ + 80x)/ 2}
+ Z A exp (-

+a )exp (Aix) -+-a ) exp (—Aix) (13)
with )\,2 =B, - ﬁ,- and with eqn (7) defining N in terms
of W,’.

The dilatation, e, is simply w, ,, while the mathe-
matical rotations are w, = u, , and w, = —u, ,. They
are then found as

= S WL explif]

71)1 x)/((%) - ’\12)

+ P exp [~iBix]} (14)

= 4 W explisen)

+ cgz) exp [—ifyx]} (15)
w, = __{W3(x)[cgl> exp [i83x]
+ ¢ exp[~ifsx]} (16)

These still have the form of propagating waves but
with position dependent amplitudes and modified
wavenumbers.

Although this may seem to be an ‘inverse’ approach,
the form of eqns (14-16) allows for quite general
solutions for W; and thus N as well. While this is a
very restricted solution in that it represents waves
propagating in only one direction, that of the layering,
it is of interest in such activities as seismic prospect-
ing, although such uses generally involve transient
waves for which this formulation would be a Fourier
transformed form.

FUNDAMENTAL SOLUTION

In order to obtain a fundamental solution (Green’s
function) for the problem described in the previous
section, eqn (4) will be solved for a point source in the
infinite continuum. As discussed in Shaw et al.!%% the
forcing function is of the form

Q(x,x0) = Qob(x — xo) (17)
and acts at source x, with magnitude Qg. Point x is the

receiver and a typical source—receiver configuration is
shown in Fig. 1(b). As a result, eqn (9) now reads as

V2T (x) + BT (x) = —K ""2(x)Qo8(x —x0)  (18)
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where T(x) and 3 are respectively identified with
T;3(x) and B, while V7 is the Laplacian. Thus, we are
considering horizontally polarized shear (SH) wave
propagation in the continuum with

A (x) = ulx)/p(x) = W K3(x)/N(x) (19)
as the position-dependent, local wave speed. Based on
the translational properties of the Dirac delta function
8, the right-hand side of eqn (18) can be written as
—K 7 (x0)Q0b(x — Xp). By replacing transformation
T(x), eqn (18) becomes

VK 2(x)U(x, x0)K ' (x0)}
+ F{K P (x)U(x, x0)K ' (x0)}

= —Qob(x — Xo) (20)

where displacement U(x, x,) can be viewed as the out-
of-plane component u, of eqn (3c) with both source
and receiver restricted to lie along the x-axis. The
bracketed expression in the above equation is identi-
fied upon inspection with the Green’s function G(r),
r=|(x—x), for the standard one-dimensional
Helmholtz equation.*’ Thus,

Gu(r) = Qoexp (i0r)/(21B) 21

by ignoring the ingoing wave contribution. Therefore,

U(r) = QoK 2 (x)K ™" (xo) exp (i8r)/(2i8)  (22)

where r is the radial distance between source and
receiver, while x; and x respectively are their depth
coordinates. Equation (22) is the exact fundamental
solution of the heterogeneous Helmholtz equation [see
also eqn (10)] provided the constraint dictated by eqn
(6) is satisfied. Finally, in order to restore the appro-
priate dimensionality back to the fundamental solution,
U(r) must be multiplied by the reference stiffness K at
infinite depth (or at the bottom of a layer) where a
homogeneous state is assumed to exist, i.e.

G(r) = K(x — 00)U(r) = G(r)Kso /(W (x) W (x0))
(23)
where G is now the Green’s function for the hetero-
geneous medium.

Viscoelastic material behavior can be introduced in the
above fundamental solution through a complex number
representation of the shear modulus ©.*2 For the simple
(yet realistic) case of Kelvin’s solid we have that

By = qo +1wq, (24)

where gq and ¢, are model parameters. The corresponding
wave number is

B = o/ = o/u, (25)
with real and imaginary parts given as
Re {8} = wv/p/q0

(26)
Im {8} = Re {B}/wq1/q0

The above equation indicates that g, is the average real
shear modulus g of the medium. Furthermore, ¢, can be
computed?? through the relation

6 = 2m\/wqi/q0 (27)

where § is the logarithmic decrement of cyclic motions
in a free-vibration environment. We finally note that
6§ =n/Q, where quality factor Q measures overall
energy loss per cycle of vibration due to material
damping.® Although the introduction of viscoelasticity
appears to be a somewhat ad-hoc procedure, it is con-
sistent with the present model and merely requires
the coefficients appearing in eqn (13) to be complex
quantities.

MATERIAL PARAMETER PROFILES

We now return to eqns (7) and (13) (without subscript i)
in order to recover realistic density, shear modulus and
shear wave speed profiles for a stratified medium. With-
out loss of generality, we reformulate the afore-
mentioned equations due to the presence of a complex,
frequency dependent wavenumber [(w) and retain a

limited number of terms,? i.e.

W (x,w) = ao/B* + ey exp (—x)/ (¥ + B)
+ a; exp (18x) + as exp (—18x)
N(x,w) = A(x)W(x,w)

= {0 + o exp (—yx)} W (x,w) (28)
and
c(x,w) = wW(x,w)//N(x,w) (29)

For problems where the depth coordinate increases
(x > 0), the a3 term in eqn (28) must be suppressed
because it leads to incoming waves.

Boundary conditions for material parameters W and
N are prescribed at the horizontal surface x =0 and
at depth x = L. The resulting set of ecquations for
determining constants «y, a;, a; and wavenumber 3
are

W(x=0)=W,=ay/8 +0o1/(¥ + )+
N(x=0) =Ny ={ag + a1} W
W(x = L) =W = ao/f +aiexp(—L)/(v* + 5)
+ apexp (i8L)
N(x=L)= N, = {ag+ ayexp (—7L)} W
(30)

A rather elegant solution results if the inhomogeneous
stratum depth L is large compared to the wavelength.?
In that case, terms exp (—yL) and exp (iBL) can be
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ignored. We therefore have
ag = AW,
o = G Wo — B,
oy =Wo—Wi—ay/(v' + )
B =5

with G, and 3, defined as wavenumbers that correspond
to the top and bottom of the inhomogeneous stratum,
ie.

(31)

ﬂo = Ld/Co and

B =w/ey (32)
There are insufficient conditions for determining
parameter ~, but parametric studies®> have shown that
values in the neighborhood of 0-1 produce realistic
wavespeed profiles for a wide range of inhomogeneous
soil deposits. Furthermore, v will be converted into a
random parameter in the discussion on media with
stochastic material parameters.

It should be noted at this point that the last part of eqn
(31) implies a wavenumber which depends solely on
values of the material parameters measured at large
depth, where the material is assumed to attain a
homogeneous structure. Furthermore, only the shear
modulus x4 =K = W? is a complex quantity, while
density p = N /w? must remain real for physical reasons.
By substituting all previous results in eqns (28), we recover
a complete solution for the material parameters as

W(x,w) = Wy + (B Wo— B W1) exp (—1x) /(" + 5)
+{Wo— Wy — (BWo — BW1)/(¥* + %)}

x exp(ifx)
N(x,w) = {B*W, + (B W, — B°W))
x exp (—yx)} W (x,w) (33)

From the above, the local wavespeed profile c(x) is
determined through eqn (29) and the corresponding
Green’s function is synthesized as indicated by eqns
(22) and (23).

METHOD OF IMAGES

The unidimensional wave propagation situation
described in the previous sections results in a stress
field with only one non-zero component, namely

Ox: = pOu,/0x (34)

In the presence of a horizontal, traction-free surface at
x =0 as shown in Fig. 1(b), stress component o,,
must vanish. This boundary condition is realized
through introduction of an image source reflected
across the horizontal plane, i.e. at x = —x;. Thus, the
augmented Green’s function is

G*(r,r',w) = G(r,w) + G(r',w) (35)

where r=|x —xy| and r’ =|x+ xy|. Substitution of
G*(r,r',w) into eqn (34) yields
9G(r,w) 8r  AG(r',w) ar"

or Ox or'  Ox

For receivers placed directly on the traction-free surface,
we have that » = r’ and, consequently

(36)

Oxz =

ar —xg or  x,
—=_70 — == 37
Ox r’ Ox r (37)
Thus, the correct boundary conditions are realized as
Oy, =0 (38)
irrespective of the particular form of G(r,w).
WAVE PROPAGATION THROUGH
HORIZONTAL LAYERS
The ensuing discussion is based on Safak’s®*® work,

who introduced some improvements in the frequency
domain method of Haskell® for studying site amplifica-
tion in layered media by using the discrete time wave
propagation technique. Consider first a soil layer with
density p, and shear wave speed ¢, resting on rock
with corresponding material properties p, and ¢, as
shown in Fig. 2(a). The reflection coefficient is defined as

R= (pr Cr — Ps Cs)/(prcr + 05 Cs) (39)
while ¢ = 7 is the one-way travel time for the SH wave
emanating from rock to reach the top of the overlying

soil deposit. Material damping due to internal friction
in the soil is introduced through the quality factor Q,

T“s Tur

TTTrY

h-cgTg (AN
(a)
ey 7T
Pr.Cr Tup/2
p, c.Q
-y 272
hz.cz't2 2
- (b)
T
p;c1vo1
h, =¢4T, 1
Pr,Cr

Fig. 2. Layered medium comprising of (a) one and (b) two soil
layers resting on rock.
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which measures energy loss per cycle of motion. As
previously mentioned, 1/Q is known as the dissipation
constant and is equal to 2 Im (c;)/Re(cs) in a complex
representation of the wave speed c,, while ratio ©/Q is
equivalent to the logarithmic decrement & of viscously
damped free vibrations. The solution methodology is
cast in the time domain by defining the usual trans-
mitted and reflected waves. Furthermore, attenuation
in the transfer function representing wave amplitude
reduction is handled through the introduction of a
low-pass filter with sampling time interval t = 7. The
Fourier transform of this transfer function is

= {(1+ R —i/4Q)exp (—i2xaf (1 - i/20)}
{1+ (R—i/4Q)exp (—idnfT(l — i/200}
(40)
where U,(f) and U,(f) respectively are the Fourier
transforms of the ground motions u(¢) and u.(t)
recorded at the soil free surface and at rock outcrop.
In the above, f is the frequency in Hertz. Finally,

approximate values for the layer eigenfrequencies f; as
1/4Q — 0 are

Ji = k/4T,

while the maximum amplification recorded at first
eigenfrequency is

k=135 (41)

|H2(f)lmax:(1+R)/(l '_R) (42)
Next, Safak® extends his approach to the multi-
layered (j = m,m—1,...,2,1) case, where j = m is the

top layer and the first (j = 1) layer rests on bedrock,
by employing matrix formalism. It is possible to get a
rather simple expression for the dimensionless transfer
function Hy(f) of the two layer site [see Fig. 2(b)] as

Hy(f) = M1+ Ry)(1+ Ry) exp (—i2nf (11 + 72))}
=+ {(1 + AR exp (—idnfr)
+ MR(R, + exp (—idnf1,))
+ MR, exp (—idnf (1) + 1))} (43)

where the damping parameters X; (j = 1,2) are defined
as

N =05(1—a)(1+q7)/(1—cq7") (44)
with

o; = (1 —sin8;)/ cosb;

6,=(In2)Q;T/7; < (45)

g=-exp(i2nfT)

Furthermore, all symbols appearing in the above
expression have been defined in conjunction with the
single layer case. The above results will be used in the

numerical examples section as a means of comparing
unidimensional shear wave propagation in continuously
inhomogeneous versus horizontally layered media.

PERTURBATION APPROACH

An efficient technique for handling medium stochasticity
is through use of the perturbation approach.'® Despite
its efficiency, however, the perturbation method has
several drawbacks: it is valid for small variabilities,
divergent (or secular) terms appear in the expansions,
and it is often necessary to compute higher statistical
moments in order to get a more detailed solution that
is valid for larger variabilities. Furthermore, this last
goal conflicts with the previous one, i.e. higher moments
contain secular terms that diverge faster than those
appearing in the lower order moments. There are ways
of combating divergence in the perturbation approach,
i.e. through the imposition of orthogonality conditions
or through the use of the Fourier transformation. First
order perturbations, however, remain a valuable analy-
sis tool due to their simplicity. In our case, it will be
recalled that the expressions for the wave speed profile
¢(x) and the Green’s function G(r) contained a param-
eter ~ that is now considered to be a member of
random set T, i.e.

03
10603 aamer
1686403 1

% 1666403
N
E

o 1646403 4
1626403

160E+03 7

1586+03 + —

H (m)

(a)

H (m)

(b)

Fig. 3. Shear wave speed (a) amplitude and (b) phase angle
variation with depth at f = 1 Hz.
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T = mt+En (46)
where +y,, is the mean value, ~; is a zero-mean fluctuation
and ¢ is a small number. By introducing the expectation
operator E, which denotes statistical averaging, we
have that E(y) = (y) =1, is the mean and that
(v =9m)?) = () = > is the standard deviation of
this random parameter. It is not necessary in a first
order perturbation to assume any particular distribution
for the random parameter at hand.

In view of the structure of the random parameter +, it
is assumed that all quantities of interest, including the
material properties W(x,~), N(x,v) and ¢(x,~) as well
as the Green’s function G(r,v), can be written in
terms of a mean value (subscript m) plus a fluctuation
(subscript f), i.e.,

W(x,7) = Wn(x) + eWi(x,7) (47)

etc. In all cases, the mean value is the deterministic
solution given in the previous sections and can be
recovered by replacing « by its mean value ~,,. This is
a consequence of the first order perturbation technique
since, in general, the mean value of a stochastic process
is not equal to the equivalent deterministic solution
obtained for the mean value of the dependent random
variable. The fluctuations are obtained by substituting
eqn (46) in the relevant expressions for the material
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Fig. 4. Green’s function (a) amplitude and (b) phase angle
variation with depth at f = 1 Hz, with ¢,,, = 0-9c.

properties, carrying out the expansions for small &,
and then equating powers of . The mean value is recov-
ered and the fluctuation has a zero value about the mean
due to linearization inherent in small argument expan-
sions. Before proceeding with the infinite layer solution,
the following small argument expansions must be given:

Y & Yo + €29

, X (48)
e M g e Mm E’foe_%"
In the above, v has units of 1/length. We first note here
that both local wave speed profile and the Green’s
function are stochastic processes and not random
fields since they depend, in addition to -, on one spatial
variable. The appearance of secular terms of the type
xexp (—yx) in the above expansions must also be
noted. These terms are, however, under the control of
the exponential decay factor and do not present a
problem since v, x > 1-0.

Infinite layer solution

In the infinite layer solution, constants oy, o; and
the wavenumber 3 remain deterministic and thus have
no fluctuating components. Using the perturbation
approach, we recover the mean values of, of, af
and f, that appear in eqn (31) for 7 = ~,,, while the
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Fig. 5. Green’s function (a) amplitude and (b) phase angle
variation with depth at f = 10Hz, with ¢, = 0-9c.
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fluctuation is as follows:

b = %6) = 2ol /(B3 +2) (49)

Given the above fluctuation, application of the per-
turbation method to the material parameters of the
problem respectively yields the fluctuations of the elastic
modulus and of the local wave speed as

Wi(x,7) = %Wr(x) (50)
with
Wi(x) = [e7* {—oT(x + 29m/ (B2 +72))}
+ a5 (B3 + )/ (B + 1) (51)
and
f(x,7) = yw? et (x) (52)
with

& (x) = [We(x) = Wa(x)
x {e7™*(~al'x)}/(ag + of e7™)]
+ (of 4 o e ™%) (53)

As before, the mean values Wy (x) and ¢y (x) are the
deterministic values given by eqns (28) and (29) with v
replaced by ~vy,-
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Fig. 6. Green’s function (a) amplitude and (b) phase angle
variation with depth at /' = 1 Hz, with ¢, = 0-8c.

Finally, the above development can now be used in
conjunction with the Green’s function, which is also
expressed as

G(r,7) = Gm(r) + £Ge(r,) (54)

where the mean value mg(r) = G, (r) is given by eqn
(23) with v replaced by ~,. Also, the fluctuation is

Gi(r,y) = —Gp(r){ W (x) Wi(xo,7)

+ Wan (50) Wi, 1)}/ { Wi () W (x0) }?
(55)

where x and x are source and receiver depth coordinates,
respectively.

Covariance matrices

The covariance matrix for the local wave speed is
defined as

Cg(xi!xj) = (Clz(xiaﬁ/-) C%(Xj, 7)) (56)
where x; and x; are two different depth coordinates. In

view of eqn (52), the above covariance matrix assumes
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the form
Cg(xiaxj) O,Zw 43 (xz)cfz(xj) (57)

which is non-isotropic and explicitly depends on the
standard deviation of ~;.

Similarly, the covariance of the Green’s function is
defined as

¢g(ri, 1) = (Ge(ri, 1)Gr(r;, 7)) (58)

where r; and r; are two different receiver locations. The
resulting expression is

cg(ris 1) = Gu(r)Gu(r;)0% - { Wt (o ){ (We(x:) (Wi(x,))
+ Win (x0) Wan (x:) ((W(x0) (Wi(x;))

+ W (30) Won () (( Wix0) (Wi(x:))

+ W (36) Win (x) (7 (x0))}

X (W (%) W (%0)] 2 [Win (%)) Wi ()]
(59)

where the individual covariances of Wy(x) were dis-
cussed in conjunction with eqn (51). Also, x; and x;
are the depth coordinates of radial distances r; and r;
respectively. The covariance matrix for the Green’s
function is also non-isotropic and depends on the
standard deviation of ~;.
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Fig. 8. Green’s function (a) amplitude and (b) phase angle
versus frequency for a 200 m layer with ¢y, = 0-8¢.

NUMERICAL EXAMPLES

In this section we examine SH wave propagation
through a stratified layer of sandstone 200m deep
under time-harmonic conditions. The following average
material properties are assumed at large depth

p =597 x 10° Pa
p = 1900 kg/m®
¢c=1770m/s
§=01dB

(60)

and, since we are examining seismic waves, the
frequency range of interest is 0-02—20 Hz.

Inhomogeneous medium

Sandstone is first modelled as a continuously inhomog-
eneous layer according to the methodology developed
herein. The reference case assumes that the material
properties given in eqn (60) apply at a depth greater
than x = 200m, past which the sandstone attains a
nearly homogeneous structure, while the shear modulus
at the horizontal surface (x = 0) is 81% of the value at
large depth. Density remains constant, as does damping,
so that the shear wave speed at the surface is 90% of
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Fig. 9. Normalized Green’s function amplitude versus
frequency for a 200m layer with (a) ¢y, = 0-9c and (b)
Cop = 0-8c.
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the value at large layer depth. Since we assume visco-
elastic material behavior, ¢(x) is a complex number
and Figs 3(a) and 3(b) respectively depict its amplitude
and phase angle profiles with depth at a frequency
f = 1Hz according to eqns (29) and (33). The wave
speed at the surface is therefore 1590 m/s, while at the
bottom of the layer a value of 1710m/s has been
reached.

Using this particular profile, the Green’s function
given by eqns (23) and (35) is plotted versus radial
distance r = |x — xg| in Figs 4 and 5 at frequencies of
1 and 10 Hz, respectively. The source—receiver configu-
ration is the former at depth x, =200m, while the
latter spans all the distance to top (x = 0) in 50 incre-
ments of 4m. Since the Green’s function is a complex
quantity, the above figures plot both amplitude and
phase angle. Concurrently shown is the Green’s function
of eqn (21), which corresponds to the equivalent homog-
eneous medium. Based on these plots, the following
points can be made: (i) The displacement u, = G(r,w)
amplitude due to a point source of unit magnitude is
rather flat at low frequencies, while at higher fre-
quencies it has a richer profile with nodes (roughly
every third of the distance down) where the signal is
nearly zero. The corresponding phase angle profile
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Fig. 10. Transfer function (a) amplitude and (b) phase angle
for a two layered medium with ¢op = 0-9¢pm.

also becomes more varied as frequency increases; (ii)
the presence of inhomogeneity in the form of continu-
ously varying material parameters results in signal
amplification of around 10% plus distortion in the
phase angle. This is due to dispersion of the original
signal as it travels through a medium whose wave
speed changes continuously. More detailed studies'®?
have shown that signal scattering becomes extremely
intense in the absence of damping, but then with no
distortion in the phase angle. We also note that the
presence of the free surface results in a doubling of
the signal’s amplitude at that location. Furthermore,
Fig. 6 plots the Green’s function versus depth for the
case where shear wave speed at surface is 80% of the
value at large depths and for the reference frequency
of 1 Hz. We observe that the result is higher scattering
of the signal with amplification in the neighborhood of
30%, plus greater phase angle divergence.

Next we have a series of spectral plots (i.e. G™(r,w)
versus w) in Figs 7 and 8 for ¢(x =0) =09c and
¢(x = 0) = 0-8¢c, respectively. Also, the source is at
x=200m while the receiver is at the surface. As
before, we have both amplitude and phase angle plots.
We observe that (i) the displacement amplitude varies
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Fig. 11. Transfer function (a) amplitude and (b) phase angle
for a two layered medium with ¢;op = 0-8¢ytm-
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with frequency and this variation becomes more pro-
nounced as the amount of inhomogeneity increases;
(i) the signal amplitude for the equivalent homog-
eneous case varies linearly, indicating that dispersion
remains constant as a wave travels through a homog-
eneous viscoelastic layer; and (iii) there are rather
minor changes in the phase angle as inhomogeneity is
introduced. Finally, Fig. 9 plots the displacement
amplitude for the inhomogeneous medium normalized
by the amplitude corresponding to the homogeneous
case (which is assumed to exist past a depth of
x =200m) for both cases previously discussed. The
important thing to notice is that the normalized signal’s
departure from a unit value becomes more pronounced
with increasing medium heterogeneity.

Layered medium

We now adopt the more conventional representation of
a geological medium such as soil in terms of horizontal
layers.>®!® At first, consider a sandstone layer with the
material properties given by eqn (60) acting as ‘bed-
rock’ (subscript r) on which another sandstone layer
(subscript s) of depth #=200m rests [see Fig. 2(a)].
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Fig. 12. Transfer function (a) amplitude and (b) phase angle
for a two layered medium with ¢, = 0-dcpi.

The only difference in material properties is that the
top stratum has a shear wave speed ¢ = ¢, =09c,.
Figure 10 plots the transfer function H,(f) amplitude
and phase angle corresponding to this case and given
by eqn (40). Figures 11 and 12 are similar plots for
¢; =0-8¢c, and ¢, = 0-4¢,, respectively. The relevant
data needed in conjunction with eqn (40) are

R=005 7=014s
R=011 7=013s (61)
R=043 7=014s

for the aforementioned three cases, respectively, while
T=002 and Q =n/6=131-42 for all. We observe
that the transfer function amplitude becomes less smooth
as the difference in layer to bedrock stiffness increases.
The peaks in the amplitude plots correspond to layer
eigenfrequencies and approximate values (whose accu-
racy is good for low values of damping 8, i.e. high
values of quality factor Q) are given by eqns (41) and
(42). Thus, for a single layer representation we have
eigenfrequencies that are about the same for all three
cases (fy ~1-8,54,89,...,Hz). Also, the first (maxi-
mum) amplitude peak at f = f] increases with increasing
reflection coefficient R and the values registered in Figs
1012 are 1-11, 1-25 and 2.51, respectively.
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Fig. 13. Transfer function (a) amplitude and (b) phase angle for
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Next, consider a configuration of two sandstone
layers of depth A, =h; =100m and wavespeeds
¢; = 0-8¢;, ¢; = 09¢, resting on the same ‘bedrock’ as
before [see Fig. 2(b)]. Figure 13 plots transfer function
Hy(f) amplitude and phase angle, while the relevant
data needed in conjunction with eqn (43) are

R, = 0-059 R, =0-053

T = 0-0705s 71 = 0-0626s
with 7' = 0-0089s and Q = 31:42 for both layers. The
two-layer representation gives a different picture as com-
pared to the single layer case with fewer eigenfrequencies

(fi =45, 13-5 and 19-5Hz) in the 20 Hz range, which
give very pronounced amplitude peaks.

(62)

Comparison

The continuously inhomogeneous case, which is mod-
elled through use of the Green’s function approach,
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and the horizontally layered case, which is modelled
through the transfer function approach, can now be
compared for the sandstone layer with ¢iop = 0-9¢cyim
[Figs 7 and 9(a) vs. 10] and ¢y, = 0-8cyyy [Figs 8 and
9(b) vs 11]. At first, we see that the phase angle picture
is very similar in all cases (homogeneous vs inhomog-
eneous, inhomogeneous vs layered) and we have four
to five crossings of the frequency axis. As far as the
amplitude picture is concerned, we observe the following
differences: (i) there is no longer a one-to-one corre-
spondence between the amplitude peaks and the phase
angle crossings in the continuously inhomogeneous
case, which means that the concept of layer eigen-
frequencies does not exist; (i) the amplitude curve
does not decay with frequency in the inhomogeneous
case as it does in the layered case (albeit at a very slow
pace); (iii) as f — 0, the layer transfer function always
approaches unity which implies layer and bedrock
move in unison under quasi-static conditions. This is
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Fig. 14. Wavespeed covariance matrix for 0., = 0-1 for the reference profile at f = 1 Hz.
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not the case for a continuously inhomogeneous medium,
since there is no discernible layer.

Stochastic medium

The effects of material stochasticity are next investi-
gated in Figs 14 and 15, which respectively plot the
covariances of the amplitudes of the local wavespeed
and of the Green’s function for the reference profile
described earlier [see eqn (60)] and for ¢op = 0-9¢c) and
at f = 1Hz. The standard deviation of the random
parameter -y is taken as o, = 0-1 for both cases. Also,
these covariances are computed up to the full layer
depth of 200m. We observe that the local wave speed
covariance matrix is symmetrical and has a maximum
relatively close to the free surface (x; =x, = 10m),
where the change in the mean wave speed profile is the
sharpest (see Fig. 3). This maximum value implies a
standard deviation for the wave speed which is 1-0%

G. D. Manolis, R. P. Shaw

of the deterministic (or mean) value of the wave speed
in that area. The covariance starts to decay rather
quickly with increasing distance (as the corresponding
mean wave speed profile becomes smoother), but
remains nonzero throughout, indicating a fully corre-
lated stochastic model. This is a consequence of the
heterogeneous structure of the sandstone stratum
considered herein.

The Green’s function covariance matrix is also
symmetric, remains constant for a large distance past
the source and decays rather rapidly as the free surface
is approached. This pattern corresponds to the mean
Green’s function amplitude profile (see Fig. 4), where
the signal remains flat close to the source and changes
rather quickly as the free surface (x = 0 or R = 200 m)
is approached. The maximum standard deviation
around the source corresponds to 0:4% of the deter-
ministic (or mean) value of the signal amplitude in
that region. Thus, the effect of stochasticity is less
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Fig. 15. Green’s function covariance matrix

for 0., = 0-1 for the reference profile at f = 1 Hz.
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pronounced in the signal amplitude as compared to the
wave speed profile. Furthermore, the covariance
remains nonzero throughout, indicating a fully corre-
lated stochastic model. This conclusion was checked
through normalization of the covariance matrix, which
gave correlation coefficients equal to unity. Next, the
Green’s function covariance matrices for the reference
case but at a higher level of inhomogeneity (cop =
0-8¢) and at a higher frequency (f = 10Hz) are
respectively plotted in Figs 16 and 17. The former case
is essentially a scaled version of the reference case,
much like the situation observed for the corre-
sponding mean values of the Green’s function (see
Figs 4 and 6). The latter case gives a rich surface
profile with nodes where the covariance approaches
zero which corresponds to the nearly zero amplitude
points for the mean Green’s function amplitude values
of Fig. 5.

The results obtained for the Green’s function by the

195

present methodology are finally compared against the
results of routine Monte Carlo simulations (MCS)44 in
Figs 18 and 19. Comparisons for the local wave speed
yield similar conclusions and are omitted in the interest
of brevity. Since the solution given by the present
methodology is also the mean value predicted by first
order perturbations, Fig. 18 first serves to gauge the
level of agreement between the perturbation technique
and the MCS, which were conducted for N =400
samples at each spatial point. We obscrve a drift
between the two sets of results as the radial distance
increases, which approaches 10% at R=200m (the
surface). Part of this drift is due, of course, to the fact
that the mean stochastic solution is not equal to the
deterministic one. This part, however, is deemed to be
quite small since the variance specified for random
parameter v is only 0-1. Most of the drift is due to
round-off error in the particular MCS used herein,
which was verified by reconstituting the mean and
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Fig. 16. Green’s function covariance matrix for o, = 0-1 for the reference profile at f = 1 Hz but with ¢, = 0-8¢c.
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variance of vy from its realizations. This error in the
mean values implies that there will be a divergence in
the MCS for the covariance matrix at large r, since
signal realizations will be subtracted from mean values
at a particular grid point that have drifted from their
reference position. As shown in Fig. 19, this is indeed
the case: the percentage error is negligible and of the
order of a few percentage points in the region close to
the origin, but grows rapidly past 50m for the source.
This distance corresponds to the onset of detectable
error in the Green’s function mean amplitude simu-
lations of Fig. 18. Since the error in the covariance
simulations grows more rapidly than that in the mean
value simulations, Fig. 19 plots up to R = 100m from
the source, where an error level of 10% has already
been reached. Finally, as was discussed in Ref. 10,
MCS are an order of magnitude more time consuming
as compared to the perturbation approach.
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CONCLUSIONS

This work presented a Green’s function approach for
wave propagation in a continuously inhomogeneous
medium, given time harmonic conditions and under
the assumption that the material parameters of the
problem vary in one principle direction only. The
Green’s function is obtained through an algebraic
transformation technique. As such, it depends on a
priori established relations between elastic modulus
and density which, however, lead to realistic local
wave speed profiles. Furthermore, the presence of a
traction-free horizontal surface is accounted for by
the method of images.

The Green’s function is a versatile tool that can be
integrated within a boundary integral equation formu-
lation so as to address wave scattering and diffraction
problems in inhomogeneous media. Furthermore,
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Fig. 17. Green’s function covariance matrix for o, = 0-1 for the reference profile at f = 10 Hz.
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Fig. 18. (a) Amplitude and (b) percentage error in the Green’s
function mean value as computed by the present method and
by MCS for the reference profile at f = 1 Hz.

when appropriately normalized, it can serve as a transfer
function for wave propagation through a continuously
inhomogeneous soil deposit. It can therefore be used
as an alternative to conventional transfer functions for
horizontally layered media, and especially for cases
where layer interfaces are not clearly defined.

Next, randomness was introduced in the Green’s

% error cov(G)

Fig. 19. Percentage error (absolute value) in the Green’s
function covariance matrix as computed by the present method
and by MCS for the reference profile at f = 1 Hz.

functions and, through the use of the perturbation
method, fundamental solutions were developed for the
case of one-dimensional wave propagation in a sto-
chastic heterogeneous medium. These results, which
were in the form of mean values and covariances, were
used to examine seismic wave propagation through geo-
logical media whose material parameters are both
position-dependent and fluctuate about their mean
values. Furthermore, these results were compared
against standard Monte Carlo simulations that are
almost two orders of magnitude more computationally
involved than the present approach. Finally, the
methodology is also applicable to vector wave propa-
gation through the use of Helmholtz’s decomposition
of the displacement field into dilatational and rota-
tional components. Thus, complete seismically-induced
ground vibrations that include both pressure and shear
waves can be examined.
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