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a b s t r a c t

This work presents a non-linear boundary element formulation applied to analysis of contact problems.

The boundary element method (BEM) is known as a robust and accurate numerical technique to handle

this type of problem, because the contact among the solids occurs along their boundaries. The proposed

non-linear formulation is based on the use of singular or hyper-singular integral equations by BEM,

for multi-region contact. When the contact occurs between crack surfaces, the formulation adopted is

the dual version of BEM, in which singular and hyper-singular integral equations are defined along the

opposite sides of the contact boundaries. The structural non-linear behaviour on the contact is

considered using Coulomb’s friction law. The non-linear formulation is based on the tangent operator

in which one uses the derivate of the set of algebraic equations to construct the corrections for the non-

linear process. This implicit formulation has shown accurate as the classical approach, however, it is

faster to compute the solution. Examples of simple and multi-region contact problems are shown to

illustrate the applicability of the proposed scheme.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Contact mechanics is an important theme in the domain of solid
mechanics. During the last few years, this theme has received an
enormous attention from the scientific community due to its
technological importance and complexity. The knowledge on the
contact surface behaviour has great importance in mechanical,
aeronautic and ship industry, where several forces are transferred
among the solid parts using dents, connections and joints.

The boundary element method (BEM) is particularly suitable
to handle this kind of analysis. As the discretization is required
only along the boundary and contact surfaces, the number of
degrees of freedom tends to be small in comparison with other
numerical techniques as finite element method (FEM) and the
extended finite element method (XFEM). However, this was not
an impeditive to the development of some interesting formula-
tions using these two last numerical methods. Friction and
frictionless contact formulations for analysis of multi-bodies,
crack surfaces and impact have been successfully developed using
FEM [1–3] and XFEM [4,5].

To deal with complex contact problems, especially non-linear
contact problems, BEM is recommended because this numerical
method is capable to calculate accurately the values on body’s
ll rights reserved.
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boundary, where the contact occurs. In addition, the proposition
of new BEM formulations for this problem is straightforward,
because it gives explicit equations relating values prescribe and
unknown on the boundary, including the surfaces in contact.
Considering BEM to analyse contact problems appeared in the
work due [6]. A contact BEM formulation based on the sub-region
technique was proposed in [7] to analyse slope limit loads in
geomechanic problems. They have developed and implemented a
non-linear BEM formulation, using only singular integral equa-
tions, for which Mohr-Coulomb’s criterion was assumed to define
the collapse. The sub-region technique was also used by Man [8]
and Aliabadi [9] for analysis of several types of contact problems,
where linear and quadratic boundary elements were adopted.
Coulomb’s criterion was considered to model friction contact
between cylindrical surfaces and crack lips by Gonzalez and
Abascal [10] and Chen and Chen [11], respectively.

An automatic incremental technique was proposed by Huesmann
and Kuhn [12], in which contact conditions change at only one
node at the end of the increment, for two-dimensional elasto-
plastic contact problems including friction. Their algorithm takes
into account the elasto-plastic material behaviour over a fast
iterative scheme. A BEM formulation applied to solve elastic
frictional contact problems, using non-conforming discretization
was presented in [13–15]. These formulations use singular and
hyper-singular integral equations and the values on the contact
surface are determined by enforcing tractions and displacements
at every node of the contact zone with points on the opposite
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surface. The frictional contact for 3-D problems was analysed in
[16]. Their formulation was based on an incremental form con-
sidering constant triangular boundary elements. Some formula-
tions for analysis of rolling contact were proposed by González
and Abascal [17], Abascal and Rodrı́guez-Tembleque [18] and
Rodrı́guez-Tembleque and Abascal [19]. These formulations were
developed for analysis of 2D and 3D contact problems with BEM,
allowing to consider real solid geometries and unstructured
meshes. In addition, there is a normal and tangential cross-
influence relation.

This paper proposes a non-linear BEM formulation using
tangent operator to deal properly with contact problems. This
implicit formulation is based on the use of only singular integral
equations, only hyper-singular integral equations or singular plus
hyper-singular integral equations, dual BEM [20], to model possible
contacts that may appear among boundaries of different bodies
and also between the crack surfaces introduced by crack propaga-
tion, as presented in [21,22]. In this last case, after the crack growth
process, crack surfaces can close considering reversal loads and the
new geometric structural configuration. The non-linear process is
solved using a tangent operator, which is derived to assure better
convergence and accuracy. This operator uses the derivate of the
set of algebraic equations to construct the corrections on the non-
linear process. This kind of operator has already been successfully
used in the literature for dealing with many different engineering
problems. For instance, [23,24] where localisation phenomenon
and cohesive crack growth, respectively, were analysed. The
derivation of this operator for contact problems using BEM is the
main contribution of this paper. The tangent operator is derived
considering Coulomb’s friction criterion, which is adopted to
govern the traction behaviour on the contact surfaces.

Examples of simple and multi-region contact problems are
presented to illustrate the applicability and robustness of the
proposed scheme. When possible, the results of the proposed
BEM model are compared with FEM solution, based on ANSYS
models. This formulation has shown accurate as the classical
approach, however it is faster in terms of computational work.
2. Contact problem

In many types of structures, the applied external loads are
transferred among the structural elements by the contact that
occurs among them. Thus, the mechanical efficiency of the system
depends on the nature of the interaction between the contact
surfaces. Although this mechanical problem be very important for
the industry, and many developments have already been made,
many researches search for new models and improvements to
simulate this problem. In practice, the knowledge on the contact
problem can be improved using experience and observation. As
the direct observation is often impossible, because the areas of
interest are hidden under the contact surfaces, the mechanical
behaviour has to be averaged along the contact surfaces. The
parameters of interest to be measured in laboratory are the
ultimate cohesive stresses and the friction angle, when Coulomb’s
friction law is assumed. These parameters can be used to evaluate
the actual condition along the contact: stick (perfect coupling),
slip or total separation.

Another important difficulty regarding the contact problem is
that its behaviour is always dependent upon the involved materi-
als, the surface texture, the topology, loading rate, the amount of
applied load, the load direction, boundary conditions, among
others. The friction contribution is almost always taken into
account to evaluate the safety of mechanical system. Although,
many times the friction contribution is not critical, the absence of
knowledge on this effect can lead to unsafe and inefficient design.
2.1. Remarks on the friction effects

The physical mechanism of the friction can be seen as the
strength to sliding between two contact surfaces. The cohesion
between the contact surfaces is strongly influenced by their
roughness and also by the material microstructure. The friction
has enormous effects on the normal and shear traction interaction
during the contact between the surfaces. Thus, an accurate
solution is only possible if the friction is taken into account.
Coulomb’s friction law is the more often model assumed to
represent the contact between two surfaces in engineering
problems. This friction law defines that the sliding between two
surfaces in contact occurs only when the shear traction, in
absolute value at any surface point, is larger than the initial
cohesion value plus the product between normal traction by the
friction angle tangent, which represents the roughness between
the surfaces. Moreover, the shear traction in the contact surfaces
is governed by the following expression:

9t9rcs�sntanðfÞ ð1Þ

where f is the friction angle, sn is the traction component
perpendicular to the contact surface (negative if compressive
traction), t is the traction component parallel to the contact
surface and cs is the cohesion.

Regarding Eq. (1), the contact between surfaces, considering
friction effect among them, originates a non-linear problem due
the dependency of normal and shear tractions in the contact
surfaces. To solve properly this non-linear problem the incre-
mental procedure with tangent operator is described in Section 4,
which take into account positive and negative values for shear
tractions in the contact surfaces.

The formulation proposed in this paper is capable to simulate
contact problems according to the following modes separation:
slip and stick. For each of these modes, the conditions below are
assumed:

Separation Slip Stick

t‘þtr ¼ 0 t‘þtr ¼ 0 t‘þtr ¼ 0

s‘nþsr
n ¼ 0 s‘nþsr

n ¼ 0 s‘nþsr
n ¼ 0

t‘ ¼ 0 9tr9¼ 9t‘9¼ cs�s‘ntanf u‘t�ur
t ¼ 0

s‘n ¼ 0 u‘n�ur
n ¼ gap‘rn u‘n�ur

n ¼ gap‘rn

ð2Þ

where the superscripts ‘ and r represent the left and right contact
surface sides, respectively, the subscripts n and t indicate the
normal and parallel directions of the contact surface, respectively,
u is the displacements on the contact surface and gap‘rn indicates
an initial gap between the contact surfaces before the application
of the loads.

According to the active contact mode, the variables to be
calculated in the contact surface change. Consequently, the
equations used to analyse the problem also change. Therefore,
the conditions presented in Eq. (2) coupled with algebraic BEM
equations are used to construct the tangent operator in order to
solve the non-linear problem and predict the contact values.
3. Boundary integral equations

In two-dimensional elasticity, the boundary integral equations
can be obtained considering a homogeneous domain, O, with a
boundary, G. The equilibrium equation can be written in terms of
displacements as

ui,jjþ
1

1�2u
uj,jiþ

bi

m ¼ 0 ð3Þ

where m represents the shear elastic modulus, ui gives the displace-
ment components, bi is the body forces and u is Poisson’s ratio.
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This equilibrium representation can be transformed to an
integral representation by applying Betti’s reciprocity theorem or
using weighted residual method. Considering these approaches,
the integral representation written in terms of displacements is
obtained

cilðf ,cÞulðf Þþ Pn

ilðf ,cÞulðcÞdG¼
Z
G

PlðcÞu
n

ilðf ,cÞdG ð4Þ

where un

ij and pn

ij are Kelvin’s fundamental solutions for displace-
ment and tractions, respectively, uj and pj are boundary displace-
ments and tractions, respectively, and cil the well known free term
for elastic problems; cil is equal to dil for internal points, zero for
outside points and dil/2 for smooth boundary nodes and means
integral of Cauchy principal value.

Eq. (4) is named in this paper as singular integral equation
because of the singularity level of its kernels. Other important
integral equation used in the proposed non-linear formulation is
the hyper-singular integral equation. This integral equation,
written in terms of tractions, can be obtained from Eq. (4), which
must be differentiated to obtain the integral representation
in terms of strains. Then, Hooke’s law is applied to obtain
the integral representation in terms of stresses. Finally, multi-
plication by the director cosines of the normal to crack surfaces at
the collocation point leads to the traction representation, as
follows:

1

2
Pjðf ÞþZk Skjðf ,cÞukðcÞdG¼ Zk Dkjðf ,cÞPkðcÞdG ð5Þ

where indicates finite part of Hadamard integrals; the kernels
Skj and Dkj are obtained from the kernels Pij

n e uij
n by applying the

definition of tractions.
To deal with crack problems using BEM, one of the most

popular techniques is the dual boundary element method (DBEM)
[20,21,25]. For DBEM, Eqs. (4) and (5) are used to obtain the
algebraic relations for nodes defined along the boundary and
crack surfaces. Eq. (4) is chosen to obtain the algebraic relations at
nodes defined along the external boundary and along one crack
surface, while Eq. (5) is used to obtain the algebraic relations at
the opposite nodes, along the other crack surface.

This scheme has been widely used for analysis of crack
propagation [21,24,25], although in this paper the objective is to
apply it for analysis of pure contact between crack lips. Especially,
contact surfaces, which are resulted from crack propagation.
Besides DBEM, three other schemes to select algebraic equations
are considered in order to deal properly with contact problems
using BEM. These schemes are used for analysis of multi-bodies
contact. They are based on the sub-region technique, in which
each solid lead to a block of algebraic equations and then they are
joined together by imposing equilibrium and displacement com-
patibility conditions. For the first scheme, only algebraic relations
coming from the singular integral equation, Eq. (4), are used. This
scheme is named as Singular Sub-region Technique—SST. The
second idealised scheme is defined using along the external
boundary only algebraic equations coming from the singular
integral equation, Eq. (4), while along the contact surfaces only
algebraic equations coming from the hyper-singular integral
equation, Eq. (5), are used. This scheme is named in this paper
as Hyper Singular Sub-region Technique—HST. An alternative
scheme was also tested in which all the algebraic relations along
the contact surfaces and along the boundary are written from the
hyper-singular integral equation, Eq. (5). This scheme is named as
Total Hyper-singular Sub-region Technique—THST.

The last three schemes above mentioned are more convenient
to be used in solving pure contact problems. When they are used
to analyse a contact problem coming from crack growth, an
inconvenient remeshing procedure has to be used leading to
a non-efficient computational algorithm regarding the required
computer time consumption. Then, for problems involving cracks,
the DBEM formulation is recommended.

It is worth to emphasise that when algebraic relations are
obtained from Eq. (5), discontinuous elements must to be used to
approximate tractions and displacements. As the hyper-singular
integral equation can only be approximated if the derivates of the
displacements are continuous in the vicinity of the source point,
the nodes are defined inside the elements. On the contrary,
continuous elements can be used along the boundary and along
the contact surfaces. Considering SST approach, for instance,
continuous elements can be adopted for all boundaries.

For the four schemes of equation selection described above,
the algebraic equations are obtained from Eqs. (4) and (5) after
dividing the boundary and the contact surfaces into elements
along which displacements and tractions are approximated. These
algebraic representations written for a convenient number of
collocation points along the boundary and along the contact
surfaces are split into two blocks of algebraic equations: equa-
tions written for boundary source nodes, equation written for
contact source nodes.

For a selected number of boundary nodes, a block of algebraic
equations are obtained relating boundary and contact values, as
follows:

Hb
bUbþHc

bUc ¼ Gb
bPbþGc

bPc ð6Þ

where Ub and Uc are displacements at the boundary nodes (b) and
at contact surface nodes (c), respectively; Pb gives the boundary
tractions, while Pc represents the tractions acting along the
contact surfaces; Hb

b , Hc
b, Gb

b and Gc
b are the corresponding matrices

to take into account displacement and traction effects; the sub-
script b indicates that the collocation point is at the boundary and
the superscripts specify the boundary (b) or contact surface (c)
values. For three schemes discussed before (DBEM, SST and HST),
Eq. (6) is obtained using only Eq. (4). Nevertheless, as already
commented before, the block of Eq. (6) may also be obtained from
Eq. (5), as made for THST.

For the contact surfaces we need to define two opposite
collocation points, one for each contact surface, to obtain four
algebraic independent relations, corresponding to four unknown
contact surface values, two displacements and two tractions. For
these collocation points, the following block of algebraic is
obtained:

Hb
c UbþHc

cUc ¼ Gb
c PbþGc

cPc ð7Þ

where the subscript c in the matrices Hx
c and Gx

c indicates equation
written for collocation points along the contact surfaces.

If the schemes HST and THST are adopted, Eq. (7) is con-
structed using only Eq. (5). On the other hand, if SST is used, Eq.
(7) is evaluated using only Eq. (4). Finally, if DBEM is adopted Eq.
(7) is computed using Eq. (4), for one contact surface, and Eq. (5),
for the opposite contact surface.

The non-singular element integrals coming from Eq. (4) are
evaluated using a Gauss–Legendre numerical scheme accom-
plished with a sub-element technique, while the singular element
integrals are analytically evaluated. The integrals appearing in the
Eq. (5) are calculated using analytical expressions. Based on these
procedures, Eqs. (6) and (7) are evaluated with very low integra-
tion errors.
4. Non-linear solution technique using tangent operator

In this section, the non-linear BEM formulation using tangent
operator applied to analysis of contact problems will be



E.D. Leonel, W.S. Venturini / Engineering Analysis with Boundary Elements 35 (2011) 1237–12471240
discussed. Firstly, the formulation for contact between crack
surfaces is introduced. Afterwards, the formulation is extended
to consider the case of multi-bodies contact. The use of tangent
operators has demonstrated to be an interesting strategy in
solving many non-linear problems. Using tangent operator to
solve the non-linear system of algebraic equations in the context
of BEM has shown to be an accurate and stable procedure in
which convergence is achieved faster [23,24,26].

4.1. Tangent operator for contact between crack surfaces

Bearing in mind that the displacements and tractions at nodes
belonging to the two opposite contact surfaces are independent,
the equilibrium Eqs. (6) and (7) can be modified as follows:

Hb
bUbþHr

bUrþH‘
bU‘ ¼ Gb

bPbþGr
bPrþG‘

bP‘ ð8Þ

Hb
c UbþHr

cUrþH‘
cU‘ ¼ Gb

c PbþGr
cPr

cþG‘
cP‘ ð9Þ

where the subscripts r and ‘ are related to collocation points
located at the right and left contact surfaces, respectively.

To obtain the expression of the tangent operator, Eqs. (8) and
(9) have to be modified. Firstly, by transforming the contact
surface displacement and traction vectors to local coordinates
(n, s), in which n and s are coordinate axes perpendicular and
parallel to the contact surfaces, respectively. The local coordinate
system considered is illustrated in Fig. 1.

After this modification, these equations can be further mod-
ified by introducing the gap openings in the directions parallel
and perpendicular to the contact surfaces, us and un, respectively.
Thus, the displacement components associated with the left
contact surface is replaced by

U‘s ¼ us�Urs ð10Þ

U‘n ¼ un�Urn ð11Þ

It is worth to emphasise that the contact condition, stick or
slip, is considered active when U‘nþUrnþgap‘rn is lesser or equal to
zero. In this case structural interpenetration is observed and it
must to be taken into account by BEM equations. Otherwise, if the
condition above is positive, separation of contact surface is con-
sidered and the contact values are those presented in Eq. (2).
Therefore, initial gap is considered in the formulation by only to
determine the contact condition.

The equilibrium conditions have also to be applied in both, the
tangential and normal directions, (Fig. 1), as follows:

�P‘sþPrs ¼ 0 ð12Þ
Fig. 1. Local coordinate system adopted for crack contact surfaces.
�P‘nþPrn ¼ 0 ð13Þ

Thus, after introducing the relations (10) to (13) into the
blocks of algebraic Eqs. (8) and (9) one obtains

Yb ¼Hb
bUbþ½H

rs
b �H‘s

b �Ursþ½H
rn
b �H‘n

b �UrnþH‘s
b usþH‘n

b un

�Gb
bPb�½G

rs
b þG‘s

b �Prs�½G
rn
b þG‘n

b �Prn ð14Þ

Yc ¼Hb
c Ubþ½H

rs
c �H‘s

c �Ursþ½H
rn
c �H‘n

c �UrnþH‘s
c usþH‘n

c un

�Gb
c Pb�½G

rs
c þG‘s

c �Prs�½G
rn
c þG‘n

c �Prn

ð15Þ

where the matrices Hrs
x and Hrn

x are obtained from Hr
x by comput-

ing the contribution due to the components Urs and Urn, respec-
tively. Similarly, H‘s

x and H‘n
x are obtained from H‘

x taking into
account the contribution due to U‘s and U‘n; Grs

x and Grn
x came

from Gr
x, while G‘s

x and G‘n
c came from G‘

x; the subscript x means b

for Eq. (14) and c for Eq. (15). Yb and Yc are residual term related
to boundary and contact collocation point position, respectively.
These variables must be lesser than a specified tolerance to
achieve the convergence.

Eqs. (14) and (15) compose a non-linear system of equations,
considering contact problems, that must be properly solved.
These equations are applied to any contact problem and depend
only on the adopted non-linear contact criterion. To solve the
equations above, the Newton–Raphson scheme was used with
prevision and correction phases inside each load increment.
Therefore, within a load step Dtn¼tnþ1�tn an iterative process
is required to achieve the equilibrium. For any load step, Eqs. (14)
and (15) have to be rewritten in terms of increments, i.e., the
rate vector values have to be replaced by their increments:
Dus, Dun, DUrs, DUrn, DPrs, DPrn and the unknowns values at the
boundary, DX.

In this paper, the equilibrium configuration in each load step
is achieved using a tangent operator. To obtain the terms of
this operator, the Eqs. (14) and (15) must be expanded
using Taylor’s expansion. Taking into account only the first
term of Taylor’s expansion, these equations can be obtained as
follows:

YðDXi,DUi
rn,DUi

rs,Dui
s,Dui

n,DPi
rs,DPi

rnÞþ
@YðDXi,:::Þ

@DXi
dDXi

þ
@Yð:::,Dui

s,:::Þ

@Dui
s

dDui
sþ

@Yð:::,Dui
n,:::Þ

@Dui
n

dDui
nþ

@Yð:::,DUi
rs,:::Þ

@DUi
rs

dDUi
rs

þ
@Yð:::,DUi

rn,:::Þ

@DUi
rn

dDUi
rnþ

@Yð:::,DPi
rs,:::Þ

@DPi
rs

dDPi
rsþ

@Yð:::,DPi
rnÞ

@DPi
rn

dDPi
rn ¼ 0

ð16Þ

The terms multiplying the increments compose the tangent
operator. Therefore, for the first try of the first load increment,
stick contact mode is assumed. As a result, Dus and Dun are zero
and consequently the system of algebraic equations is solved in
terms of DPrs and DPrn. For this condition the structure is solved
considering the follow system of equations:

DX

DUrs

DUrn

DPrs

DPrn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

A

½Hrs�H‘s�

½Hrn�H‘n�

�½GrsþG‘s�

�½GrnþG‘n�

2
6666664

3
7777775

�1

fDFg ð17Þ

The terms A and DF are obtained by applying the boundary
conditions on the system of equations. All boundary equations
associated with unknown variables were moved to A matrix. The
vector DF is obtained by multiplying the boundary equations
associated with known variables by the values prescribed on the
boundary.
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For the following iteration (k), the system of equations is
solved using the Eqs. (14) and (15). However, the unknown
variables depend on the contact conditions (contact mode)
determined (active) at the end of the previous iteration (k�1).
If stick mode is observed at the end of the previous iteration,
U‘nþUrnþgap‘rn ¼ 0 and 9Prs9ocs�PrntanðfÞ, no sliding appears
and the variables increments are evaluated considering the
Eq. (17). In this case, the problem remains linear. As a result of
evaluating Eq. (17), the tractions and displacements values at
right contact surface and the unknown variables at the external
boundary are obtained.

The sliding condition is observed when U‘nþUrnþgap‘rn ¼ 0
and Coulomb’s friction law is not satisfied. In this case, the
structural non-linear behaviour is introduced in the problem by
the non-linearity traction behaviour on the contact surfaces.
When sliding condition occurs, Eq. (17) has to be rewritten to
take into account new unknown variables. Considering Coulomb’s
friction law to govern the tractions values on the contact surfaces,
the dependence between the tractions on tangent and normal
directions to contact surfaces is included in the analysis. For this
situation, the non-linear problem is solved using the tangent
operator. Including Coulomb’s law in Eqs. (14) and (15), the
problem is solved by

DX

DUrs

DUrn

Dus

DPrn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

A

½Hrs�H‘s�

½Hrn�H‘n�

H‘s

�½GrnþG‘n��½GrsþG‘s�ð@Ps=@PnÞ

2
6666664

3
7777775

�1

fDF̂g ð18Þ

where DF̂represents the vector with non-equilibrated forces,
(qPs/qPn) means the variation of tangential tractions on normal
tractions at the contact surfaces. This term is obtained using
Coulomb’s friction law expression. Considering this law, this term
becomes v (qPs/qPn)¼tan(f). The matrix multiplying vector DF̂ is
known as tangent operator, because it takes into account the
variation of the non-linear contact law in the system of equations.

When the non-linear Coulomb’s criterion is triggered, the
tangent operator is constant. Therefore, it requires only one
iteration to reach the equilibrium configuration at each load step.
Of course, this is the situation where no change occurs in the
contact conditions (modes) from one iteration to the next. If the
contact mode changes at any collocation point, from one iteration
to the next, the tangent operator, Eq. (18) has to be modified and
complementary iterations are needed.

Thus, for contact problems where the surfaces in contact are
easily identified, this formulation can be successfully applied.
Special interest is addressed to contact between crack lips and
also among soil and rock layers.
4.2. Tangent operator for multi-bodies contact

In this sub-section, the tangent operator formulation is
extended to multi-bodies contact problems. Therefore, this for-
mulation is applied to analysis of contact among interfaces of
different materials that compose a structural system. To develop
this formulation, the sub-region technique was adopted. There-
fore, the displacement and traction compatibility along the
contact surfaces are enforced for stick contact mode. Otherwise,
in slip mode, the parallel components of displacements are
leaving to slide on each other.

The contact condition is achieved when structural interpene-
tration is observed, i.e, when adding the normal displacements on
each contact surface and the initial gap be lesser than or equal to
zero. Otherwise, when structural interpenetration is not observed,
separation model is considered. In this case, the nodes defined
along the contact surfaces are treated independently, therefore
with unknown displacements and prescribed traction when
pressure is applied inside the gap opening.

Considering the different schemes of integral equations choice
(SST, HST and THST), the BEM algebraic equations are calculated
taking into account the sub-region technique as follows:

XNd

i ¼ 1

HiiUi ¼
XNd

i ¼ 1

GiiPi ð19Þ

where Nd is the number of sub-domains in the analysis. Eq. (19)
can be rewritten considering the collocation point localisation.
These points are separated in collocation points belonging to
external boundary and to contact boundary

XNdn

i ¼ 1

HiUiþ
XNdc

j ¼ 1

HjUj ¼
XNdn

i ¼ 1

GiPiþ
XNdc

j ¼ 1

GjPj ð20Þ

where Ndn means the number of collocation points on the
external boundaries and Ndc the number of collocation points
on the contact boundaries.

We can further modify Eq. (20) by splitting the values on the
contact boundaries. These values are described in terms of a local
coordinates n and s normal and parallel directions to the contact
surfaces, respectively, as illustrated in Fig. 1. After this modifica-
tion, the values on the contact boundaries are described con-
sidering the right, r, and left, ‘, position on the contact surface:
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where Nic is the number of interface or contact surfaces.
Eq. (21) can be modified considering the values prescribed and

unknowns on the external boundaries. Coupling the knows and
unknowns values one has:
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The Ai matrices are composed by all boundary algebraic
equations of unknown variables. The vector F is obtained by
multiplying the boundary algebraic equations of the known
variables by the values applied at the boundary.

Considering this formulation for contact among multi-bodies,
three possible contact modes may appear: stick, slip (sliding
contact) and separation (no contact), Eq. (2). Regarding the first
contact mode, the compatibility and equilibrium conditions have
to be imposed on the values on contact boundaries, which are
expressed as

U‘þUr ¼ 0 and �P‘þPr ¼ 0 ð23Þ

Thus, introducing Eq. (23) in Eq. (22), all values of displace-
ments and tractions for the left contact surface side can be
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replaced
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To solve properly the contact problem, the Newton–Raphson
scheme was used considering prevision and correction phases
inside each load increment. Consequently, Eq. (24) has to be
solved by increments. For stick contact mode the increments on
boundary values is evaluated using the equation
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Eq. (25) represents a linear system of equations where trac-
tions and displacements increments on the boundaries are calcu-
lated. As discussed at the beginning of this section, the stick
contact mode is active when the sum among the normal dis-
placements on each contact surface and the initial gap be lesser
than or equal to zero. This condition depends on the equilibrium
configuration determined in the previous step.

The second contact mode is addressed to modelling the sliding
between the contact surfaces and slip mode. In this case, the
tractions along the contact surfaces are evaluated considering
Coulomb’s friction law. Consequently, introducing this criterion
into the formulation, the structural non-linear behaviour is
included in the analysis.

To model the non-linear behaviour due the contact, the
tangent operator was adopted to solve the non-linear equations.
To derivate its terms, new unknown variables have to be con-
sidered in order to take into account sliding mode. Introducing
compatibility and equilibrium conditions one has

U‘nþUrn ¼ 0 and �P‘þPr ¼ 0 ð26Þ

Considering the conditions expressed by Eq. (26) and introdu-
cing Coulomb’s law, Eq. (22) can be rewritten as
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The terms of the tangent operator are obtained using Taylor’s
expansion, as presented in Eq. (16). Expanding the terms of
Eq. (27) and using Eq. (16) with only the first term of Taylor’s
expansion, the non-linear system is solved according the equation
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where DF̂ represents the vector with non-equilibrated forces,
(qPs/qPn)¼tan(f) indicates the variation of tractions according the
tangential and normal directions to the contact surfaces. The
matrix multiplying the vector DF̂ is known as tangent operator,
because it takes into account the variation of the non-linear
contact law into the system of equations.

The third contact mode, separation, is straightforward consid-
ered with this formulation. When this contact mode is observed,
it means that the tractions and displacements on the contact
surface are independent. Consequently, the collocation points on
the contact boundary can be considered as external boundary and
its algebraic equations are included in matrix A.

It is worth mentioning that using the non-linear Coulomb’s
friction law, the tangent operator is constant. Then, the non-linear
process may achieve the convergence using only one iteration.
This situation is observed when no change occurs in the contact
conditions from one iteration to the next.
5. Applications

In this section, the proposed BEM contact formulation is used for
the analysis of four examples. The first example addresses to analysis
of a panel with a side crack in frictionless contact. The same structure
is also analysed in the second application, where a friction contact is
considered. In this last analysis, the load conditions and the contact
parameters were changed. The third application presents a problem
of two bodies contact. Finally, the last application deals with an
analysis of a multi-body contact. In these applications, the results of
the proposed formulations were compared with the responses of
equivalent models constructed using ANSYS.

5.1. Panel with side crack. frictionless case

A square domain with side lengths of 2.0 m, presented in Fig. 2
is analysed. A crack of 1.0 m length starts at a middle point along
the left vertical side. The displacement components are assumed
zero along the lower side, while along the upper side, the
displacements components prescribed are: ux¼ 0.001 m and
uy¼ 0.001 m. Young’s modulus E¼1.000 kN/m2 and Poison’s ratio
n¼0.2 were assumed, while the friction angle and the cohesion
ultimate strength are zero.

The DBEM formulation was adopted for this analysis. The other
alternatives discussed in the paper are not suitable to solve this
problem. The results obtained with the proposed BEM formula-
tion are compared with the solution given by the finite element
code ANSYS. For the BEM analysis, 32 linear boundary elements
were used while in ANSYS analysis the solid was discretized by
16002 and uniform finite elements. The displacements and trac-
tions along the contact were compared using BEM and FEM



Fig. 3. Displacements in the direction X.

Fig. 4. Displacements in the direction Y.

Fig. 5. Tractions along the contact surface in the direction Y.

Fig. 6. Displacements in the direction X.

Fig. 2. Square domain with a side crack.

E.D. Leonel, W.S. Venturini / Engineering Analysis with Boundary Elements 35 (2011) 1237–1247 1243
approaches. The displacement results are presented in Figs. 3 and
4. Fig. 3 illustrates a good agreement between DBEM and ANSYS/
FEM results for displacement components in the direction X. In
the same way, the agreement between DBEM and ANSYS/FEM
results are also observed in the Y-direction displacement compo-
nents, shown in (Fig. 4).

The normal traction values along the contact surface were also
compared (Fig. 5). As obtained for the displacement results, good
agreement was also observed between DBEM and ANSYS/FEM
results for the contact values. Thus, this example confirms the
accuracy of the developed formulation.

5.2. Panel with side crack. friction case

The same domain analysed in the previous example was again
studied, but now assuming a contact with friction. The boundary
conditions presented in Fig. 2 were assumed with prescribed
displacements along the upper side equal to ux¼ 0.05 m and
uy¼ 0.01 m. The material parameters were also maintained:
Young’s modulus E¼1.000 kN/m2 and Poison’s ratio n¼0.2. The
example is now analysed assuming a friction angle of j¼301,
along the crack surfaces, and a cohesive parameter of cs¼0. Again,
as the contact surface does not separate the body into two or
more sub-regions, the DBEM was the only tested scheme.

The results for displacements and tractions along the contact
surfaces were compared. Firstly, the results for the displacement
component in the direction X was calculated using the proposed
BEM formulation and the FEM model constructed in ANSYS are
compared. Fig. 6 presents the curves obtained, in which a good
agreement between the two numerical solutions can be observed.
Fig. 7 confirms the agreement when displacement component in
the direction Y is compared.



Fig. 7. Displacements in the direction Y.

Fig. 8. Tractions along the contact surface in the direction Y.
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Fig. 9. Structure analysed: dimensions and boundary conditions.

Fig. 10. Displacement in the direction X along all structural boundaries.

Fig. 11. Displacement in the direction Y along all structural boundaries.

Fig. 12. Contact traction, along direction Y.
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The comparison between the traction results is given in Fig. 8.
As expected, the results obtained using ANSYS/FEM and BEM
compares well. Thus, this example, in which friction is taken into
account, also demonstrated the accuracy of the proposed BEM
formulation, with tangent operator, to model contact problems.
5.3. Contact between two blocks

The square structure formed by two blocks illustrated in Fig. 9
is analysed using the proposed BEM formulation. The four alter-
natives of choosing the algebraic equations were tested: (a) using
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only singular equations (SST); (b) using singular equations along
the boundary and singular plus hyper-singular equations along
the contact (DBEM); and (c) using singular equations along the
boundary and only hyper-singular equations along the contact
(HST). The scheme which only hyper-singular equations are used,
along the contact and along the boundary (THST), was also tested.
These solutions were compared with the results obtained using
ANSYS where an equivalent model was constructed using FEM.

The dimension adopted for the two blocks are given in Fig. 9 as
well as the boundary conditions. Thus, the contact behaviour will
be analysed when displacements are applied along the upper
boundary. The properties for the two blocks are: block-1: Young’s
modulus equal to E1¼3.0�103 kN/m2 and Poisson’s ratio n1¼0.2;
block-2: Young’s modulus equal to E2¼2.0�103 kN/m2 and
Poisson’s ratio n2¼0.3. Along the contact no cohesion is assumed,
while the friction angle is 451. Considering the BEM analysis, 32
linear boundary elements were used while in ANSYS analysis the
structure was discretized by 16002 and uniform finite elements.
Fig. 13. us calculated between the contact surfaces.

Fig. 14. Analysed domain: dimensi
The results in terms of displacement in the direction X is
shown in Fig. 10, while Fig. 11 presents the displacement
component in the direction Y. For these figures, the displacements
are illustrated along all structural boundaries according the node
numeration. The nodes are numbered in anticlockwise mode
starting from the left lower corner, in which domain. The domain
1 is firstly numbered, nodes number 1–16, where nodes 9–13
belong to contact region. Then, the domain 2 is numbered, nodes
number 17–32. The nodes 17–21 are positioned at the contact
region. The results obtained using only singular equations (SST)
are almost the same ones calculated by ANSYS/FEM approach.
Considering this algebraic equations choice, the BEM model was
capable to fit the FEM response for all boundaries. Using DBEM,
i.e., using singular plus hyper-singular equations along the con-
tact also presented excellent results. For this case, only small
differences at few nodes were observed. Considering these two
schemes for choosing the algebraic equations good agreement
was observed with ANSYS/FEM. The results were not so accurate,
when compared with ANSYS, SST and DBEM responses, for the
case in which only hyper-singular equations are used along the
contact surfaces and preserving singular equations for the bound-
ary nodes (HST). Similar results were obtained when only hyper-
singular equations are used along the boundary and contact
surfaces (THST). For these two last schemes, the values at the
contact region are correctly evaluated. However, for some nodes
out of contact, small differences were observed.

The accuracy of the solution using the four selected schemes
can also be verified by the traction profile, along the direction Y,
presented in Fig. 12. As observed for the displacements behaviour
analysis, the results obtained using only singular equations are
accurate assuming ANSYS/FEM solution as reference. The DBEM
gives still good results, but less accurate in comparison with SST
scheme for some nodes. Using only hyper-singular equations
along the contact surfaces (HST) and only hyper-singular equa-
tions along the contact surfaces and the boundary (THST) lead
also to acceptable results in comparison with ANSYS/FEM. In spite
of the accuracy observed, these two last approaches are lesser
capable to fit the ANSYS/FEM results than SST and DBEM schemes.
ons and boundary conditions.
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The relative displacement us, parallel to the contact surface, is
illustrated in Fig. 13. According this figure, the sliding between
the surfaces in contact was observed (slip mode). This condition
was achieved by all numerical approaches used in this analysis,
along whole contact surfaces. The BEM schemes used were
capable to fit, with considerable accuracy, the curve obtained by
ANSYS/FEM, which was considered as reference. The results
obtained in this example demonstrate that the proposed BEM
formulation, with tangent operator, can be applied to model
contact among bodies’ boundaries. Especially, the models SST
and DBEM, which have given accurate results for the values along
the external boundary and contact surface.
Fig. 16. Displacements in the direction Y calculated for the inclusion boundary.

Fig. 17. Relative displacement among contact surfaces of domain 1 and inclusion.
5.4. Four sub-domain problem. multi-boundaries contact

In this example a more complex domain is analysed. The major
structure is given by two layers. Two inclusions are embedded in
the upper layer as presented in Fig. 14. The relevant dimensions
together with the boundary conditions are given in the same
figure. Displacements equal to zero are prescribed along the lower
and vertical sides. The load is given by applying vertical displace-
ments equal to 0.001 m along the top side of the two inclusions.
The following material parameters have been adopted for the four
sub-domains: domain 1, the lower rectangle, Young’s modulus
and Poisson’s ratio are E¼2.5�103 kN/m2 and n¼0.2; domain 2,
the upper rectangle, Young’s modulus and Poisson’s ratio
E¼2.1�103 kN/m2 and n¼0.3; for the two inclusions Young’s
modulus and Poisson’s ratio are E¼3.0�103 kN/m2 and n¼0.15,
respectively. The cohesion between the two layers is
cs¼3.0�105 kN/m2, while between the largest layer and the
inclusions this value is equal to cs¼1.0�103 kN/m2. The friction
angles are 451 and 301 for the contact between the two layers and
between the upper layer and the inclusions, respectively. To
discretise the whole body, 215 linear boundary and interface
boundary elements were used.

This composed domain is analysed using three schemes for
choosing algebraic equations discussed before: SST, DBEM and
HST. Firstly, the displacements calculated along the contact
surfaces between the upper rectangle and the inclusions are
analysed. Fig. 15 presents the displacement results, in the direc-
tion Y, for the nodes belonging to the upper rectangle along the
contact surface with the inclusion, while Fig. 16 shows the same
results for the nodes belonging to the inclusion in the same
contact interface. Only the results for the right inclusion were
presented because symmetric behaviour was verified. The node
Fig. 15. Displacements in the direction Y calculated for the upper layer boundary.
numbering considered for the upper layer and the inclusion is
presented in Fig. 14. The results obtained by the three equation
selection schemes can be compared among them. According these
two last figures, one can observe that similar results were
achieved by SST and DBEM schemes, while HST scheme leads to
small differences for some nodes, when compared with SST and
DBEM. In spite of these small differences, a good agreement
among the results was observed.

The results shown in these two last figures can be also used to
analyse the sliding behaviour along the surfaces in contact. By
subtracting the displacements illustrated in Fig. 16 from those
presented in Fig. 15 is possible to determine the relative displace-
ment in the direction Y, (Dy), among the surfaces in contact. This
result is shown in Fig. 17, where one can observe that sliding
(nodes 1–5 and 7–12) occurred, in the same way that debonding
(nodes 5–7). This behaviour is also confirmed by the traction
values, in parallel direction to the contact surfaces, among the
upper layer and the right inclusion.

According the results presented in Figs. 17 and 18, no impor-
tant differences were observed among the responses achieved by
SST, DBEM and HST models. These models presented a good
agreement among them for the values considered in this analysis.
Then, it confirms that the tangent operator is an interesting
alternative for dealing with non-linear problems.



Fig. 18. Traction values in parallel direction to contact surfaces of domain 1 and

inclusion.
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6. Conclusions

The boundary element method has been applied to solve non-
linear contact problems in this paper. A BEM formulation based on
the use of a tangent operator was proposed to solve this complex
engineering problem. Each term of the tangent operator, consider-
ing the contact between crack surfaces and among bodies’ inter-
faces, was derived for the particular case of Coulomb’s friction
criterion. Four schemes to choice integral equations were used.
According the results shown in this paper, especially those pre-
sented in item 5.3, the model that uses only algebraic equations
coming from singular integral representation (SST) has demon-
strated to be the more accurate when compared with a numerical
reference. The dual boundary element method (DBEM) has also
shown appropriate to deal with contact problems. Considering the
case of contact between crack surfaces, this formulation has been
capable to solve accurately the non-linear problem and to deter-
mine the boundary values.

The responses of the proposed formulation were compared with
the results of equivalent models constructed using ANSYS (FEM).
This comparative shows a good performance of the proposed BEM
schemes, especially SST and DBEM. HST and THST schemes also led
to acceptable results. However, for some nodes considered in the
comparison, small differences were observed. It may occur due the
singularity level present in the algebraic equations of these
schemes, which is higher than the observed in SST and DBEM.

It is important to emphasise that using tangent operator
requires a low number of iterations to achieve the convergence.
Therefore, cumulating numerical errors due the iterations are
avoided. As the tangent operator is constant, for the case of
Coulomb’s friction law, the correction step can be performed
using only one iteration. Then, this formulation is efficient in
terms of computational performance.

Although not shown in this paper, the formulation proposed is
also efficient when dealing with problems containing several
cracks already opened.
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[15] Paris F, Blazquez A, Cañas J. Contact problems with nonconforming discre-
tizations using boundary element method. Computers and Structures

1995;57:829–39.
[16] Garrido JA, Forces A, Paris F. An incremental procedure for three-dimensional

contact problems with friction. Computers and Structures 1994;50:201–15.
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