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Abstract

In this paper a new boundary method for problems of free vibrations of plates is presented. The method is based on mathematically

modelling of the physical response of a system to external excitation over a range of frequencies. The response amplitudes are then used

to determine the resonant frequencies. So, contrary to the traditional scheme, the method described does not involve evaluation of

determinants of linear systems. The method shows a high precision in simply and doubly connected domains. The results of the

numerical experiments justifying the method are presented.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Free vibrations; Plates; Method of fundamental solutions; Multipole expansion
1. Introduction

The free vibrations of an isotropic thin elastic plate are
described by the following equation:

rh
q2u

qt2
þDr4u; u ¼ uðx; tÞ; x 2 O � R2. (1)

Here u is the normal displacement of the middle surface of
the plate, r, h and D are the volume density, the thickness
and the rigidity of the plate.

Considering harmonic vibrations

uðx; tÞ ¼ wðxÞ expðiotÞ

the governing equation can be written in the following
dimensionless form

r4w� k4w ¼ 0; k4
¼

rha4o2

D
, (2)

where a is a typical linear size of the plate. The problem of
free vibration is to find the real k for which there exist non-
null functions w verifying (2) and some homogeneous
boundary conditions:

B½w� ¼ 0; x 2 qO. (3)
e front matter r 2006 Elsevier Ltd. All rights reserved.

ganabound.2006.06.004

ess: reutskiy@bars.net.ua.
The operator of the boundary conditions B½. . .� will be
specified below.
The problems (2), (3) is a classical problem of mathema-

tical physics. Apart from a few analytically solvable cases
[1–3], there is no general solution of this problem. Therefore,
a large number of numerical methods have been developed
for many practical problems. The usual approach for
eigenvalue problems with a positive defined operator is to
use the Rayleigh minimal principle. See [4–6] for more details
and references. Then, using an approximation for w with a
finite number of free parameters, one gets the same problem
in a finite-dimensional subspace which can be solved by a
standard procedure of linear algebra, e.g., see [7,8]. The
global basis functions [9–11] as well as finite elements [12,13]
are used for this approximation.
Recently, some new powerful numerical techniques have

been developed in this field. These are the differential
quadrature methods proposed by Bellman and coworkers
in 1972 [14], its recent version—the generalized differential
quadrature (GDQ) approach [15,16] and the discrete
singular convolution (DSC) algorithm which can be
regarded as a local spectral method [17,18].
The boundary methods [19], in particular, the method of

fundamental solutions (MFS) [20,21] are convenient in
application to the problems (2), (3).
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In the framework of the boundary methods a general
approach to solving these problems is as follows. First,
using an integral representation of w in the BEM, or an
approximation over fundamental solutions in MFS, one
gets a homogeneous linear system AðkÞq ¼ 0 with matrix
elements depending on the wave number k. To obtain the
non-trivial solution the determinant of this matrix must be
zero:

det½AðkÞ� ¼ 0. (4)

To get the eigenvalues this equation must be investigated
analytically or numerically. This technique is described in
[22–26] with more details. In the two latest papers there is a
complete bibliography on the subject considered.

Another technique is proposed in [27–29]. This is a
mathematical model of physical measurements when the
resonance frequencies of a system are determined by the
amplitude of response to some external excitation.

Let us consider the eigenvalue problem:

L½w� þ lw ¼ 0; x 2 O � R2; B½w� ¼ 0; x 2 qO. (5)

The method presented is as follows. Let us extend the
operator of the problem from the initial domain O into a
more wider O0. In particular case O0 ¼ R2. Let wpðxÞ be a
particular solution of the PDE

L½w� þ lw ¼ f ðxÞ; x 2 O0,

where f ðxÞ ¼ 0 for x 2 O � O0. If wh is the solution of the
boundary value problem

L½wh� þ lwh ¼ 0; x 2 O,

B½whðxÞ� ¼ �B½wpðxÞ�; x 2 qO,

then, the sum wðx; lÞ ¼ wh þ wp satisfies (5). Let F ðlÞ be
some norm of the solution w. This function of l has
extremums at the eigenvalues and, under some conditions
described below, can be used for their determining.

The outline of this paper is as follows. The main
algorithm is described in Section 2. In Section 3, we give
numerical examples to illustrate the method presented for
simply and multiple connected domains. In particular, the
case of doubly connected region with the inner region of
vanishing maximal dimension which is important for
technical applications is considered here.

2. The main algorithm

2.1. 1D case

For the sake of simplicity, let us consider 1D problem of
free vibrations of a homogeneous beam with simply
supported endpoints (SS conditions).

q2u
qt2
þ

EI

rS

q4u
qx4
¼ 0; 0pxpl, (6)

uð0; tÞ ¼
q2u

qx2
ð0; tÞ ¼ 0; uðl; tÞ ¼

q2u

qx2
ðl; tÞ ¼ 0,
where E is Young’s modulus, r is density, S and I are the
area and moment of inertia of the cross section. Let us
consider the harmonic vibration

uðx; tÞ ¼ wðxÞeiot.

The eigenvalue problem, can be written in the dimension-
less form as follows:

d4w

dx4
� k4w ¼ 0, (7)

wð0Þ ¼ wð2Þð0Þ ¼ wð1Þ ¼ wð2Þð1Þ ¼ 0, (8)

where

k4
¼

rSl4o2

EI
. (9)

It can be proved that k is a dimensionless value. The
problem (7), (8) has a well-known solution:

kn ¼ np; jnðxÞ ¼ sinðnpxÞ.

On the other hand, the differential operator of the problem
can written as a product

d4

dx4
� k4

¼
d2

dx2
� k2

� �
d2

dx2
þ k2

� �
�L2ðkÞL1ðkÞ.

Let us assume that ka0, then, the two singular solutions
corresponding these two operators are

F1ðx; xÞ ¼ expðikjx� xjÞ; F2ðx; xÞ ¼ expðkjx� xjÞ. (10)

The MFS solution of (7), (8) can be written in the following
way:

w ¼ q1F1ðx; x1Þ þ q2F2ðx; x1Þ þ q3F1ðx; x2Þ þ qF2ðx; x2Þ

¼ q1e
ikðx�x1Þ þ q2e

kðx�x1Þ þ q3e
�ikðx�x2Þ þ q4e

�kðx�x2Þ,

where x1o0 and x241 are the positions of the MFS source
points.
Using the boundary conditions (8) and setting equal to

zero the determinant of resulting linear system we get

1 1 1 1

�1 1 �1 1

eik ek e�ik e�k

�eik ek �e�ik e�k

���������

��������� ¼ 0,

or after simple transforms:

ðeik � e�ikÞðek � e�kÞ ¼ 0.

We get the wave numbers kn as solutions: sinðkÞ ¼ 0, or
k ¼ np. Thus, MFS gives the exact solution. Note that in
multidimensional cases such computations are not so
simple and are time consuming.
According to the technique presented we solve the

inhomogeneous problem:

d4w

dx4
� k4w ¼ f ðxÞ; wð0Þ ¼ wð2Þð0Þ ¼ wð1Þ ¼ wð2Þð1Þ ¼ 0.

(11)

Here x 2 ½A;B�, where ½A;B� � ½0; 1� is a large enough



ARTICLE IN PRESS
S.Y. Reutskiy / Engineering Analysis with Boundary Elements 31 (2007) 10–2112
interval. The function f ðxÞ is defined in ½A;B� and f ðxÞ ¼ 0
for x 2 ½0; 1�. Under this condition when x 2 ½0; 1�, any
solution of (11) satisfies (7). The general solution of (11)
now can be written in the form

w ¼ q1e
ikðx�x1Þ þ q2e

kðx�x1Þ þ q3e
�ikðx�x2Þ þ q4e

�kðx�x2Þ þ wp,

(12)

where wp is the particular solution corresponding to the
right-hand side f . We can take

wp ¼ eikjx�xextj or wp ¼ ekjx�xextj; xexte½0; 1�,

i.e., in the same form as the MFS basis functions (10). The
particular solution can be also taken in the form of a
travelling wave wp ¼ e�ikx or as a function with the
singular point in infinity wp ¼ e�kx. All these particular
solutions correspond to f equal to zero inside the solution
domain. Note that we do not need the explicit form of f

because we deal with the particular solution only.
Substituting (12) in the same homogeneous boundary

conditions (8) now we get an inhomogeneous 4� 4 linear
system for each k:

q1e
�ikx1 þ q2e

�kx1 þ q3e
ikx2 þ q4e

kx2 ¼ �wpð0Þ;

�k2q1e
�ikx1 þ k2q2e

�kx1 � k2q3e
ikx2 þ k2q4e

kx2 ¼ �wð2Þp ð0Þ;

q1e
ikð1�x1Þ þ q2e

kð1�x1Þ þ q3e
�ikð1�x2Þ þ q4e

�kð1�x2Þ ¼ �wpð1Þ;

�k2q1e
ikð1�x1Þ þ k2q2e

kð1�x1Þ � k2q3e
�ikð1�x2Þ

þk2q4e
�kð1�x2Þ ¼ �wð2Þp ð1Þ:

8>>>>>>><>>>>>>>:
(13)

Let us introduce the norm of the solution as

F ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt

l¼1

jwðxt;lÞj
2

vuut ; Fd ðkÞ ¼ F ðkÞ=F ðk0Þ, (14)

where F ðk0Þ is the scaling value, k0 is a reference wave
number and the points xt;l are randomly distributed in
½0; 1�. In all the calculations presented in this section we use
Nt ¼ 7. Note that the method is not very sensitive to the
number of points xt;l . But it is more important, they should
be placed in an irregular way. For instance, the mode wn ¼

sinðnpxÞ is equal to zero when x ¼ 1=n. The function F dðkÞ

characterizes the relative value of the response of the
system to the outer excitation.
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Fig. 1. The resonance curve
In Fig. 1 the value F d as a function of the wave number k

is shown. The graph contains large sharp peaks at the
positions of eigenvalues. Generally speaking, this reso-
nance curve can be used to determine the eigenvalues in the
same way as det½AðkÞ� in the technique described above.
However, the graph Fd ðkÞ is a non-smooth one, as it is
shown in the right-hand part of the figure with more
details. This can be explained by the following reasons. For
any choice of the particular solution wp listed above, the
system (13) has an exact solution, e.g., q1 ¼ 0, q2 ¼ �e

kx1 ,
q3 ¼ 0, q4 ¼ 0 for wp ¼ ekx. As a result the total solution
wðxÞ ¼ 0, for x 2 ½0; 1�. So, here we have F ðkÞ which is
equal to zero with machine precision accuracy when k is far
from eigenvalues; F ðkÞ grows considerably in the neigh-
bourhood of the eigenvalues when the linear system
becomes almost degenerated. And a smoothing procedure
is needed to get an appropriate curve which is convenient
for applying an optimization procedure.
The smoothing procedure consists of introducing a small

parameter in the governing equation. Let us consider the
problem (cf. (11)):

d4w

dx4
� ðk4

� iek2
Þw ¼ f ; wð0Þ ¼ wð2Þð0Þ ¼ wð1Þ

¼ wð2Þð1Þ ¼ 0. ð15Þ

Here e is a small parameter. From the mathematical point
of view it means that we shift the spectra of differential
operator from the real axis. On the other hand, from the
physical point of view, it means that the initial equation (6)
is changed by the equation

q2u
qt2
þ c

qu

qt
þ

EI

rS

q4u
qx4
¼ 0; 0pxpl, (16)

which describes free vibrations of a homogeneous beam
with a friction term cqu=qt. The singular solutions of (15)
are

C1ðx; xÞ ¼ expðiwjx� xjÞ; C2ðx; xÞ ¼ expðwjx� xjÞ,

wðk; eÞ ¼ ðk4
� iek2

Þ
1=4. ð17Þ

Note that the boundary value problem (15) has a unique
non-zero solution for all real k. The resonance curve
corresponding to e ¼ 10�6 is shown in Fig. 2.
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Fig. 2. The resonance curve. Regularization by an additional friction term: e ¼ 10�6.

Table 1

1D eigenproblem wð4Þ � k2w ¼ 0, SS conditions: wð0Þ ¼ wð2Þð0Þ ¼ wð1Þ ¼

wð2Þð1Þ ¼ 0, SC conditions: wð0Þ ¼ wð2Þð0Þ ¼ wð1Þ ¼ wð1Þð1Þ ¼ 0

SS conditions SC conditions
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Now this is a smooth curve with separated maximums at
the positions of eigenvalues. To find the eigenvalues we use
the following algorithm throughout the paper. Let us look
for the eigenvalues on the interval k 2 ½a; b�. Then
ðexÞ e ¼ 0:1 �3 ðexÞ e ¼ 0:1 �3

(A)
ki
e ¼ 10 ki

e ¼ 10

Step 0:
 Choose Dk40;
p �6 �10 3:926602312 �6 �10
3� 10 3� 10 2� 10 1� 10
if F ðaÞ4F ðaþ DkÞ goto step 5;
2p 2� 10�8 2� 10�11 7:068582745 2� 10�7 2� 10�11
Step 1:
 k1 ¼ a; F1 ¼ F ðk1Þ;
3p 4� 10�8 2� 10�12 10:21017612 5� 10�8 4� 10�12
Step 2:
 k2 ¼ k1 þ Dk; F2 ¼ F ðk2Þ;

4p 1� 10�7 4� 10�13 13:35176877 1� 10�8 5� 10�12
if k24b stop;

5p 5� 10�9 3� 10�12 16:49336143 7� 10�9 5� 10�13
Step 3:
 if F24F1 then ½F1 ¼ F2; k1 ¼ k2;

6p 2� 10�9 2� 10�12 19:63495408 2� 10�9 6� 10�13
goto step 2];

7p 1� 10�9 2� 10�12 22:77654674 8� 10�10 4� 10�13
Step 4:
 find the maximum point xm of F ðkÞ

8p 8� 10�10 3� 10�12 25:91813939 8� 10�10 9� 10�13
on ½k2 � 2Dk; k2�;

9p 5� 10�10 1� 10�12 29:05973204 6� 10�10 8� 10�14

�10 �13 �10 �13

Step 5:
 k1 ¼ a; F1 ¼ F ðk1Þ;
10p 3� 10 5� 10 32:20132470 4� 10 1� 10
Step 6:
 k2 ¼ k1 þ Dk; F2 ¼ F ðk2Þ;
The relative errors in calculations of the eigenvalues.
if k24b stop;

Step 7:
 if F2oF1 then ½F1 ¼ F2; k1 ¼ k2;
goto step 6];

else goto step 2.
In other words, using the step Dk we find the intervals
½k2 � 2Dk; k2� which contain only maximum of FdðkÞ.
Then, we make the position of the eigenvalue more precise
using an optimization procedure. Note that any univariate
optimization procedure can be used at Step 4. In particular,
we applied Brent’s method based on a combination of
parabolic interpolation and bisection of the function near
the extremum (see [30, Chapter 10], [31, Chapter 5]). The
step is taken Dk ¼ 0:01 throughout the paper if this is not
specified.

Example 1. The data placed in Table 1 are obtained by
applying this technique with e ¼ 0:1, 10�3. The other
parameters are: x1 ¼ �1:0, x2 ¼ 2:0, xext ¼ 2:2. We place
the relative errors

er ¼ jki � k
ðexÞ
i j=k

ðexÞ
i (18)

in the calculation of the first ten eigenvalues of (7), (8) in
the left part of the table. The data in the right part of the
table correspond to the SC (simply supported—clamped)
boundary conditions:

wð0Þ ¼ wð2Þð0Þ ¼ wð1Þ ¼ wð1Þð1Þ ¼ 0.
Here the exact eigenvalues are the roots of the equation
tanhðkÞ ¼ tanðkÞ.

2.2. 2D case

Let us return to the eigenproblems (2), (3). According to
the technique proposed, we consider the following BVP:

r4w� k4w ¼ f ; x 2 O � R2,

B½w� ¼ 0; x 2 qO, ð19Þ

where f describes an external exciting source, i.e., f ¼ 0 for
x 2 O.
In application to this problem, the MFS technique is

similar to the one considered in the previous section.
Because of the splitting

ðr4 � k4
Þ ¼ ðr2 þ k2

Þ � ðr2 � k2
Þ (20)

the singular solutions are of two types: the fundamental
solutions of the Helmholtz operator r2 þ k2:

Fð1Þn ðxÞ ¼ H
ð1Þ
0 ðkjx� fnjÞ (21)

and the fundamental solutions of the modified Helmholtz
operator r2 � k2:

Fð2Þn ðxÞ ¼ K0ðkjx� fnjÞ, (22)
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where H
ð1Þ
0 is the Hankel function and K0 is the modified

Bessel function of the second kind and of order zero. This
is the so-called Kupradze basis [32]. So, an approximate
solution is sought in the form of the linear combination:

wðxjq1; q2Þ ¼ wpðxÞ þ
XN

n¼1

q1;nF
ð1Þ
n ðxÞ þ

XN

n¼1

q2;nF
ð2Þ
n ðxÞ,

(23)

where wpðxÞ is a particular solution corresponding to the
external source f. It can be taken as a singular solution with
the singular point placed outside the solution domain:

wpðxÞ ¼ H
ð1Þ
0 ðkjx� fextjÞ; wpðxÞ ¼ K0ðkjx� fextjÞ, (24)

where fext � R2nO, or in the form of the travelling wave:

wpðxÞ ¼ exp ikðx cos yþ y sin yÞ. (25)

Here 0pyp2p is the angle of incidence, i.e., the one
between direction of the wave-propagation and the x-axis.

The free parameters q1;n; q2;n are determined from the
boundary conditions:

B½w� ¼ 0 or B1½w� ¼ 0; B2½w� ¼ 0; x 2 qO,

where the scalar operators B1, B2 are described in the
Appendix.

The free parameters q1;n; q2;n are looked for as a solution
of the minimization problem:

min
q1;q2

XNc

i¼1

B1½wpðxiÞ� þ
XN

n¼1

q1;nB1½Fð1Þn ðxiÞ�

(

þ
XN

n¼1

q2;nB1½Fð2Þn ðxiÞ�

)2

, ð26Þ

min
q1;q2

XNc

i¼1

B2½wpðxiÞ� þ
XN

n¼1

q1;nB2½Fð1Þn ðxiÞ�

(

þ
XN

n¼1

q2;nB2½Fð2Þn ðxiÞ�

)2

. ð27Þ

Here the collocation points xi, i ¼ 1; . . . ;Nc are distributed
uniformly on the boundary qO. We take Nc approximately
twice as large as the number of free parameters 2N. As a
Ω

∂Ω ζ1

ζ2

ζ3

ζN

H

(a)

Fig. 3. Geometry configuration o
result we get an overdetermined 2Nc � 2N linear system
which is solved by the standard least squares procedure.
Note that (26), (27) can be regarded as a result of
discretization of the integral condition:

min
q1;q2

Z
qO

B1½wðxjq1; q2Þ�
2 ds; min

q1;q2

Z
qO

B2½wðxjq1; q2Þ�
2 ds.

The same trial functions can also be used when dealing
with problems in multiply connected domains. The source
points should be placed inside each hole as it is depicted in
Fig. 3a.
The special basis functions associated with each hole can

be used as an alternative approach. Let us consider again
the splitting of the operator (20). We have two sets of the
singular solutions corresponding to each operator
r2 þ k2 and r2 � k2:

Cð1Þs;1ðxÞ ¼ H
ð1Þ
0 ðkrsÞ; Cð1Þs;2nþ1ðxÞ ¼ H ð1Þn ðkrsÞ cos nys,

Cð1Þs;2nðxÞ ¼ H ð1Þn ðkrsÞ sin nys, ð28Þ

Cð2Þs;1ðxÞ ¼ K0ðkrsÞ; Cð2Þs;2nþ1ðxÞ ¼ KnðkrsÞ cos nys,

Cð2Þs;2nðxÞ ¼ KnðkrsÞ sin nys. ð29Þ

Here rs ¼ jx� xsj; ys is the local polar coordinate system
with the origin at the point xs of multipoles location (see
Fig. 3b). This is the so-called Vekua basis [33,34] or
multipole expansion. In this case instead of (23) we use

wðxjq1; q2; p1;s; p2;sÞ

¼ wpðxÞ þ
XN

n¼1

q1;nF
ð1Þ
n ðxÞ þ

XN

n¼1

q2;nF
ð2Þ
n ðxÞ

þ
XS

s¼1

XM
m¼1

p1;s;mC
ð1Þ
s;mðxÞ þ

XS

s¼1

XM
m¼1

p2;s;mC
ð2Þ
s;mðxÞ, ð30Þ

where S is the number of holes and M is the number of
terms in each multipole expansion.
We apply the same smoothing procedure to get a smooth

resonance curve F dðkÞ. The governing equation should be
replaced by the following one:

r4w� ðk4
� iek2

Þw ¼ f
∂Ω ζ1

ζ2

ζ3

ζN

Ω

xs

H θs

rs

*

(b)

f a doubly connected domain.
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and so the arguments of the basis functions Fð1Þn ðxÞ, F
ð2Þ
n ðxÞ

should be modified in the following way:

Fð1Þn ðxÞ ¼ H
ð1Þ
0 ðwjx� fnjÞ; Fð2Þn ðxÞ ¼ K0ðwjx� fnjÞ,

w ¼ ðk4
� iek2

Þ
1=4.

In the similar way, the arguments of the basis functions
Cð1Þs;mðxÞ, C

ð2Þ
s;mðxÞ should be modified too, i.e., instead of krs

one should use wrs.
3. Numerical examples

In this section, numerical examples are given to examine
the method presented. The resonance curve F ðkÞ is always
computed using Nt ¼ 15 testing points xt;l 2 O (see (14)).
They are distributed inside O with the help of RNUF
generator of pseudorandom numbers from the Microsoft
IMSL Library. The particular solution corresponding to the
exciting source is taken as wpðxÞ ¼ H

ð1Þ
0 ðkjx� fexjÞ (see (24)).

3.1. Eigenvalues
Example 2. A circular plate with the radius r ¼ 1 subjected
to the boundary conditions of three types (A.12)–(A.14) is
considered. The exciting source is placed at the position
fext ¼ ð5; 5Þ; the singular points fn of the fundamental
solutions (21), (22) are located on the circle with the radius
R ¼ 3. The number of the MFS sources N ¼ 30. Note that
the number of free parameters is 2N because at each source
point we have two basis functions. The data presented in
Table 2 are obtained using the smoothing procedure with
e ¼ 10�6. Here we place the relative errors (18). The exact
eigenvalues k

ðexÞ
i are the roots of the equation:

J 0nðkÞInðkÞ � JnðkÞI
0
nðkÞ ¼ 0—conditions C;

JnðkÞInþ1ðkÞ þ InðkÞJnþ1ðkÞ �
2k

1� n
JnðkÞInðkÞ ¼ 0 (31)

—conditions S; and we get the equation for free edge
(condition F):

fðð1� nÞðn2 � nÞ � k2
ÞJnðkÞ þ kð1� nÞJnþ1ðkÞg

� fðk2
� ð1� nÞn2ÞðnInðkÞ þ kInþ1ðkÞÞ þ ð1� nÞn2InðkÞg
Table 2

A circular plate with different boundary conditions

Clamped edge Simply supported edge

k
ðexÞ
i

er k
ðexÞ
i

3.1962206069 5� 10�8 2.2045701221

4.6108998881 4� 10�8 3.7195305760

5.9056782349 2� 10�8 5.0550750234

6.3064370439 7� 10�9 5.4462973275

7.1435310492 2� 10�8 6.3166259662

The relative errors in calculation of the first five eigenvalues. The number of t
� fðð1� nÞðn2 � nÞ � k2
ÞInðkÞ � kð1� nÞÞnþ1ðkÞg

� f�ðk2
� ð1� nÞn2ÞðnJnðkÞ � kJnþ1ðkÞÞ

þ ð1� nÞn2JnðkÞg ¼ 0. ð32Þ

Example 3. In the next example, the square plate
½�0:5;þ0:5� � ½�0:5;þ0:5� with different boundary condi-
tions is considered. In all the calculations presented the
MFS sources are located on the circle with the radius
R ¼ 2. First, we consider the plate with simply supported
edge. The boundary conditions are

wjx¼�a=2 ¼ 0;
q2w

qx2
jx¼�a=2 ¼ wjy¼�b=2 ¼

q2w

qy2
jy¼�b=2 ¼ 0,

(33)

i.e., SSSS boundary conditions. This problem has
an analytical solution: kðexÞ

¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ j2

p
, i; j ¼ 1; 2; . . . :

Table 3 shows the relative error (18) for different numbers
of the MFS sources N. The calculations were performed
with e ¼ 10�6.

Example 4. The same square plate with clamped edges
(CCCC) is taken. The boundary conditions are

wjx¼�a=2 ¼ 0;
qw

qx

����
x¼�a=2

¼ wjy¼�a=2 ¼
qw

qy

����
y¼�a=2

¼ 0.

(34)

The MFS source points are located on the circle with the
radius R ¼ 2. The results shown in Table 4 correspond to
e ¼ 10�6. In Tables 5–10 we present the results of the
calculations for the square plate with different boundary
conditions. The exact solutions are not available here.
Thus, we compare our results with the ones obtained in
[2,3], GDQ [15,16], DSC [17,18]. Note that to compare the
results we place the dimensionless frequencies boi ¼ k2

i .

Example 5. Let us consider an annular case. The solution
domain is the region between two circles. The inner and
outer radii of an annular domain are r1 ¼ 0:5 and r2 ¼ 2
correspondingly. The singular points are distributed on the
circles with the radii a ¼ 3 (outside the domain) and b ¼

0:2 (inside the hole). The number of the singular points on
each auxiliary contour is equal to N. The exciting source is
placed at the position fex ¼ ð5; 5Þ. The general expression
Free edge

er k
ðexÞ
i

er

4� 10�11 2.3475907027 8� 10�11

2� 10�13 2.9815924124 2� 10�10

5� 10�11 3.5699204653 6� 10�12

2� 10�11 4.5176539670 6� 10�11

2� 10�9 4.7235536456 2� 10�8

he MFS sources N ¼ 30; e procedure with e ¼ 10�6.
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Table 3

A square plate with SSSS boundary conditions

i N ¼ 20 N ¼ 30 N ¼ 40

1 8:0� 10�7 4:7� 10�10 6:5� 10�12

2 1:1� 10�5 6:0� 10�9 8:0� 10�12

3 3:9� 10�5 7:5� 10�8 6:7� 10�12

4 2:7� 10�4 2:3� 10�9 2:9� 10�10

5 5:3� 10�4 1:8� 10�6 1:1� 10�9

The relative errors in calculation of the first five eigenvalues.

Table 4

A square plate with clamped edges

i N ¼ 34 N ¼ 38 N ¼ 42 N ¼ 46 Liessa DSC GDQ

1 35.978 35.978 35.982 35.983 35.992 35.989 35.985

2 73.442 73.379 73.385 73.387 73.413 73.407 73.394

3 108.189 108.169 108.181 108.202 108.27 108.249 108.210

4 131.580 131.581 131.581 131.580 131.64 131.622 131.580

5 132.200 132.200 132.202 132.228 132.24 132.244 132.200

6 164.995 164.997 164.997 165.030 — 165.074 165.000

7 210.522 210.521 210.524 210.519 — — —

8 220.034 220.028 220.036 219.932 — — —

9 242.317 242.140 242.155 242.155 — — —

10 296.712 243.132 243.143 243.177 — — —

The first 10 eigenfrequencies.

Table 5

A square plate with CSSS boundary conditions

i N ¼ 34 N ¼ 38 N ¼ 42 N ¼ 46 Liessa DSQ GDQ

1 31.818 31.822 31.823 31.824 31.829 31.828 31.826

2 63.351 63.343 63.338 63.335 63.347 63.338 63.331

3 71.048 71.068 71.069 71.073 71.084 71.087 71.076

4 100.807 100.814 100.772 100.783 100.83 100.815 100.792

5 116.357 116.363 116.341 116.347 116.40 116.376 116.357

6 130.348 130.328 130.333 130.339 — 130.388 130.351

7 151.890 151.863 151.936 151.909 — 151.938 151.893

8 159.479 159.477 159.444 159.446 — 159.534 159.446

9 189.801 189.767 189.766 189.768 — — —

10 — 209.365 209.330 209.373 — — —

The first 10 eigenfrequencies.

Table 6

A square plate with SCSC boundary conditions

i N ¼ 34 N ¼ 38 N ¼ 42 N ¼ 46 Liessa DSC GDQ

1 28.9508 28.9508 28.9508 28.95085 28.951 28.953 28.951

2 54.7431 54.7431 54.7431 54.74307 54.743 54.747 54.743

3 69.3270 69.3270 69.3270 69.32701 69.327 69.337 69.327

4 94.5854 94.5853 94.58527 94.58527 94.585 94.601 94.585

5 102.213 102.212 102.2164 102.2161 102.21 102.222 102.216

6 129.0955 129.0955 129.09554 129.09554 129.09 129.130 129.096

7 140.21 140.21 140.206 140.204 140.20 140.230 140.205

8 154.7757 154.7758 154.7756 154.7757 154.77 154.823 154.776

9 170.35 170.33 170.33 170.34 — — —

10 199.80 199.80 199.810 199.811 — — —

The first 10 eigenfrequencies.

Table 7

A square plate with the SCSF boundary conditions

i N ¼ 34 N ¼ 38 N ¼ 42 N ¼ 46 Liessa GDQ

1 12.68735 12.68735 12.68736 12.68736 12.687 12.687

2 33.06512 33.06509 33.06509 33.06509 33.065 33.065

3 41.70121 41.70199 41.70192 41.70193 41.702 41.702

4 63.01531 63.01524 63.01480 63.01483 63.015 63.016

5 72.39758 72.39756 72.39756 72.39756 72.398 72.400

6 90.62610 90.60705 90.61915 90.60988 — —

7 103.16207 103.16174 103.16150 103.16164 — —

8 — 111.88123 111.90593 111.90027 — —

9 — 131.42869 131.42870 131.42870 — —

10 — 152.70648 152.77072 152.78119 — —

The first 10 different eigenfrequencies.
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of the eigenmode in the polar coordinates ðr; yÞ is

½AJnðkrÞ þ BY nðkrÞ þ CInðkrÞ þDKnðkrÞ� cosðnyÞ,

where A;B;C;D are free parameters. Substituting this
expression in the boundary conditions we get the linear
4� 4 linear system. For example, let us consider a plate
with clamped inner and outer edges. In this case the matrix
of the system has the form

Jnðkr1Þ Y nðkr1Þ Inðkr1Þ Knðkr1Þ

dJnðkrÞ=drjr¼r1 dY nðkrÞ=drjr¼r1 dInðkrÞ=drjr¼r1 dKnðkrÞ=drjr¼r1

Jnðkr2Þ Y nðkr2Þ Inðkr2Þ Knðkr2Þ

dJnðkrÞ=drjr¼r2 dY nðkrÞ=drjr¼r2 dInðkrÞ=drjr¼r2 dKnðkrÞ=drjr¼r2

0BBBB@
1CCCCA.
The eigenvalues are obtained by equating the determinant
of this matrix to zero.

Some results of the calculations are placed in Table 11.
The letters ‘C’, ‘S’ and ‘F’ correspond to the clamped,
simply supported and free edge. For example, CS denotes
that the boundary r ¼ r1 is clamped and the boundary r ¼

r2 is simply supported.

Example 6. In this example, doubly connected plate with the
inner hole of minimal dimension is considered. We take the
simply supported boundary conditions on the both edges (SS
case). The geometry of the problem is the same as in
Example 5. However, here we consider the case of very small
inner holes. In particular, we take r1 ¼ 10�1; 10�2; 10�3 with
the same fixed r2 ¼ 2. The Kupradze type basis functions
(21), (22) are unfit to approximate solution in a neighbour-
hood of the hole because when the singular points, say fi, fj

of two sources are very close, the corresponding functions
FiðxÞ, FjðxÞ become indistinguishable and the collocation
matrix has two identical columns. Here we use a combined
basis which includes the trial functions (28), (29) with the
singular points placed on an auxiliary circular contour
outside the solution domain and a multipole expansion with
the origin at the center of the hole. Thus, we look for an
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Table 9

A square plate with the SSSF boundary conditions

i N ¼ 34 N ¼ 38 N ¼ 42 N ¼ 46 Liessa GDQ

1 11.6845364 11.6845367 11.6845367 11.6845367 11.685 11.685

2 27.75633 27.756344 27.756344 27.756344 27.756 27.756

3 41.1960 41.1965 41.196647 41.196651 41.197 41.197

4 59.066 59.065 59.06548 59.06550 59.066 59.066

5 61.8606 61.8606 61.8606 61.8606 61.861 61.861

6 90.35 90.289 90.301 90.295 — —

7 94.4842 94.4838 94.4836 94.4836 — —

8 108.980 108.913 108.927 108.914 — —

9 115.6862 115.6857 115.68572 115.68573 — —

10 134.96 145.570 145.634 145.647 — —

The first 10 eigenfrequencies.

Table 8

A square plate with the SFSF boundary conditions

i N ¼ 34 N ¼ 38 N ¼ 42 N ¼ 46 Liessa GDQ

1 9.63138488 9.63138485 9.63138485 9.63138485 9.631 9.631

2 16.13478 16.134777 16.1347769 16.1347769 16.135 16.135

3 36.725649 36.725644 36.725642 36.725642 36.726 36.726

4 38.9445 38.9449 38.944955 38.944958 38.945 38.945

5 46.739 46.738 46.73812 46.73815 46.738 46.738

6 70.7407 70.7405 70.7402 70.7401 — —

7 75.2833 75.28338 75.28338 75.28338 — —

8 88.1 87.98 87.9854 87.9854 — —

9 96.48 96.03 96.04 96.037 — —

10 111.0287 111.0253 111.0253 111.0253 — —

The first 10 different eigenfrequencies.

Table 10

A square plate with CCCS boundary conditions

i N ¼ 34 N ¼ 38 N ¼ 42 N ¼ 46 Liessa DSC GDQ

1 31.82 31.822 31.824 31.825 31.829 31.828 31.826

2 63.35 63.34 63.337 63.335 63.347 63.338 63.331

3 71.05 71.07 71.07 71.07 71.084 71.087 71.076

4 100.81 100.81 100.77 100.78 100.83 100.815 100.792

5 116.36 116.36 116.34 116.35 116.40 116.376 116.357

6 130.35 130.33 130.333 130.339 130.37 130.388 130.351

7 151.89 151.86 151.94 151.91 — 151.938 151.893

8 159.48 159.48 159.444 159.446 — 159.534 159.476

9 189.80 189.767 189.766 189.768 — — —

10 — 209.37 209.33 209.37 — — —

The first 10 eigenfrequencies.
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approximate solution in the form

wðxjq1; q2; p1; p2Þ ¼ wpðxÞ þ
XN

n¼1

q1;nF
ð1Þ
n ðxÞ þ

XN

n¼1

q2;nF
ð2Þ
n ðxÞ

þ
XM
m¼1

p1;mC
ð1Þ
m ðxÞ þ

XM
m¼1

p2;mC
ð2Þ
m ðxÞ.

The data presented in Table 12 correspond to the number of
sources on the outer auxiliary circular contour N ¼ 40. The
number of terms in multipole expansion M varies from M ¼

11ðr1 ¼ 10�1Þ to M ¼ 5ðr1 ¼ 10�3Þ. The exciting source is
placed at the position fext ¼ ð5; 5Þ. One should take Dk ¼

0:0005 in the algorithm (A) to separate the very close
eigenvalues: k

ðexÞ
1 ¼ 1:9129217513 and k

ðexÞ
2 ¼ 1:9199981242

(see data corresponding to r1 ¼ 10�3).

Example 7. Consider the elliptic plate fx; yj x ¼

0:5 cos t; y ¼ sin t; 0ptp2pg with the clamped edge. The
results placed in Table 13 are obtained using the MFS
sources posed on the circle with the radius 2.

Note that the technique presented in the paper can also

be applied to problems of stability. As a simple example, let
us consider the following eigenvalue problem arising in
stability analysis of a homogeneous beam with simply
supported endpoints:

d4w

dx4
þ k2 d

2w

dx2
¼ 0; wð0Þ ¼

d2wð0Þ

dx2
¼ wð1Þ ¼

d2wð1Þ

dx2
¼ 0.

Splitting the operator of the problem

d4

dx4
þ k2 d2

dx2
¼

d2

dx2

d2

dx2
þ k2

� �
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Table 11

Annular plate with different boundary conditions

CC CS CF

k
ðexÞ
i

er k
ðexÞ
i

er k
ðexÞ
i

er

3.1401504659 3� 10�12 2.5443791172 2� 10�11 1.2022801831 2� 10�10

3.1951697814 2� 10�8 2.6168933961 1� 10�9 1.3046446271 2� 10�8

3.3866059374 1� 10�7 2.8584277218 4� 10�9 1.6390304939 3� 10�7

3.7421791759 2� 10�7 3.2737822106 1� 10�9 2.1464219799 2� 10�6

4.2273595379 3� 10�7 3.8005768866 9� 10�9 2.7106796721 4� 10�6

SS SC SF

2.5443791172 2� 10�11 2.7388244961 6� 10�12 0.9218818071 2� 10�11

2.6168933961 1� 10�9 2.8419404702 1� 10�7 1.0654228033 3� 10�7

2.8584277218 4� 10�9 3.1546693532 3� 10�7 1.5367565717 6� 10�8

3.2737822106 1� 10�9 3.6318734200 6� 10�7 2.1189079314 8� 10�7

3.8005768866 9� 10�9 4.1880284517 1� 10�6 2.6366356355 4� 10�11

FF FC FS

0.9278958281 4� 10�7 1.6509548406 2� 10�11 1.0792983840 2� 10�11

1.4469238878 4� 10�11 2.2423389731 1� 10�6 1.8520671184 2� 10�7

1.5078856902 2� 10�7 2.9555098845 2� 10�7 2.5441700655 3� 10�8

2.1140630213 7� 10�9 3.4284188267 8� 10�12 2.9129783079 1� 10�11

2.2162832243 8� 10�8 3.5787033018 2� 10�6 3.1653838093 2� 10�7

The relative errors in calculation of the first five eigenvalues. The number of the MFS sources N ¼ 40; e procedure with e ¼ 10�6.

Table 12

Circular plate with a small hole

i r1 ¼ 0:1, N ¼ 40, M ¼ 11 r1 ¼ 0:01, N ¼ 40, M ¼ 7 r1 ¼ 0:001, N ¼ 40, M ¼ 5

k
ðexÞ
i

er k
ðexÞ
i

er k
ðexÞ
i

er

1 1:8879730775 5� 10�11 1:9172920792 1� 10�10 1:9129217513 3� 10�5

2 1:9952521601 4� 10�7 1:9354740768 4� 10�7 1:9199981242 9� 10�10

3 2:5313745879 2� 10�7 2:5275748228 2� 10�7 2:5275378847 2� 10�7

4 3:1583578383 8� 10�8 3:1583129875 8� 10�8 3:1583129831 3� 10�4

5 3:4952779483 2� 10�10 3:5086948861 5� 10�11 3:5147880268 4� 10�9

Simply supported edges. The outer radius: r2 ¼ 2; the relative errors in calculation of the first five eigenvalues. e ¼ 10�5.

Table 13

Elliptic plate with clamped edge

i N ¼ 25 N ¼ 30 N ¼ 35 N ¼ 40

1 5.2323455 5.2323454 5.2323454 5.2323454

2 6.2847 6.284698 6.2846982 6.2846982

3 7.4817 7.481689 7.4816890 7.4816892

4 8.358108 8.358109 8.3581090 8.3581090

5 8.7749 8.77468 8.7746855 8.7746854

6 9.3835 9.383357 9.3833562 9.3833562

7 10.132 10.1315 10.131428 10.131428

The first seven eigenvalues. e procedure with e ¼ 10�6.
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one gets two singular solutions:

F1ðx; xÞ ¼ expðikjx� xjÞ; F2ðx; xÞ ¼ jx� xj.
Applying the algorithm described above we get the results
which are placed in Table 14. Here the exact solution is
k
ðexÞ
i ¼ ip.

3.2. Eigenmodes

The algorithm described above is focused on the
problem of finding eigenvalues or eigenfrequencies of free
vibrations. Let us dwell in brief on the problem of
calculation of the corresponding eigenmodes. The method
of finding eigenmodes proposed in the paper, following the
mechanical analogy, is based on the simple physical fact
that when a mechanical system approaches to resonance
then just the resonance (or eigen) mode is excited in the
system.
So, if kex is an approximate eigenvalue which is found as

an extremum of F ðkÞ, then the corresponding solution



ARTICLE IN PRESS
S.Y. Reutskiy / Engineering Analysis with Boundary Elements 31 (2007) 10–21 19
wðx; kexÞ of (19) is close to the eigenmode. The modes
presented in Fig. 4 correspond to the first and third
eigenvalues of the problem described in Example 1.
Table 14

1D eigenproblem wð4Þ þ k2wð2Þ ¼ 0, wð0Þ ¼ wð2Þð0Þ ¼ wð1Þ ¼ wð2Þð1Þ ¼ 0

k
ðexÞ
i

e ¼ 0:1 e ¼ 10�3 e ¼ 10�6

p 3� 10�6 3� 10�10 1� 10�13

2p 2� 10�7 3� 10�11 3� 10�12

3p 4� 10�8 4� 10�12 9� 10�13

4p 1� 10�8 3� 10�13 8� 10�13

5p 5� 10�9 7� 10�13 2� 10�12

6p 2� 10�9 2� 10�13 3� 10�12

7p 1� 10�9 1� 10�13 4� 10�13

8p 8� 10�10 2� 10�12 1� 10�13

9p 5� 10�10 1� 10�12 3� 10�13

10p 3� 10�10 5� 10�13 2� 10�12

The relative errors in calculations of the eigenvalues.

0.5

X

0.5

1

1.5

2

Y

1st eigenmode

(a)

Fig. 4. The first and third eigenmodes for

7th eigenmode k=11.8411

1st eigenmode k=5.3805

Fig. 5. The first, fourth, seventh and 10th eigenmodes fo
The figures are obtained using the scaled data
ðxi; buiðkÞÞ; i ¼ 1; . . . ;Nf . Here

buiðkÞ ¼ Re½wðxi; kÞ�=UðkÞ; UðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nf

XNf

i¼1

Re½wðxi; kÞ�
2

vuut .

The calculations were performed with k ¼ 3:926602312
and 10.21017612.
The same method was applied in a 2D case. The

first, fourth, seventh and 10th eigenmodes of free vibra-
tions of the square plate with SCSF boundary conditions
(see Table 7) are presented in Fig. 5.

4. Concluding remarks

In this paper, a new boundary method for the problem
of free vibrations of plates is proposed. This is a
mathematical model of physical measurements, when a
mechanical or acoustic system is excited by an external
source and resonance frequencies can be determined by the
growth of amplitude of oscillations near these frequencies.
1

0.5 1

X

-2
-1.5

-1
-0.5

0.5
1

1.5
2

Y

3rd eigenmode

(b)

beam with SC boundary conditions.

10th eigenmode k=14.1352

4th eigenmode k=9.7255

r the square plate with SCSF boundary conditions.
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The calculation of the eigenvalue problem is reduced to a
sequence of inhomogeneous problems with the differential
operator studied. The method shows a high precision in
simply and doubly connected domains. The method is
convenient for determining some first eigenvalues of the
system which are often of the most interest from the point
of view of engineering applications.

The method presented is based on the MFS solution of
the problem. However, it can be combined with other
boundary techniques. For instance, the boundary knot
method (BKM) [35,36] seems to be perspective in this
connection. An example of application of BKM to the
Helmholtz eigenproblem is presented in [27]. Generally
speaking, any effective numerical technique can be used as
a solver of BVP (19). For example, the DSC and GDQ
techniques mentioned above also can be used in the
framework of this approach.
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Appendix A. The boundary conditions for plates in

Cartesian and polar coordinates

Here we follow [1]. Let qO be a piecewise smooth curve
with the outward normal vector n ¼ ðnx; nyÞ. Let us define
the moments of deflection Mn, the twisting moment Mnt

and the intersecting force Qn acting on the edge in the
following way:

Mn ¼Mxnx þMyny � 2Mxynxny, (A.1)

Mnt ¼Mxyðn
2
x � n2

yÞ þ ðMx �MyÞnxny, (A.2)

Qn ¼ Qxnx þQyny, (A.3)

where

Mx ¼ �D
q2w

qx2
þ u

q2w
qy2

� �
; My ¼ �D

q2w

qy2
þ u

q2w
qx2

� �
,

Mxy ¼ �Myx ¼ Dð1� uÞ
q2w
qxqy

, ðA:4Þ

Qx ¼ �D
q
qx

q2w

qx2
þ

q2w
qy2

� �
; Qy ¼ �D

q
qy

q2w

qx2
þ

q2w
qy2

� �
,

D ¼
Eh3

12ð1� n2Þ
ðA:5Þ

and u is Poisson’s ratio. It is taken u ¼ 0:3 throughout the
paper.

The following three types of boundary conditions are
considered:

clamped edge (C):

w ¼ 0;
qw

qn
¼ 0, (A.6)
simply supported edge (S):

w ¼ 0; Mn ¼ 0, (A.7)

free edge (F):

Mn ¼ 0; Qn �
qMnt

qs
¼ 0. (A.8)

Here the normal and tangential derivatives are denoted:

q
qn
¼ nx

q
qx
þ ny

q
qy
;

q
qs
¼ nx

q
qy
� ny

q
qx

.

In particular, for Cartesian coordinate system one gets the
following conditions:
clamped edge (C):

wjx¼c ¼
qw

qx

����
x¼c

¼ 0; wjy¼c ¼
qw

qy

����
y¼c

¼ 0, (A.9)

simply supported edge (S):

wjx¼c ¼
q2w

qx2
þ u

q2w

qy2

� �����
x¼c

¼ 0,

wjy¼c ¼
q2w
qy2
þ u

q2w
qx2

� �����
y¼c

¼ 0

because qw=qyjx¼c ¼ q2w=qy2jx¼c ¼ 0 and qw=qxjy¼c ¼

q2w=qx2jy¼c ¼ 0 this condition can be simplified:

wjx¼c ¼
q2w
qx2

����
x¼c

¼ 0; wjy¼c ¼
q2w

qy2

����
y¼c

¼ 0, (A.10)

free edge (F):

q2w
qx2
þ u

q2w
qy2

� �����
x¼c

¼
q3w

qx3
þ ð2� uÞ

q3w

qxqy2

� �����
x¼c

¼ 0,

q2w
qy2
þ u

q2w
qx2

� �����
y¼c

¼
q3w

qy3
þ ð2� uÞ

q3w
qyqx2

� �����
y¼c

¼ 0.

ðA:11Þ

Using the polar coordinates ðr; yÞ one gets the following
conditions on the boundary of a circle fr ¼ a; 0pyp2pg:
clamped edge (C):

wðr; yÞjr¼a ¼
qw

qr

����
r¼a

¼ 0, (A.12)

simply supported edge (S):

wðr; yÞjr¼a ¼
1

r

qw

qr
þ

1

r2
q2w

qy2
þ n

q2w

qr2

� �����
r¼a

¼ 0 (A.13)

and free edge (F):

1

r

qw

qr
þ

1

r2
q2w

qy2
þ n

q2w

qr2

� �����
r¼a

¼
q3w

qr3
þ

1

r

q2w
qr2
�

1

r2
qw

qr
þ

2� n
r

q3w

qy2qr

�
�
3� n

r3
q2w

qy2

�����
r¼a

¼ 0. ðA:14Þ
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