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SUMMARY

The causal and physically realizable Biot hysteretic model proves to be the simplest linear model able to
describe the nearly rate-independent behaviour of engineering materials. In this paper, the performance
of the Biot hysteretic model is analysed and compared with those of the ideal and causal hysteretic
models. The Laguerre polynomial approximation (LPA) method, recently proposed for the time-domain
analysis of linear viscoelastic systems, is then summarized and applied to the prediction of the dynamic
response of linear hysteretic systems to deterministic and random excitations. The parameters of the
LPA model generally need to be computed through numerical integrals; however, when this model is
used to approximate the Biot hysteretic model, closed-form expressions can be found. E�ective step-
by-step procedures are also provided in the paper, which prove to be accurate also for high levels of
damping. Finally, the method is applied to the dynamic analysis of a highway embankment excited
by deterministic and random ground motions. The results show that in some cases the inaccuracy
associated with the use of an equivalent viscous damping model is too large. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Energyis dissipated in vibrating systems through internal mechanisms, such as friction, phase-
transformations, plasticity, viscosity and viscoelasticity, which are often impossible to perfectly
identify and mathematically describe. Hence, a number of simple, macroscopic models are
available in the literature for material damping, which for many engineering applications
bring a quite satisfactory accuracy in the prediction of the system response.
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Owing to its simplicity, the most widely used among linear models is the Kelvin–Voigt
(KV) model, in which the damping is purely viscous and the energy lost in a harmonic cycle
linearly increases with frequency. However, experimental analyses showed that the dissipation
of a number of engineering materials, e.g. soils, asphalt, polymers and rubber, is nearly
frequency-independent. When, in addition, the dissipation is proportional to the square of the
vibration amplitude, as occurs for small amplitude oscillations, the material is said to have a
‘linear hysteretic’ behaviour, and alternative models have been proposed for its mathematical
description.
Both real- and complex-valued representations have been considered [1–4] in formulating

ideal hysteretic (IH) models, which provide a damping force proportional to the displacement
but in phase with the velocity, therefore bringing a frequency-independent dissipation. Such
ideal de�nition, however, can be rigorously used only in the frequency domain, since in the
time domain it brings a non-causality �aw [5], i.e. response prior to excitation. Although
there is no physically realizable linear model in which the dissipation is strictly independent
of frequency, the problem arises of formulating a consistent time-domain model for materials
having an almost constant dissipation in a speci�ed interval of frequencies [6].
Given the theoretical and practical relevance of the IH damping, a number of papers has

been published in the last two decades about this topic. Gaul, Bohlen and Kemp�e [7] inves-
tigated the deviations from the initial conditions due to the non-causality. Milne [8] derived
the closed-form expression of the impulse-response function of a linear SDoF oscillator with
IH damping. Inaudi and Kelly [9] presented a consistent time-domain representation for the
IH damping, based on the Hilbert transform operator. The same idea can be found in the
papers of Chen and You [10, 11], in which alternative numerical procedures are provided to
solve the integrodi�erential equations of motion of IH systems. Inaudi and Makris showed
that the use of analytical (complex-valued) signals allows these equations to be turned into
di�erential equations with complex-valued coe�cients and analytical input [12, 13].
The above studies, however, do not overcome the non-causality �aw of the IH damping.

This issue has been addressed in two companion papers by Makris [14, 15]. In the �rst, the
relation between analyticity of dynamic sti�ness and causality of the corresponding time-
domain response is extended to generalized functions; in the second, a causal hysteretic (CH)
model is constructed, using this formulation. A singularity at the static limit, unfortunately,
makes the CH model pathological.
In Reference [15], furthermore, Makris demonstrated that the CH model can be viewed as

the high-frequency limit of the long-neglected Biot hysteretic (BH) model. The latter is a linear
viscoelastic model, which is able to approximate the hysteretic behaviour without the non-
causality �aw. It was proposed by Biot [16] almost �fty years ago, just as a particular case in
a paper on the thermodynamics of linear irreversible processes. Four years later, Caughey [5]
elucidated that the BH model can be formally represented as an elastic spring in parallel with
an in�nite number of Maxwell elements, and gave some exact solutions. Recently, Makris
and Zhang [17] showed how the dynamic analysis of linear MDoF earth structures can be
rigorously conducted by modelling the dissipation through the BH model; in the paper, the
use of the Prony approximation is proposed in order to compute the seismic response in the
time domain, so avoiding the solution of the integrodi�erential equations of motion associated
with the BH model. Finally, Spanos and Tsavachidis [18] proposed two di�erent approaches
to minimize the computational burden of time-domain analyses of structures featuring a BH
damping, with applications to the seismic response of SDoF oscillators with cubic sti�ness:
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the �rst uses a recursive algorithm to compute the hysteretic force, while the second uses
digital �lters designed in the frequency domain.
As opposed to the large number of papers dealing with linear hysteretic systems under

deterministic excitations, only in a few works the response to random excitations is coped
with. In particular, this topic has been recently addressed in two papers by Spanos and his co-
workers. In Reference [19], it is elucidated that the state–space formulation for the IH models
is unstable in the bound input–bound output sense; as a consequence, this approach cannot
be appropriately used for random vibrations. In Reference [18], the method of statistical lin-
earization is employed to estimate the variance of the stationary response of SDoF oscillators
with cubic sti�ness and BH damping to white noise. However, to the best of our knowledge,
no approaches are available in the literature to evaluate the non-stationary response statistics
of linear hysteretic structures under random excitations.
In this paper, the Laguerre polynomial approximation (LPA) method, recently proposed

for the time-domain analysis of viscoelastic systems, is particularized to the case of linear
hysteretic damping, described through the BH model. After some preliminary concepts, and a
discussion on the IH, CH and BH models, the main features of the LPA method are outlined.
The method, originally formulated for SDoF oscillators under deterministic excitations [20],
proved e�ective also in the case of MDoF systems [21], and for stationary and non-stationary,
white and non-white random excitations [22]. Numerical procedures of solution are given in
the cases of deterministic and random excitations. Contrary to other approximations available
in the literature, closed-form expressions are also provided for the LPA parameters when
this is applied to the BH model. The accuracy of the proposed approach is investigated in
depth. Finally, the procedure is applied to a highway embankment, in order to demonstrate
that the LPA model enables the prediction of the response of MDoF structural systems under
deterministic and random ground motions.

2. PRELIMINARY CONCEPTS

For a SDoF oscillator, made of a mass m grounded through a linear link, the equation of
motion in the time domain is:

m �x(t) + k0x(t) + r(t)=f(t) (1)

where x(t) is the mass displacement, f(t) is the exciting force, k0 is the equilibrium modulus,
corresponding to the static sti�ness, and r(t) is the dissipative force, i.e. the force exerted by
the linear link, not including the elastic portion. The solution of Equation (1) in the frequency
domain is:

F〈x(t)〉= 1
m
H (!)F〈f(t)〉; H (!)=

[
1
m
K(!)−!2

]−1

where F〈·〉 stands for the Fourier transforms operator, H (!) is the complex-valued Frequency
Response Function (FRF), and K(!) is the complex-valued dynamic sti�ness of the linear
link, de�ned as:

K(!)=K1(!) + jK2(!)= k0 +
F〈r(t)〉
F〈x(t)〉
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(a) (b)

Figure 1. Schematic representations of: (a) the Kelvin–Voigt model; and (b) the
viscoelastic Biot hysteretic model.

where K1(!) and K2(!) are the real-valued storage and loss moduli, that are even and odd
functions of frequency, respectively. It can be shown that the loss modulus fully accounts
for the dissipation properties; when x(t) is the steady state response to a harmonic excitation,
in fact, the energy dissipated per cycle, Wd, is proportional to the loss modulus and to the
square of the vibration amplitude �x:

Wd =
∮
r(t) dx(t)=��x2K2( �!) (2)

in which �! is the circular frequency of the excitation.
A number of mathematical models can be used to describe the constitutive law of lin-

ear dynamic systems, the most common being the Kelvin–Voigt (KV) model (Figure 1(a)),
consisting of an elastic spring k0 ≡K1(0) in parallel with a viscous dashpot c. The dissipative
force r(t) and the dynamic sti�ness K(!) of the KV model particularize as:

rKV(t)= cẋ(t); KKV(!)= k0 + jc! (3)

in which the subscripts denote the particular model of the linear link. Equations (2) and (3)
show that for the KV model the energy dissipated per harmonic cycle is proportional to the
vibration frequency:

Wd;KV =��x2c �!

Even though simplistic, the KV model is widely used in structural dynamics, since this
one is the only linear model for which the structural response at a given time instant does
not depend on the previous history of the response itself. In fact, substitution of the �rst of
Equations (3) into Equation (1) brings a second-order di�erential equation, easy to solve with
standard techniques:

�x(t) + 2�V!0ẋ(t) +!20x(t)=
1
m
f(t) (4)

where !0 =
√
k0=m and �V = c=(2m!0) are the undamped natural circular frequency and vis-

cous damping ratio, respectively, while T0 = 2�=!0 is the undamped natural period.
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3. LINEAR HYSTERETIC MODELS

Owing to its simplicity, the KV model is the most commonly used for linear dynamic systems.
However, its dissipation properties do not correspond to the observed behaviour of a number
of engineering materials, that experimental studies have indicated as nearly hysteretic in the
linear range. In this section, then, the main features of three di�erent linear hysteretic models
available in the literature will be brie�y summarized.

3.1. Ideal (non-causal) hysteretic model

Equation (2) suggests that for an ideal hysteretic (IH) model the loss modulus needs to be
constant with frequency and, consistently, the dynamic sti�ness is written as:

KIH(!)= k0[1 + j�H sign(!)] (5)

where �H is the frequency-independent loss factor (i.e. the ratio of the constant loss and
storage moduli), and the signum function is added to make the loss modulus an odd function
of frequency. The energy dissipated per cycle, then, is independent of frequency:

Wd; IH =��x2�Hk0 (6)

The consistent time-domain representation of the dissipative force for the IH model is [9]:

rIH(t)= �Hk0H〈x(t)〉; H〈x(t)〉=−1
�

∫ +∞

−∞

x(s)
t − s ds (7)

where H〈·〉 stands for the Hilbert transform operator.
Substitution of Equations (7) into Equation (1) allows the following integrodi�erential

equation of motion to be written:

m �x(t) + k0[x(t) + �HH〈x(t)〉]=f(t) (8)

Unfortunately, because of the anticipatory property of the Hilbert transform, Equation (8) is
non-causal, i.e. the response x(t) precedes the application of the input f(t).

3.2. Causal hysteretic model

By virtue of the Kramers–Kroning relations, storage and loss moduli of linear dynamic systems
cannot be de�ned independently, as for the system to be causal the dynamic sti�ness needs
to be an analytical function of frequency [14]. That is:

K1(!)= k0 − H〈K2(!)〉; K2(!)=H〈K1(!)〉 (9)

Equation (5) does not satisfy Equations (9); so, the IH model is non-causal. In order to
circumvent this problem, Makris [15] formulated a causal hysteretic (CH) model, which has
the same loss modulus as the IH model, but with a modi�ed storage modulus that makes the
model causal:

KCH(!)= k0

[
1 +

2�H
�
ln

∣∣∣!
�

∣∣∣+ j�H sign(!)
]

(10)

The energy dissipated in a steady-state harmonic cycle is still given by Equation (6), because
the imaginary parts of Equations (5) and (10) coincide. However, for !¿� the CH model is
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sti�er than the IH model, since the storage modulus is increased by the logarithmic term in
Equation (10).
It can be shown that the integrodi�erential equation of motion for SDoF oscillators with

CH damping, at rest for t¡0, is:

m �x(t) + k0

[
x(t)− �H

�

∫ t

0

x(s)
t − s ds

]
=f(t) (11)

It is worth noting that when the second of Equations (7) is introduced into Equation (8), the
only di�erence with Equation (11) is given by the limits of integration in the convolution
integral. In Equation (8) the convolution is extended from −∞ to +∞, while in Equation
(11) it is bounded to the time interval [0; t], which brings causality.
The �aw of the CH model is that it is not de�ned at the static limit [15], because of the

negative singularity at !=0, which a�ects the dynamic sti�ness of Equation (10). In addition,
as a further symptom of a physical inconsistency, the storage modulus becomes negative for
!¡ exp(−1:57=�H)�. Then, even though the conceptual signi�cance of the CH model is out
of doubt, its applicability to practical situations is not unconditional.

3.3. Biot hysteretic model

In the previous subsections it has been shown that it is impossible to obtain a linear model
which is causal and in which both loss and storage moduli are rate independent. The IH
model, in fact, does not satisfy causality, while in the CH model the causality constraint
requires the storage modulus to increase with frequency as the logarithm of |!=�| and, as a
consequence, a singularity appears for !→ 0. A third possibility is the Biot hysteretic (BH)
model, in which both loss and storage moduli vary with frequency, and which seems to be
the simplest, causal and physically realizable linear model able to approximate the hysteretic
damping [17].
The BH model can be viewed as a continuous representation of the discrete model depicted

in Figure 1(b), made of a spring k0 in parallel with a large number N of Maxwell elements [5].
The i-th one is made of an elastic spring �ki in series with a viscous dashpot �ci=�kiti,
given by:

�ki=
2�Hk0

(i − 0:5)� ; ti=
i − 0:5
�N

where � is a free parameter having the dimensions of a frequency. As N → ∞, the dynamic
sti�ness becomes:

KBH(!)= k0

{
1 +

2
�
�H

[
ln

√
1 +

(!
�

)2
+ j arctan

(!
�

)]}
(12)

From Equation (12), it follows that the � parameter controls the rate of increase with !
of both storage and loss moduli. When ��|!| the dynamic sti�ness of Equation (12) tends
to the dynamic sti�ness of Equation (10), i.e. the CH model is the high-frequency limit of
the BH model [15]. Moreover, Equation (12) tells that the � parameter cannot be too small,
otherwise the real part of Equation (12) may became too large, so excessively increasing the
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sti�ness of the system under dynamic loads. On the other hand, the � parameter cannot be
too large. In fact, substitution of Equation (12) into Equation (2) allows:

Wd;BH =2�x2�Hk0 arctan
(!
�

)
(13)

and the comparison with Equation (6) suggests the � parameter be chosen small enough,
such that arctan(!=�)∼=�=2 in the frequency range of interest. Although a general rule cannot
be de�ned, in many practical situations �=!0=10 seems to be a satisfactory choice [9, 17],
implying that at resonance the loss modulus is more than 90% of the corresponding fre-
quency-independent value, while the storage modulus is approximately 30% larger than its
static limit. Higher values of � bring a storage modulus closer to the static limit, but the
dissipation is hysteretic only at the high frequencies. Conversely, lower values of � make the
BH model hysteretic also towards the low frequencies, but the system sti�ness tends to be
overestimated.
The equation of motion of a linear SDoF oscillator with BH damping can be written in the

following integrodi�erential form (e.g. [17, 18]):

m �x(t) + k0

{
x(t)− 2�H

�

∫ t

0
Ei[−�(t − s)] ẋ(s) ds

}
=f(t) (14)

where the main di�culty in integrating is related to the time-dependent convolution integral:

q�(t)=
∫ t

0
Ei[−�(t − s)]ẋ(s) ds; Ei(x)=

∫ ∞

x

e−s

s
ds (15)

Ei(·) being the exponential integral function.

4. LAGUERRE POLYNOMIAL APPROXIMATION FOR
THE BIOT HYSTERETIC MODEL

4.1. Proposed model

In the previous section it has been emphasized that the BH model is not a�ected by physical
inconsistencies, and can be viewed as the simplest model to be used in time-domain analyses
of linear hysteretic systems. However, the use of the BH model requires the solution of
convolution integrals, with a high computational demand. In this section, as an alternative
to other approaches available in the literature, the Laguerre polynomial approximation (LPA)
model, recently formulated by Palmeri et al. [20] for linear viscoelastic systems, will be
proposed for the approximated solution of Equation (14). The method allows turning the
integrodi�erential equation of motion into a set of di�erential equations, so reducing the
computational e�ort.
Initially, let us rewrite Equation (14) in a state–space form:⎧⎪⎨

⎪⎩
ẋ1(t)= x2(t)

ẋ2(t)=−!20 x1(t) + �q�(t)− 1
m
f(t)

(16)
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where x1(t)= x(t) and x2(t)= ẋ(t) are the classical state variables, the additional coordinate
q�(t) is given through Equations (15), and �=2!20�H=�.
The main idea underlying the proposed method is to approximate the term �q�(t) as the

linear combination of N� additional internal variables (AIVs), introduced to account for the
system response in the time interval [0; t]:

�q�(t)∼=
N�−1∑
i=0

ai�i(t) (17)

where the i-th Laguerre sti�ness ai can be computed as:

ai= �
[
1
�0

∫ +∞

0
Ei(−�t)Li

(
t
�0

)
dt

]

Li(·) being the i-th Laguerre polynomial and �0 being an equivalent relaxation time, and
where the time variation of the i-th Laguerre strain �i(t) is governed by the �rst-order linear
di�erential equation:

�̇i(t)= x2(t)− 1
�0

i∑
k=0
�k(t) (18)

Equations (16), (17) and (18), then, are a set of linear di�erential equations of order N�+2.
In a more compact form, one can write:⎧⎪⎨

⎪⎩
ẋ(t)=Axx(t) +Ax�[(t) +

1
m
bxf(t)

[̇(t)=A�[(t) +A�xx(t)
(19)

in which:

Ax =

[
0 1

−!20 0

]
; Ax�=−

[
0 0 · · · 0

a0 a1 · · · aN�−1

]
; bx =

[
0

1

]

A�x =

⎡
⎢⎢⎢⎢⎣
0 1
0 1
...

...
0 1

⎤
⎥⎥⎥⎥⎦ ; A�=−�−10

⎡
⎢⎢⎢⎢⎣
1 0 · · · 0
1 1 · · · 0
...

...
. . . 0

1 1 · · · 1

⎤
⎥⎥⎥⎥⎦

In the enlarged state space, Equations (19) take the expression:

ż(t)=Az(t) +
1
m
bf(t) (20)

where z(t)= [x(t)T|[(t)T]T is the complete state vector of order N� + 2, and the dynamic
matrix and the in�uence vector are:

A=
[
Ax Ax�
A�x A�

]
; b=

[
bx

ON�×1

]

Oi×k being a null block of i rows and k columns.
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4.2. Response to deterministic loading

When the excitation is deterministic, the solution of Equation (20) can be written as [20]:

z(t)=�(t)z0 +
1
m

∫ t

0
�(t − �)bf(�) d�

where z0 = z(0) accounts for the initial conditions, and the transition matrix �(t) is:

�(t)= exp〈At〉
with exp〈·〉 standing for the exponential matrix of the square matrix into angle brackets. Once
the transition matrix is computed for the selected sampling time �t, an incremental solution
of Equation (20) can be obtained through the following, unconditionally stable, step-by-step
procedure [23]:

z(tn+1)=�(�t)z(tn) + S0(�t)f(tn) + S1(�t)f(tn+1) (21)

in which ti= i�t, and the linear-load vectors are:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
S0(�t)=

1
m

[
�(�t)− L(�t)

�t

]
A−1b

S1(�t)=
1
m

[
L(�t)
�t

− IN�+2
]
A−1b

; L(�t)= [�(�t)− IN�+2]A−1

4.3. Response to random noise

In a number of engineering situations dynamic loads cannot be described in a deterministic
fashion. For instance, natural actions on structures, such as earthquakes, wind and waves are
often modelled as stationary or non-stationary random processes. The linearity of the LPA
method makes its extension to stochastic loading quite straightforward, and in the following
a numerical procedure to compute the second-order statistics of the response for a SDoF
oscillator with linear hysteretic damping to non-stationary �ltered white noise will be derived.
In the case of a time-invariant linear �lter, the governing equations are:⎧⎪⎪⎨

⎪⎪⎩
ẋ(t)=Axx(t) +Ax�[(t) +Axfxf (t)

[̇(t)=A�[(t) +A�xx(t)

ẋf (t)=Afxf (t) + bf’(t)w(t)

(22)

where xf (t) is the array listing the Nf state variables of the �lter, Af , bf and Axf collect the
parameters of the �lter, ’(t) is a deterministic amplitude-modulating function, and w(t) is
a sample of a stationary, zero-mean, Gaussian white noise, with power spectral density SW .
As an example, when the Kanai–Tajimi �lter is used in the seismic analyses of structures,
the ground acceleration is modelled as the absolute acceleration of a linear SDoF oscillator
driven by white noise, with properly chosen values of natural frequency and damping ratio.
In the state space, enlarged to include also the state variables of the �lter, Equations (22)

become:

�̇z(t)= �A�z(t) + �b’(t)w(t)

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2005; 34:1129–1147



1138 G. MUSCOLINO, A. PALMERI AND F. RICCIARDELLI

where �z(t)= [x(t)T|[(t)T|xf (t)T]T is the complete state vector of order N� + Nf + 2, and the
dynamic matrix and the in�uence vector are:

�A=

⎡
⎢⎣
Ax Ax� Axf
A�x A� ON�×Nf
ONf×2 ONf×N� Af

⎤
⎥⎦; �b=

⎡
⎢⎣
O2×1
ON�×1
bf

⎤
⎥⎦

The second-order statistics of the oscillator-�lter state variables are listed in the covariance
vector ��z(t)=E〈�z(t)⊗ �z(t)〉, where E〈·〉 and ⊗ stand for the expectation operator and for the
Kronecker product [22, 23], respectively. The equation governing the time variation of the
covariance vector is:

�̇ �z(t)= �A2��z(t) + 2�SW �b2’2(t) (23)

in which the forcing term is the square of the amplitude-modulating function, and

�A2 = �A ⊗ IN�+Nf +2 + IN�+Nf +2 ⊗ �A; �b2 = �b⊗ �b
Finally, an incremental solution can be found through the following unconditionally stable,
step-by-step procedure:

��z(tn+1)= ��2(�t)��z(tn) + �SW �L2(�t)�b2[’2(tn) + ’2(tn+1)] (24)

where the transition matrix and the constant-load matrix are to be computed as:⎧⎨
⎩
��2(�t)= ��(�t)⊗ ��(�t)

�L2(�t)= [ ��2(�t)− I(N�+Nf +2)2 ] �A
−1
2

; ��(�t)= exp〈 �A�t〉

It is worth noting that the incremental solutions of Equations (21) and (24) have similar
forms, being of similar form to Equations (20) and (23). In the deterministic loading case,
however, it is assumed that the excitation varies linearly in each time step, which does not
introduce further approximations in the solution when recorded ground motions are considered.
In the stochastic loading case, on the other hand, it is assumed that the forcing term is constant
in each time step, and the latter assumption is justi�ed through the fact that realistic amplitude
modulating functions ’(t) are smoother than any possible recorded or generated loading time
history.

4.4. Calibration of model parameters

As shown by Palmeri et al. [20], the accuracy of the LPA method in approximating a generic
viscoelastic system depends only on the equivalent relaxation time �0 and on the number
N� of AIVs. In principle, �0 can be arbitrarily chosen, as the orthonormal properties of the
Laguerre polynomials allow an accurate approximation of any relaxation function, provided N�
is su�ciently large. In the case of the BH model, however, two choices are straightforward,
which are associated with the simplest closed-form expressions for the ai coe�cients. The
�rst is:

�0 =
1
�

⇒ ai=
�
i + 1
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Figure 2. Percentage errors between the Biot hysteretic model and the Laguerre poly-
nomial approximation for storage modulus Re(K), loss modulus Im(K), and absolute

value of dynamic sti�ness |K | at resonance.

while the second is:

�0 =
1
2�

⇒ ai= �
1 + (−1)i
i + 1

(25)

Even if in both cases the coe�cients ai decrease as (i + 1)−1, Equations (25), in which the
odd ones are zero, allow a faster convergence, and then have to be preferred. This is shown
in Figure 2, where the percentage errors in terms of storage modulus eRe(K), loss modulus
eIm(K), and absolute value of the dynamic sti�ness e|K| at resonance are depicted for �H =0:30
and �=!0=10. The broken lines indicate N�=29, corresponding to a negligible discrepancy
in the loss modulus, this being the dominant term in the FRF at resonance.
In Figure 3 the dimensionless storage and loss moduli of the BH model for �H =0:30 are

compared with those of the corresponding LPA models with N�=9; 29; 49, and with those of
the KV model, whose parameters are given by the least-square �ts:{

!0; eq =!0(1:01 + 0:631�H)

�V; eq = 0:00348 + 0:386�H − 0:296�2H
; 06�H60:50

It is worth noting that, since the loss modulus of the KV model is linear with frequency
(Figure 3(b)), the system damping is underestimated at low frequencies and overestimated at
high frequencies.
In Figure 4(a) the cumulative error e|H | on the modulus of the FRF in the interval [0; 3!0]

is shown. Only for very low damping are the inaccuracies associated with the LPA and
KV models of the same order. Oppositely, for �H =0:50 (�V; eq ∼=0:12) the LPA model with
N�=29 yields an error lower than 3%, while the discrepancies associated with the KV model
may be too large for engineering applications, the error being in the order of 13%. As shown
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(a) (b)

Figure 3. Comparison of: (a) storage moduli; and (b) loss moduli for the Biot hysteretic (BH) and
Kelvin–Voigt (KV) models, and for the Laguerre polynomial approximation (LPA).

(a) (b)

Figure 4. Frequency response functions for the Biot hysteretic (BH) and Kelvin–Voigt (KV)
models, and for the Laguerre polynomial approximation (LPA): (a) cumulative errors; and

(b) comparison of the absolute values.
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Figure 5. Impulse response function for the Kelvin–Voigt (KV), ideal hysteretic (IH) and
causal hysteretic (CH) models, and for the Biot hysteretic model described through the

Laguerre polynomial approximation (LPA).

in Figure 4(b), the main di�erences between the FRFs of the BH and KV models are at low
frequencies and at resonance. Note that the FRF H (!) of the LPA model can be evaluated
as the �rst element of the complex-valued array:

H(!)= ( j!IN�+2 −A)−1b
Finally, the e�ectiveness of the various models in evaluating the dynamic response of

SDoF oscillators with hysteretic damping was examined for three values of the hysteretic loss
factor, �H =0:10; 0:30; 0:50. In Figure 5, the impulse response functions h(t)=F−1〈H (!)〉
are compared. In Figure 6, the standard deviations �X (t) of the responses to a stationary
Gaussian white noise suddenly applied at t=0, with the oscillator starting from deterministic
initial conditions, are also compared. In both cases, the LPA model with N�=29, previously
validated, is used to accurately approximate the responses of the BH model. Figure 5 shows
that the di�erences between the impulse response functions evaluated with the di�erent
models increase with �H, and in particular for �H =0:10 the four lines are almost coincident.
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Figure 6. Standard deviation of the non-stationary response of a linear oscillator to white noise for the
Kelvin–Voigt (KV), ideal hysteretic (IH) and causal hysteretic (CH) models, and for the Biot hysteretic

model described through the Laguerre polynomial approximation (LPA).

Conversely, in Figure 6 di�erences in the non-stationary standard deviation are not negligible,
also for �H =0:10.

5. NUMERICAL EXAMPLE

Within the context of equivalent linear analyses, the BH model proves to be e�ective in
describing the cyclic behaviour of soils [17]. Early experimental research in soil dynamics, in
fact, showed that in many cases the dissipative forces experienced in earth structures under
small amplitude vibrations are nearly rate independent. In the following, the performance of
the proposed procedure will be investigated, through an application to the seismic response
of the highway embankment schematically depicted in Figure 7(a) (height H − h=18m;
truncation ratio ‘= h=H =0:25). In Figure 7(b) the model used for the stochastic analysis is
shown.
Following Dakoulas and Gazetas [24], a shear-beam approximation was used, taking into

account the dependence of the soil sti�ness on the con�ning pressure. The average shear
modulus (Figure 7(c)) is G(z)=Gb(z=H)	, where Gb = 120MPa is the value at the base of
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(a) (b)

(c) (d) (e)

Figure 7. Example embankment: (a) geometry; (b) dynamic model for the stochastic analysis; (c) shear
modulus; (d) �rst modal shapes; and (e) their derivatives.

the embankment, and where 	=0:4 is the inhomogeneity parameter. The mass density of the
soil is 
=2000 kg=m3, such that the shear wave celerity at the base is Cb =

√
Gb=
∼=245m=s.

In Figure 7(d) the �rst four modal shapes �i(z) are depicted, for which the following closed-
form expression holds:

�i(z)=Yq(�i)Jq

[
�i

( z
H

)1−	=2]
− Jq(�i)Yq

[
�i

( z
H

)1−	=2]
; q=

	
2− 	

Jq(·) and Yq(·) being the Bessel functions of the �rst and second kind, respectively, and where
�i is the i-th non-trivial root of the characteristic equation:

Yq(�) Jq+1(��1−	=2)= Jq(�)Yq+1(��1−	=2) (26)

�i being related to the i-th natural circular frequency !i as:

!i=
2− 	
2
�i
Cb
H

In Figure 7(e), �nally, the �rst derivatives �′
i(z) of the modal shapes are depicted. The instan-

taneous values of the displacement and shear strain over the height of the embankment are:

u(z; t)=
∑
i
�i(z)yi(t); 
(z; t)=

@
@z
u(z; t)=

∑
i
�′
i(z)yi(t)

yi(t) being the time history of the i-th modal coordinate.
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(a)

(c)

(b)

(d)

Figure 8. Displacement and shear strains under a deterministic pulse, consistent with the 1979 El Centro
earthquake: comparison between the Biot hysteretic model described through the Laguerre polynomial

approximation (LPA) and the Kelvin–Voigt (KV) model.

For the example structure, numerical solution of Equation (26) provides the values �1 = 3:23,
�2 = 7:75, �3 = 12:5, and �4 = 17:4, with a fundamental period T1 = 2�=!1 = 0:248 s. The hyste-
retic loss factor is �H =0:44, corresponding to an equivalent viscous damping ratio �V; eq ∼=0:12
in all modes. The motion of the modal oscillators is assumed to be uncoupled, i.e. the structure
is proportionally damped.
By using the mode superposition technique, deterministic and stochastic analyses were

carried out, in which the response of each mode is governed by Equations (20) and (23),
respectively. In a �rst stage, the deterministic response of the embankment to a simple forward-
and-back base motion was evaluated. The excitation was modelled as a one-cosine (type-B)
pulse, mathematically expressed as:

�ug(t)=!pvp cos(!pt)U(t)U(Tp − t)
where velocity amplitude vp = 0:7m=s and period Tp = 2�=!p = 3:2 s are consistent with the
fault-normal component of the ground motion recorded during the 1979 El Centro earth-
quake [25]. The time histories of crest displacement uc(t)= u(h; t) and of shear strain at
the base 
b(t)= 
(H; t), evaluated through the Laguerre polynomial approximation (LPA) and
Kelvin–Voigt (KV) models, are compared in Figures 8(a) and (b), respectively. The extreme
values of displacement and shear strain over the height of the embankment are also compared
in Figures 8(c) and (d), respectively. The discrepancies between the results obtained with the
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(a) (b)

Figure 9. Standard deviation of base shear strain under random excitation consistent with: (a) 1940 El
Centro; and (b) 1985 Mexico City earthquakes: comparison between the Biot hysteretic model described

through the Laguerre polynomial approximation (LPA) and the Kelvin–Voigt (KV) model.

two models are in the order of 10% for the largest displacement, and of 15% for the largest
shear strain.
In a second stage, amplitude modulated outputs of the Kanai–Tajimi �lter were used to

probabilistically model the frequency and time characteristics of ground accelerations recorded
during real earthquakes [26]. For this simple �lter, the quantities Af , bf and Axf in Equation
(22) take the expressions:

Af =

[
0 1

−!2f −2�f!f

]
; bf =

[
0

1

]
; Axf =

[
0 0

−!2f −2�f!f

]

For the 1940 El Centro earthquake, the circular frequency (accounting for the central fre-
quency of the acceleration) is !f = 19:0 rad=s, the damping ratio (controlling the spread of
the frequency content) is �f = 0:45, and the power spectral density of the forcing white noise
(related to the total energy of the earthquake) is SW =0:014m2=s−3; in addition, the amplitude
of the excitation is modulated through the smooth function:

’(t)=’∞ + (1− ’∞)
(
t
tp

)3
exp

[
3

(
1− t

tp

)]
; t¿0

with tp = 2:6 s and ’∞=0:33. For the 1985 Mexico City earthquake the selected values are
!f = 1:1� rad=s, �f = 0:12, and SW =0:020m2=s−3, while the amplitude modulating function is
piecewise linear:

’(t)=

⎧⎪⎪⎨
⎪⎪⎩
0:104 + 0:0280t; 06t¡t1 = 32:0 s

1− 0:0768(t − t1); t16t¡t2 = 42:9 s

0:163; t¿t2

In Figure 9 the standard deviations of the non-stationary random process �b(t) describing the
base shear strain are compared, as evaluated with LPA and KV models. Depending on the
spectral characteristics of the ground motion, the KV approximation brings accurate estimation
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(Figure 9(a)) or unacceptable errors (Figure 9(b)). In particular, in the case of the Mexico
City earthquake the inaccuracy associated with the KV model is of about 28%.

6. CONCLUSIONS

In this paper, the most common models for the analysis of dynamic systems featuring linear
hysteretic damping have been compared and criticised. The ideal hysteretic model, though
of simple use in the frequency domain, is inconsistent when used in the time domain, as it
does not satisfy the causality requirement. The causal hysteretic model, constructed to over-
come the non-causality �aw, is pathological, due to a singularity at the static limit. Finally,
the viscoelastic Biot hysteretic model proves to be the simplest, causal and physically real-
izable model in representing the dynamic behaviour of systems with rate-independent energy
dissipation, but its practical use requires the solution of integrodi�erential equations.
In order to overcome this di�culty, a particularization of the Laguerre polynomial ap-

proximation (LPA) method has been proposed, which allows turning the integrodi�erential
equations of motion into a set of di�erential equations, whose solution is not excessively time
consuming. Oppositely to alternative approximations of the Biot hysteretic model recently
published, closed-form expressions have been derived for the parameters of the proposed
approximation. Moreover, very e�cient step-by-step solution schemes for both deterministic
and random excitations have been provided. The convergence rate and the associated error
have been also investigated in the frequency domain, showing that the LPA method is very
accurate, even for high levels of damping.
Finally, the proposed approach has been validated through the application to the vibration

analysis of a highway embankment excited by deterministic and random ground motions, con-
sistent with recorded earthquakes. The response evaluated by using the LPA method has been
compared with the response of an equivalent viscous system, and the inaccuracy associated
with this approximation was found to be in some cases unacceptable for engineering purposes.
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