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A new boundary meshfree method, to be called the boundary distributed source (BDS) method, is

presented in this paper that is truly meshfree and easy to implement. The method is based on the same

concept in the well-known method of fundamental solutions (MFS). However, in the BDS method the

source points and collocation points coincide and both are placed on the boundary of the problem

domain directly, unlike the traditional MFS that requires a fictitious boundary for placing the source

points. To remove the singularities of the fundamental solutions, the concentrated point sources can be

replaced by distributed sources over areas (for 2D problems) or volumes (for 3D problems) covering the

source points. For Dirichlet boundary conditions, all the coefficients (either diagonal or off-diagonal) in

the systems of equations can be determined analytically, leading to very simple implementation for this

method. Methods to determine the diagonal coefficients for Neumann boundary conditions are

discussed. Examples for 2D potential problems are presented to demonstrate the feasibility and

accuracy of this new meshfree boundary-node method.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The method of fundamental solutions (MFS) has been studied
for many years along with the boundary element and other
boundary methods [1]. The MFS uses only the fundamental
solution, which is the response due to a concentrated point
source, in the construction of the solution of a problem without
using any integrals. It is a natural boundary meshfree method and
offers several advantages as compared with the BEM. First,
meshing a boundary with only nodes is certainly much easier
than with elements. Second, singular integrals are avoided in the
MFS (although singularities of the kernel still play an important
role). Third, programming with the conventional MFS is signifi-
cantly simplified as compared with the BEM. All these advantages
with the MFS have attracted continued interests from researchers.
Comprehensive reviews on the MFS for various applications can
be found in Refs. [2–4]. Some work on the MFS can be found in
Refs. [5–10] for potential and elastostatic problems.

In the traditional MFS, a fictitious boundary slightly outside
the problem domain is required in order to place the source points
and avoid the singularity of fundamental solutions. The determi-
nation of the distance between the real boundary and the
fictitious boundary is based on experience and therefore trouble-
some. In recent years, various efforts have been made aiming to
remove this barrier in the MFS, so that the source points can be
ll rights reserved.
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placed on the real boundary directly. Young et al. [11,13] and
Chen et al. [12] proposed to place the source points on the
boundary in the MFS and novel ways to determine the diagonal
coefficients directly for simple geometries or using the results
from the BEM based on the fact that the MFS and the indirect
boundary integral formulation are similar in nature. In their
approach, information of the neighboring points before and after
each source point is needed in general in order to form line
segments for integrating the kernels to obtain the diagonal
coefficients. This is essentially the same information of the
element connectivity in a BEM mesh. Šarler [14] proposed a
similar modified MFS, where the diagonal terms are determined
by the integration of the fundamental solution on line segments
formed by using neighboring points, and the use of a constant
solution to determine the diagonal coefficients from the deriva-
tives of the fundamental solution. This approach is very stable, as
is also shown in this study, but it amounts to solving the problems
twice and is therefore not amenable to the fast multipole method
using iterative solvers for the MFS [10,15]. Chen and Wang [16]
recently proposed a similar method for determining the diagonal
coefficients in the modified MFS by applying a known solution
inside the domain, so that the diagonal coefficients from both the
fundamental solution and its derivative can be determined
indirectly, without using any element or integration concept.
Again, this approach is appealing, stable, and accurate but is costly
for solving large-scale problems due to the need to solve the
problem twice.

In the spirit of pursuing truly meshfree boundary methods, we
present in this paper a new boundary meshfree approach based
.2010.04.008
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on the modified MFS that has no fictitious boundaries and
singularities. In this new approach, to be called boundary

distributed source (BDS) method, the concentrated point sources
are replaced with area-distributed sources covering the source
points for 2D problems. These area-distributed sources are
analytical integration of the original singular fundamental solu-
tion and its derivative so that they preserve the advantage of
diagonal dominance for the system of equations, while they have
no troublesome singularity issues. This BDS approach also does
not require the information about the neighboring points for each
source point, thus is a truly meshfree boundary method.
Implementation of the method is easy and extension to 3D is
straightforward where volume-distributed sources covering the
source points can be applied. Although there are remaining issues
with this BDS method, it is a very promising boundary meshfree
method because it can be accelerated readily with the fast
multipole method [10,15] or other fast solution methods in
solving large-scale engineering problems.
2. Formulation of the boundary distributed source method

We consider the following Laplace equation governing poten-
tial problems in a 2D domain V (Fig. 1):

r
2fðxÞ ¼ 0, 8xAV ð1Þ

under the following boundary conditions (BCs):

fðxÞ ¼fðxÞ, 8xASf ðDirichlet BCÞ ð2Þ

qðxÞ �
@f
@n
ðxÞ ¼ qðxÞ, 8xASq ðNeumann BCÞ ð3Þ

where f is the potential field, S¼Sf[Sq the boundary of V, n the
outward normal, and the barred quantities indicate the given
values on the boundary.

Let us place N distributed sources at point yj (j¼1, 2,y,N) on
boundary S (Fig. 1). We can show that f given by the following
expression satisfies the governing Eq. (1):

fðxÞ ¼
XN

j ¼ 1

Z
AðyjÞ

Gðx,y0ÞdAðy0Þmj, 8xAV� [
N

j ¼ 1
AðyjÞ ð4Þ
1

2

a

x

yj

V

S

n

Fig. 1. A domain V with boundary S, the collocation point x, and center yj of a

source.
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where A(yj) can be a line segment or an area covering point yj on
the boundary,

Gðx,y0Þ ¼
1

2p log
1

r

� �
ð5Þ

is the fundamental solution for 2D potential problems with r being
the distance between the collocation point x and source point y0, and
mj an unknown intensity of the distributed source at yj. Note that
A(yj) can be a straight line segment in the tangential or normal
direction of the boundary at yj, a ring around yj, or an area covering
yj. If A(yj) is a line segment in the tangential direction of the
boundary and formed by the two mid-points between yj and the
points before and after point yj, then expression (4) is simply the
indirect boundary integral equation (BIE) formulation based on the
single-layer potential given in Eq. (5). Among all those choices, it
was found that the area-distributed sources for 2D problems yield
the most stable and accurate approach.

Therefore, in this paper, we consider the case that A(y) is a
circular disk of radius R and centered at point y on the boundary S

(Fig. 2) for 2D problems. It can be shown that, for example, using
direct integration in polar coordinates (see, e.g., Ref. [17], p. 108,
Eq. (7.19)), the integration of the fundamental solution G(x,y) on a
circular disk A(y) yields the following analytical results (Fig. 2):

~Gðx,yÞ �
Z

AðyÞ
Gðx,y0ÞdAðy0Þ ¼

R2

2
log

1

a

� �
for a4R;

R2

2
log

1

R

� �
þ

R2�a2

4
for arR;

8>>><
>>>:

ð6Þ

in which a is the distance between x and y (center of the disk, see
Fig. 2). Notice that ~Gðx,yÞ is continuous when x crosses the edge of
the disk (that is, at a¼R). In comparison with the concentrated

point sources, like the fundamental solution G(x,y), we can call
~Gðx,yÞ given in Eq. (6) a distributed area source. Note also the
relation between ~Gðx,yÞ and G(x,y) in the limit: ~Gðx,yÞ=AðyÞ ¼
~Gðx,yÞ=pR2-Gðx,yÞ, as R-0, using the first expression in Eq. (6).

Applying the new notation ~Gðx,yÞ, we can rewrite Eq. (4) as
follows:

fðxÞ ¼
XN

j ¼ 1

~Gðx,yjÞmj, 8xAV� [
N

j ¼ 1
AðyjÞ ð7Þ

with ~Gðx,yÞ being given by Eq. (6). This is an expression of the
solution for f inside the domain except for all the disks, once the
unknown densities mj are found on boundary S.
1

2

r

x

y'

y

R

a

Fig. 2. Distributed source on a circular disk A(y) centered at point y and with

radius R.
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The boundary conditions in Eqs. (2) and (3) can be satisfied at
the collocation points xi by adjusting mj at the source points yj,
that is, imposing the following conditions:

XN

j ¼ 1

~Gijmj ¼fi for xiASf ð8Þ

or

XN

j ¼ 1

~K ijmj ¼ qi for xiASq ð9Þ

where ~Gij �
~Gðxi,yjÞ and is determined by Eq. (6), and ~K ij �

~K ðxi,yjÞ

with

~K ðx,yÞ �

Z
AðyÞ

Kðx,y0ÞdAðy0Þ ¼

Z
AðyÞ

@Gðx,y0Þ

@nðxÞ
dAðy0Þ ¼

@ ~Gðx,yÞ

@nðxÞ

¼�
R2

2a

@a

@nðxÞ
, for a4R ð10Þ

Currently, valid expressions for ~K ðx,yÞ when 0rarR are
still under investigation. Therefore, the diagonal term in Eq. (9)
needs to be determined indirectly for collocation points on Sq

(the part of the boundary with Neumann boundary conditions).
In this paper, the method proposed by Šarler [14] is applied
to determine the diagonal coefficient in Eq. (9). In this approach,
we first assume a constant solution, e.g., f(x)¼c everywhere.
Then, from Eq. (8) we can solve for the corresponding densities mc

j

for all the boundary points. Finally, from Eq. (9) we arrive at the
following expression for the diagonal term using the known density
values mc

j :

~K ii ¼�
1

mc
i

XN

j¼ 1

ja i

~K ijmc
j ð11Þ
Fig. 3. A square domain with the boundary covered with 100 circular disks.
This technique is similar to the one used in the BEM for
determining the diagonal coefficients by applying a rigid-body
motion or the identities for the fundamental solutions when the
singular integrals cannot be determined readily [15,18].

The following standard linear system of equations is formed
after applying either Eqs. (8) or (9) at all the collocation points xi

(i¼1, 2,y,N):

a11 a12 � � � a1N

a21 a22 � � � a2N

^ ^ & ^

aN1 aN2 � � � aNN

2
66664

3
77775

m1

m2

^

mN

8>>>><
>>>>:

9>>>>=
>>>>;
¼

b1

b2

^

bN

8>>>><
>>>>:

9>>>>=
>>>>;

or Al¼ b ð12Þ

where A is the coefficient matrix, l the unknown density vector, and
b the right-hand side vector. Once all the values of mj are determined
by solving this equation, the potential at any point inside the domain
or on the boundary can be evaluated using Eq. (7).

3. Examples

Examples for solving 2D potential problems are presented in
this section to show the feasibility and potentials of the proposed
boundary distributed source method and its comparison with the
traditional method of fundamental solutions.

3.1. A square domain with Dirichlet BC

A square domain covering 0rx,yr1 is studied first, which is
the example used in Ref. [16]. Dirichlet BC is imposed on the four
edges of this domain using the following analytical solution:

fðx,yÞ ¼ x2�y2 ð13Þ
Please cite this article as: Liu YJ. (2010), doi:10.1016/j.enganabound
The number of boundary nodes used is from 100 to 4000. A
plot of the distributed sources with the circular disks is shown in
Fig. 3 for the case with 100 nodes. The radius of the circular disk
for the distributed area source covering each node is set as R¼d/2,
where d is the smallest distance between two nodes on the
boundary. A number of M¼101 field points are selected inside
the domain along the line y¼0.5 with 0.001rxr0.999, and the
solutions at these field points are computed and compared with
the analytical solution. The relative error of the numerical
solution is defined as

Err¼
1

M

XM
k ¼ 1

ð9fk�fk9=9fk9Þ
2

" #1=2

ð14Þ

where fk and fk are the analytical (Eq. (13)) and numerical
solutions, respectively, at the k-th field point (which is excluded
from the error calculation, if fk¼0). A version of the traditional
method of fundamental solution [10] is also used for solving this
problem. For consistency, the distance of the fictitious boundary
from the true boundary for the MFS is set as R as defined above for
the boundary distributed source method.

Fig. 4 shows the relative errors in the results obtained using
the BDS method (BDS Results) and the traditional MFS (MFS
Results). Both BDS and MFS results converge with the errors
below 1E�3 when the numbers of boundary nodes approach
above 1000. However, the MFS results are one order of magnitude
more accurate than the BDS results in this case. It was also found
that the results of the BDS method are not sensitive to the value of
the radius R of the circular disks used, although a general
conclusion cannot be drawn at present. The values of R in the
range 0oRr0.6d were found to be valid, that is, the disks on the
boundary can even overlap each other.
3.2. A circular domain with Dirichlet BC

A circular domain of radius¼2 m is studied next, which is an
example used in Ref. [13]. Dirichlet BC is imposed on the edge of
the circle using the following analytical solution:

fðr,yÞ ¼ r6 cosð6yÞ ð15Þ
.2010.04.008
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Fig. 4. Relative errors in the results for the square domain model with Dirichlet BC.

Fig. 5. A circular domain with the boundary covered with 36 circular disks.
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in the polar coordinate (r,y). The number of boundary nodes used
are from 36 to 1200. A plot of the distributed sources with the
circular disks is shown in Fig. 5 for the circle with 36 nodes. The
radius of the circular disk for the distributed area source covering
each node is set as R¼d/4 in this case, with d being the smallest
distance between two nodes. A total number of 120 field points
are selected inside the circle along the line r¼1 m and with
01ryr3601, and the solutions at these field points are computed
and compared with the analytical solution (Eq. (15)). The
traditional MFS [10] is also used for comparison. Again, for
consistency the distance of the fictitious boundary from the true
boundary for the MFS is set as R, as used for the BDS method.

Fig. 6 shows the relative errors in the computed potential at the
field points inside the domain using the BDS method and compared
with the results using the MFS. In this example, the BDS results have
better accuracy than the MFS results. Plots of the computed potentials
at the 120 field points using the BDS method with 36 and 360 nodes
on the boundary are given in Fig. 7. Excellent agreements of the BDS
results with the analytical solution are observed.
Please cite this article as: Liu YJ. (2010), doi:10.1016/j.enganabound
3.3. A square domain with mixed BCs

Finally, we consider the square domain covering the region
0rx,yr1 studied in the first example (Fig. 3), but with mixed
boundary conditions to verify the formulas for computing the
coefficients ~K ij given in Eqs. (10) and (11). The considered BCs are:
along the edges y¼0 and 1: q¼0; along the edge x¼0: f¼0; and
along the edge x¼1: f¼100. The analytical solution for this
problem is

fðx,yÞ ¼ 100x ð16Þ

Again, the number of boundary nodes used are from 100 to
4000 and the radius of the circular disk for the distributed area
source is set as R¼d/2, as in the first example. The same number
of M¼101 field points are placed inside the domain along the line
y¼0.5 with 0.001rxr0.999, and the solutions of f on both the
boundary and at these field points are computed and compared
with the analytical solution.

Fig. 8 shows the relative errors in the computed results at the
nodes on the boundary and at the field points inside the domain
using the BDS method. The boundary solutions converge
smoothly with the increase of the number of the boundary
nodes, indicating that the proposed BDS method works well with
mixed BCs. In this case, on the part of the boundary with the
Neumann BC, Eq. (10) is applied for calculating the off-diagonal
coefficients ~K ij

, and Eq. (11) is applied for calculating the diagonal
coefficients ~K ii. The use of Eq. (11) for determining the diagonal
terms for problems with Neumann BC will require solving the
problem twice, thus doubling the solution time in these cases.
Fig. 8 also shows that the solutions at the field points inside the
domain are less accurate than those in the first example where
only Dirichlet BC is applied and Eq. (11) is not used. Therefore, the
use of Eq. (11) may also add additional errors in the solutions. It is
desirable to find the analytical expression for the diagonal term
~K ii for solving problems with Neumann BC in order to improve
both the accuracy and efficiency of the solutions using the
proposed BDS method.
4. Discussions

A new boundary meshfree method, termed boundary distrib-
uted source (BDS) method, is proposed in this paper for solving
boundary-value problems with the nodes on the boundary of the
problem domain only. The method is similar to the modified
.2010.04.008
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method of fundamental solutions in that both methods apply the
source points on the boundary directly so that they are coincident
with the collocation points. However, in the BDS approach, the
singular fundamental solution is integrated first over small areas
(for 2D) or volumes (for 3D) covering the source points so that the
coefficients in the system of equations can be evaluated
analytically and consistently, leading to extremely simple com-
puter implementation for this method. Numerical examples using
2D potential problems clearly demonstrate the feasibility and
accuracy of this BDS approach. Extension of this approach to 3D
potential, 2D/3D elasticity, and other problems is straightforward.

There are a few remaining questions with the proposed BDS
method. First, analytical expression for ~K ðx,yÞ shown in Eq. (10)
when 0rarR has not been established. Therefore, the diagonal
coefficients for equations on the boundary with Neumann BC have
to be determined indirectly using Eq. (11), which reduces the
computational efficiency and hinders large-scale applications of
the BDS method. It is well-known from the BEM that the
integration of the K kernel on the boundary, which is the normal
derivative of the G kernel with respect to the collocation point x,
has a jump term when x approaches the boundary. This jump
term definitely will have an effect on the area integral (for 2D) as
Please cite this article as: Liu YJ. (2010), doi:10.1016/j.enganabound
defined for ~K ðx,yÞ in Eq. (10), as x approaches the area (see Fig. 2).
The property of the jump term in ~K ðx,yÞ needs to be investigated
carefully in order to obtain a valid expression for ~K ðx,yÞ when
0rarR.

In addition, the expression in Eq. (4) does not satisfy the
governing equation in the boundary regions where the disks
overlap with the domain V (i.e., in regions V \ ½[N

j ¼ 1AðyjÞ�), which
can lead to inaccurate results near the disks. The proposed BDS
method also seems to be indifferent to the differences between
the interior or exterior domain problems, because only nodes on
the boundary are required in the discretization. Thus it may cause
problems or need special treatment if exterior domain problems
[12] are to be solved. All the references to the boundary direction,
outward normal, and so on, which are indicative of the domain
type of the problem, are not present in the current BDS solution
procedure. There are many options in improving the BDS
formulation, for example, by moving the distributed sources
outside the boundary of the domain, using areas of different
shapes for the distributed sources or applying a different kernel
function instead of the G kernel. These improvements and
extensions to solving other types of problems need to be explored
in the near future.
Acknowledgements

The author would like to thank Professor S. Mukherjee and
Professor V. Sladek for their constructive comments on the
original manuscript.

References

[1] Mukherjee S, Mukherjee YX. Boundary methods: elements, contours, and
nodes.. Boca Raton: CRC; 2005.

[2] Fairweather G, Karageorghis A. The method of fundamental solutions for
elliptic boundary value problems. Advances in Computational Mathematics
1998;9(1/2):69–95.

[3] Golberg MA, Chen CS. The method of fundamental solutions for potential,
Helmhotz and diffusion problems. In: Golberg MA, editor. Boundary integral
methods: numerical and mathematical aspects. Boston: Computational
Mechanics Publications; 1998. p. 103–76.

[4] Fairweather G, Karageorghis A, Martin PA. The method of fundamental
solutions for scattering and radiation problems. Engineering Analysis with
Boundary Elements 2003;27(7):759–69.
.2010.04.008

dx.doi.org/10.1016/j.enganabound.2010.04.008


Y.J. Liu / Engineering Analysis with Boundary Elements ] (]]]]) ]]]–]]]6
[5] Berger JR, Karageorghis A. The method of fundamental solutions for heat
conduction in layered materials. International Journal for Numerical Methods
in Engineering 1999;45(11):1681–94.

[6] Ramachandran PA. Method of fundamental solutions: singular value decom-
position analysis. Communications in Numerical Methods in Engineering
2002;18(11):789–801.

[7] Smyrlis Y-S, Karageorghis A. A matrix decomposition MFS algorithm for
axisymmetric potential problems. Engineering Analysis with Boundary
Elements 2004;28(5):463–74.

[8] Mitic P, Rashed YF. Convergence and stability of the method of meshless
fundamental solutions using an array of randomly distributed sources.
Engineering Analysis with Boundary Elements 2004;28(2):143–53.

[9] Poullikkas A, Karageorghis A, Georgiou G. The method of fundamental
solutions for three-dimensional elastostatics problems. Computers and
Structures 2002;80(3–4):365–70.

[10] Liu YJ, Nishimura N, Yao ZH. A fast multipole accelerated method of
fundamental solutions for potential problems. Engineering Analysis with
Boundary Elements 2005;29(11):1016–24.

[11] Young DL, Chen KH, Lee CW. Novel meshless method for solving the potential
problems with arbitrary domain. Journal of Computational Physics 2005;209:
290–321.
Please cite this article as: Liu YJ. (2010), doi:10.1016/j.enganabound
[12] Chen KH, Kao JH, Chen JT, Young DL, Lu MC. Regularized meshless method for
multiply-connected-domain Laplace problems. Engineering Analysis with
Boundary Elements 2006;30:882–96.

[13] Young DL, Chen KH, Chen JT, Kao JH. A modified method of fundamental
solutions with source on the boundary for solving Laplace equations with
circular and arbitrary domains. CMES: Computer Modeling in Engineering &
Sciences 2007;19(3):197–221.
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