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Linear models with nearly frequency independent complex
stiffness leading to causal behaviour in time domain

G. B. Muravskii∗,†

Faculty of Civil Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

SUMMARY

In the paper, several causal linear models leading to nearly frequency independent complex stiffness
are studied in time and frequency domains. Along with Biot model other three hereditary models are
introduced into analysis. They all ensure practical constancy for damping properties but have limitations
concerned with an increase in the real part of complex stiffness of corresponding material elements, as
frequency grows. A new suggested method deals with given mechanical system as a whole: the imaginary
part of the system compliance is constructed assuming that all elements have constant stiffness (with
a modification for imaginary parts near zero frequency) and further the imaginary part of the system
is used directly for studying transient vibrations supposing causality of the given mechanical system.
The corresponding real part (not needed in the transient response analysis) is determined by Hilbert
transformation. Examples relating to systems with one, two and infinite (shear beam) degrees of freedom
are carried out for five compared models, allowing to reveal advantages and shortcomings of the models.
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INTRODUCTION

The well-known concept of a ‘spring’ having frequency independent complex stiffness (ideal
hysteretic model) was introduced into theory of vibration by Theodorsen and Garrick [1]. It
works well in frequency domain when one deals with harmonic or periodic steady-state
processes. Difficulties emerge when going to the area of transient vibrations. Fraijs de Veubeke [2],
Caughey [3] and Crandall [4] had shown independently that the ‘spring’ has non-causal behaviour,
and as result the corresponding mechanical system begins to move before a load application.
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14 G. B. MURAVSKII

Nevertheless, in the last two decades the ideal hysteretic model attracted wide attention of inves-
tigators, which concerned mostly with constructing a transient response for a mechanical system
containing ideal hysteretic elements. Gaul et al. [5] investigated the initial conditions corresponding
to the non-causality. Milne [6] studied the impulse-response function of a simple oscillator with
the ideal hysteretic ‘spring’. Inaudi and Kelly [7], Chen and You [8, 9] considered the application
of Hilbert transform operator to time-domain representation for the model.

A formulation of transient behaviour of a system based on differential equations with complex-
valued coefficients and analytical input was developed by Inaudi and Makris [10, 11]. In papers
by Makris [12, 13], the question of building a causal model having a constant (for the positive
frequency domain) damping part is addressed. Because of discontinuity of the imaginary part of the
complex stiffness when going to negative frequencies, the corresponding real part tends to infinity
nearby zero frequency. Makris [13] showed that the constructed model can be considered as a
limit for Biot model [3, 14]. This model, ensuring practically independent damping at a required
frequency interval, was investigated recently in papers by Makris and Zhang [15], Spanos and
Tsavachidis [16], Muscolino et al. [17]. In the suggested paper, the Biot model along with other
hereditary models is studied. Because of an increase of stiffness with the growth of frequency,
these models can lead to significant errors when damping parameters are large as in case of soil
foundations. As developed in the paper method of constructing a causal model with nearly constant
stiffness and damping characteristics based on consideration of the system as the whole, extend
the area of applicability of the hereditary models. Also the equivalent viscous model is considered
in the paper as a reference model. Actually, this model is an appropriate choice if we deal with
a single-degree of freedom mechanical system (SDoF) or with multi-degree of freedom systems
(MDoF) whose damping and stiffness properties have nearly identical distribution. In the case
of MDoF, separate modes of vibration are provided with a suitable amount of damping [18, 19].
The assumption that the system with damping has the same natural modes as the corresponding
undamped system, may not be appropriate in some cases (see Reference [19]). This is demonstrated
also below in this paper.

Note that strictly constant complex stiffness (with causality) can be achieved with the help
of non-linear models [20, 21]. The quasi hysteretic model [20] and hysteretic model with linear
backbone curve [21] seem to be a suitable alternative to the ideal hysteretic model when dealing
in the time domain.

APPLICATION OF HEREDITARY LINEAR MODELS FOR DESCRIPTION NEARLY
CONSTANT COMPLEX STIFFNESS

The one of linear models with nearly frequency independent damping is Biot model [3, 14] having
the following relationship between force F and displacement x (assuming the loading begins at
moment t = 0):

F = k

[
x + �

∫ t

0
G(�1(t − s))

dx

ds
ds

]
(1)

where the exponential integral is used as the kernel:

G(u) =−2

�
Ei (−u)= 2

�

∫ ∞

u

e−�

�
d� (2)
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LINEAR MODELS WITH NEARLY FREQUENCY INDEPENDENT COMPLEX STIFFNESS 15

Coefficients k and � are stiffness (static) and damping parameter (loss factor), respectively;
parameter �1, which can be considered as a reference circular frequency, represents a scale factor.
It is advisable to turn to non-dimensional time using the first natural (without accounting on damp-
ing) circular frequency �1 of the mechanical system, a part of which the considered hereditary
element is

� = �1t (3)

Equation (1) takes the form

F = k

[
x + �

∫ �

0
G(�(� − s))

dx

ds
ds

]
(4)

where F and x are understood as functions of the non-dimensional time; �= �1/�1 is the non-
dimensional scale parameter. For a force of the form F = F0 exp(iz�), where z = �/�1 is the
non-dimensional circular frequency, the displacements take the similar form when � → ∞:
x = x0 exp(iz�) which results in the following relation for amplitudes F0, x0:

F0 = k∗x0 = k(a + ib)x0 (5)

a = 1 + �z
∫ ∞

0
G(�u) sin(zu) du = 1 − 2

�
�z

∫ ∞

0
Ei (−�u) sin(zu) du = 1 + �

�
ln(1 + z̃ 2) (6)

b= �z
∫ ∞

0
G(�u) cos(zu) du = −2

�
�z

∫ ∞

0
Ei (−�u) cos(zu) du = 2�

�
arctan( z̃ ) (7)

where z̃ = z/�. Analogous results can be obtained using arbitrary positive kernels having a loga-
rithmic singularity at origin and decreasing with t → ∞. For example, the kernel

G(u)= 2

�
K0(u) (8)

where K0(u) is modified Bessel function leads to the following equations (see Reference [22]):

a = 1 + �z
2

�

∫ ∞

0
K0(�u) sin(zu) du = 1 + 2�̃z

�
√
1 + z̃ 2

ln
[̃
z +

√
1 + z̃ 2

]
(9)

b = �z
2

�

∫ ∞

0
K0(�u) cos(zu) du = �̃z√

1 + z̃ 2
(10)

The behaviour of a and b in frequency domain is similar to that corresponding to Equations (6)
and (7). When implementing straight integrations in time domain, simpler kernels seem to be more
desirable. Consider for example the kernel

G(u) = 1

�
ln

1 + u2

u2
(11)
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Using integration by parts this leads to the following equations for a and b:

a = 1 + 2�

�

[
C + ln( z̃ ) +

∫ ∞

0

u cos( z̃u)

1 + u2
du

]

= 1 + 2�

�
[C + ln( z̃ ) + Shi( z̃ ) sinh( z̃ ) − Chi( z̃ ) cosh( z̃ )] (12)

b = 2�

�

∫ ∞

0

sin( z̃u)

u(1 + u2)
du = �[1 − exp(−̃z )] (13)

In Equation (12) C= 0.57721566 (Euler constant) and hyperbolic cosine and sine as well as hyper-
bolic cosine (sine) integrals are used. The integral in Equation (12) decreases with growth of z̃ and
has the following asymptotic representation (which is obtained with integration
by parts): ∫ ∞

0

u cos( z̃u)

1 + u2
du ≈ −̃z−2 − 6̃z−4 − 120̃z−6 + · · · (14)

This result gives rather high precision for the value in square brackets in Equation (12) for large
values of z̃ (for z̃ = 12 the relative error <10−6); for parameter a the error will be even smaller.
For small z̃ the value in square brackets in Equation (12) has the representation

1
4 z̃

2[3 − 2C − 2 ln( z̃ )] + 1
288 z̃

4[25 − 12C − 12 ln( z̃ )] + · · · (15)

Denote multipliers to � in equations for a and b by Sa and Sb, respectively. Keeping in mind that
a suitable determination of damping parameters is important only in the frequency interval where
natural frequencies of the system lie, define parameter � for above models stipulating that value
Sb deviate from unit value less than by 3% for z�1. This leads to �= 1/21.2, 1/4, 1/3.51 for
kernels (2), (8), (11), respectively. Going to non-dimensional frequency z, replace in equations for
a and b argument z̃ by 21.2z, 4z, 3.51z for kernels (2), (8), (11), respectively. At the first natural
frequency �= �1 (z = 1), values of Sa will be 1.945, 1.294, 1.107 for kernels (2), (8), (11) with
subsequent growth for increasing z. The increase in Sa leads to a deviation of a from desired unit
value. This deviation becomes too large with increase of damping parameter � and frequency z
(e.g. for � = 0.4 and z = 5 parameter a = 2.188, 1.938, 1.876 for kernels (2), (8), (11) respectively
instead of a = 1).

Besides above considered kernels with logarithmic singularity at origin, rather attractive is a
kernel in the form of a sum of exponential functions. This corresponds to Maxwell–Wiechert model
[23–25] which consists of a number of Maxwell elements, joined in parallel, with adding a linear
elastic spring. In paper [15] by Makris and Zhang the similar treatment is applied for approaching
the Biot model. Because of logarithmic singularity in the Biot kernel, a good approximation with
a sum of few exponential functions is difficult. In an example [15], approximation for damping
coefficient b contains an error about 15%. More appropriate is a direct application of the Maxwell–
Wiechert model for frequency domain approximation omitting the Biot model. The function G in
Equation (4) with � = 1 is represented in the form (Prony series):

G(�(� − s))=
N∑
j=1

k j exp(−� j (� − s)) (16)
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Figure 1. Normalize stiffness for hereditary models.

where k j , � j are non-dimensional parameters. Values a and b entering complex stiffness k∗ in
Equation (5) will be

a = 1 + �Sa, Sa =
N∑
j=1

k j
z2

�2j + z2
(17)

b = �Sb, Sb =
N∑
j=1

k j
z� j

�2j + z2
(18)

Suppose it is required to ensure nearly constancy of Sb, i.e. Sb = 1, at the frequency interval
1�z�30. Taking N = 4, �1 = 0.9, �2 = 4.5, �3 = 12.5, �4 = 30 and requiring unit values of Sb at
z = � j , we obtain (solving the corresponding system of linear equations) k j = 1.55394, 0.878069,
0.0941176, 1.58239 for j = 1, 2, 3, 4 respectively. It is appropriate to take the found values of
k j with the multiplier 0.99 for diminishing �—maximum deviation Sb from 1 at the considered
frequency interval; � becomes less than 3% (as above for the logarithmic kernels). After frequency
z = 30, a slow decrease in Sb takes place. Note that Sa(1)= 0.8932 (with considering above
correction). The values of parameters � j (the inverses of the relaxation times of the Maxwell
elements) can be arbitrary to a certain extent but providing positive values of k j ; it is appropriate
to take the first and last values equal approximately to z interval boundaries and to crowd other
� j points to the left bound of the z interval using a geometric progression for � j+1–� j . Values Sa
and Sb are shown in Figure 1; also in Figure 1 the values for kernels (2), (8), (11) are represented.
For chosen accuracy (3%) of approximation of the unit value by function Sb, we have nearly
the same quality of approximation relating to Sa for kernels (11) and (16) and somewhat worse
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18 G. B. MURAVSKII

approximation for kernels (8) and (2). Besides more acceptable behaviour of the function Sa (i.e.
more nearness to zero), application of the kernel (16) has the following important advantage as
compared with kernels having logarithmic singularity: when numeric integrating the corresponding
system of equations for the studied mechanical system, the structure of the kernel does not require
the remembering all previous values of ẋ ; one can deal with accumulated values of integrals
containing ẋ multiplied by exp(� j s) (see Equations (4), (16)).

Sacrificing the accuracy in static stiffness, one can improve the quality of approximation for
the real part of the normalized complex stiffness for the frequency interval containing natural
frequencies of the system. Clearly this interval is most important when studying transient vibrations.
Instead of Equation (4) consider the equation:

F = k

[
�x + �

∫ �

0
G(�(� − s))

dx

ds
ds

]
(19)

where a positive coefficient �<1 is introduced. In Equations (6), (9), (12), (17) for parameter a
the addendum 1 is changed to �. Define � requiring that for z = 1

a = 1 (20)

We obtain from Equation (20) the following equation for �:

�= 1 − �Sa(1) (21)

where the non-dimensional frequency z as the argument in Sa is considered. According to above
results Sa(1)= 1.945, 1.294, 1.107, 0.8932 for kernels (2), (8), (11), (16) respectively. Using
Equations (19), (21) we obtain the correct value of a at the first natural frequency and reduced
errors for z>1. The underestimation of the static stiffness, �k, will be not important if the main
interest lies in the study of transient processes.

CAUSAL MODEL BASED ON APPLICATION OF IMAGINARY PART
OF WHOLE COMPLIANCE FOR BUILDING TRANSIENT

RESPONSE OF MECHANICAL SYSTEM

In this section, a causal linear model with nearly constant stiffness is constructed for a mechanical
system considered as a whole. Let X (�) + iY (�) be complex compliance for an element of a
linear causal system. It is assumed that steady-state complex amplitude X (�)+ iY (�) corresponds
to the load exp(i�t) acting in a point of the system or to a group of such loads applied in different
points. From the linearity follows that the real function X (�) should be symmetric relative to
the point �= 0, and the function Y (�) is anti symmetric. Using these properties and taking into
account that Dirac 	-function has the representation:

	(t) = 1

2�

∫ ∞

−∞
exp(i�t) d� (22)

we obtain the following equation for the response of the considered element upon instantaneous
unit impulse (i.e. 	-function):

U (t) = 1

�

∫ ∞

0
[X (�) cos(�t) − Y (�) sin(�t)] d� (23)
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LINEAR MODELS WITH NEARLY FREQUENCY INDEPENDENT COMPLEX STIFFNESS 19

Since for negative values of t this function should be equal to zero, the following relationship
results (for arbitrary positive t):∫ ∞

0
X (�) cos(�t) d� = −

∫ ∞

0
Y (�) sin(�t) d� (24)

This leads to (t>0)

U (t) =−2

�

∫ ∞

0
Y (�) sin(�t) d� (25)

Note that from Equation (24) follows well-known representation of X (�) through Y (�) and
vice versa in the form of Hilbert transformation (see References [26–28]). Equation (25) can be
effectively used for calculations due to rapid convergence of the integral when inertial properties
of the mechanical system are taken into account. For a system with masses and approximately
constant stiffness and damping characteristics, the value Y (�) decreases as �−4 for large values
of � (�>�h , where �h is the highest taken into account natural frequency of the system).
For loads with arbitrary common time variation acting in the same points where the impulses
are applied the corresponding result is obtained using superposition principle, i.e. by suitable
integration (Duhamel integral) under integral in Equation (25). For non-dimensional time � and
non-dimensional frequency z introduced above, Equation (25) takes the form (�>0)

U (�) =−2�1

�

∫ ∞

0
Y (z) sin(z�) dz (26)

An efficient method for study transient vibrations of a mechanical system with approxi-
mately constant (frequency independent) damping and stiffness properties can be developed using
Equations (26) in which, while constructing Y (z), for all ‘springs’ entering the mechanical system
the equation of the type (5) is applied with

a = 1, b= �
z3

q3 + |z|3 (27)

where different values of � can correspond to different ‘springs’, and q is a small positive parameter,
e.g. q = 0.25. Certainly, other similar expressions for b are acceptable. Zero b value at z = 0 is
desirable since this excludes a discontinuity (e.g. taking place if we take b= �) when going into
domain of negative frequencies and therefore excludes an unbound growth (nearly the point z = 0)
in the real part of the complex compliance which is defined by Hilbert transformation applied to
Y (z). Actually, besides domain of small frequencies, the constructed value of Y practically coincides
with that corresponding to strictly constant complex stiffness of ‘springs’. The discrepancies in
the small frequency domain lead to noticeably different responses only for large values of time.
So, for a constant acting force we obtain the unbounded growth of displacements with time in the
case b= � and tending to a limit (slightly exceeding the corresponding static stiffness) in the case
of Equation (27). Due to application of expression (26) for �>0 the problem of non-causality is
expelled. The corresponding real part of the complex compliance, not needed for studying transient
vibrations using Equation (26), can be found with the help of Hilbert transformation [26–28].
For z>0:

X (z) =−1

�

∫ ∞

0

Y (x)

x + z
dx − 1

�
P.V .

∫ ∞

0

Y (x)

x − z
dx (28)
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20 G. B. MURAVSKII

where the denotation of Cauchy principal value is used. Here argument x is put instead of z in Y (z).
Note again rapid convergence of integrals for large x values (after an interval containing natural
frequencies of the system). When applying Equation (26) for the hereditary models considered
in the previous section we use the found values of a and b while constructing Y. For very small
values of � they are close to given in Equation (27) at the interval 1�z�zh = �h/�1, therefore
the corresponding whole compliances also will be close. Calculations show that the suggested
methods (26) and (27) leads to acceptable results also in the cases when damping parameters
exceed the value limiting the application of the hereditary models. Note that applying Equations
(26)–(28) in a general case, we have no possibility to define the final properties of individual
stiffness and damping elements entering the considered mechanical system (for the system with
one degree of freedom, such determination can be made which is shown in the next section); we
deal with the system as a whole. This situation is similar to that corresponding to the method of
equivalent viscous damping in which giving specific damping coefficients (influenced of masses of
the system) to different modes of vibrations, we lose a direct connection with individual material
parts (‘springs’) of the considered system.

EXAMPLES OF CALCULATIONS

System with one degree of freedom

Let a system have one degree of freedom with �1 = �h = (k/M)1/2 where M is the mass of
the system. It is interesting to compare complex compliances of the whole system for 5 models:
(1) proposed in the previous section in Equations (26), (27); (2) corresponding to the constant
complex stiffness k∗ = k(1 + i�); (3) corresponding to the model of equivalent viscous damping
with k∗ = k(1+ iz�); (4) Biot models (6), (7); (5) models (19), (16) with the corresponding value
of � (21). The imaginary parts of compliances for these models Y j (z) ( j = 1, . . . , 5) are defined
by the equation

Y (z) =−1

k

b

(a − z2)2 + b2
(29)

with suitable values for a and b: by Equation (27) with q = 0.25 for Y1(z); a = 1, b= � for
Y2(z); a = 1, b= �z for Y3(z); by Equations (6) and (7) with z̃ = 21.2z for Y4(z); by Equations
(17), (18) with a = � + �Sa , N = 4 and parameters k j , � j found above, for Y5(z). Values of
Y j (z) ( j = 1, 2, 3, 5) are close to each other in a vicinity of the resonance frequency z = 1 and for
large values of z (Figure 2), discrepancies are noticeable only for large values of � in the area of
small z. In the behaviour of Y4(z) the influence of increase in a with frequency growth is evident.
Consider real parts of the compliances. For the first model X1(z) is defined according to Equation
(28) using Y1(z), and for the rest of models the following equation is applied:

X (z) = 1

k

a − z2

(a − z2)2 + b2
(30)

with corresponding values of a and b. Values kX (z) for the models are represented in Figure 3
for � = 0.2, 0.4. Note a noticeable increase in the static compliance for hereditary model 5 using
parameter � and non-significant such increase for model 1, with growth of damping. For small
values of � (�<0.1) all the functions (except X4(z)) are very close.
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Figure 2. Imaginary part of SDoF compliance for five models at damping
parameter: (a) � = 0.2; and (b) 0.4.
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Figure 3. Real part of SDoF compliance for five models at damping parameter: (a) � = 0.2; and (b) 0.4.

Defining for model 1 the total complex stiffness X (z) + iY (z) with the help of Equations (29),
(28) one can raise the question: to which stiffness of the spring this total stiffness corresponds?
Denoting the normalize stiffness of the spring as ã+ ĩb we obtain the following system of equations
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for ã and b̃:

ã − z2

( ã − z2)2 + b̃2
= kX (z) (31)

b̃

( ã − z2)2 + b̃2
= −kY (z) (32)

This system leads to

b̃ = − kY (z)

[kX (z)]2 + [Y (z)]2 (33)

ã = z2 + kX (z)

[kX (z)]2 + [Y (z)]2 (34)

Values ã and b̃ are represented in Figure 4 for � = 0.2. For z = 1 they are: ã = 1.0014, b̃= 0.1969,
i.e. very close to the required values. With increase of z the deviation of ã from 1 grows, however
the value ã− z2, which is used actually when calculating the stiffness, is close to the desired value
1− z2; this fact is proved also by a proximity of the results for models 1 and 2 given in Figure 3.

Consider responses of above models upon instantaneous unit impulse. Using Equations (26),
(29) represent function U (�) in the form

U (�) = 2√
kM�

∫ ∞

0

b

(a − z2)2 + b2
sin(z�) dz (35)
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Figure 5. Response of SDoF on instantaneous impulse for five models at
damping parameter: (a) �= 0.2; and (b) 0.4.

with a and b determined above for each model. Certainly, for the third model (equivalent viscous)
the simpler expression can be used:

U (�) = exp(−0.5��)√
kM

√
1 − �2/4

sin

(
�
√
1 − �2/4

)
(36)

We keep name ‘model with constant complex stiffness’ for the second model although applying
Equations (26), (29) for a = 1, b= � we make the model causal assuming that the real part of the
whole compliance is defined according to Equation (28) (not by Equation (30)); actually under the
name ‘model 2’ now another model is dealt. The values of (kM)1/2U (�) for the five models are
shown in Figure 5 for � = 0.2, 0.4. Note non-significant discrepancies between results for models
1, 2, 3, 5 even for � = 0.4; without the correction by introducing parameter �, Biot kernel (model 4)
leads to significant deviations from the results predicted by other models.

The case of constant unit force applied to the system at moment t = 0 reveals noticeable
differences in large time responses for the models because of differences in real parts of compliances
for small frequencies. We use instead of Equation (26) the equation:

U (�) = 2

k�

∫ ∞

0

b

(a − z2)2 + b2
1 − cos(z�)

z
dz (37)

The convergence of the integral becomes even better. It can be shown that for b(0) �= 0 (as in the
case of the Model 2), this integral increases logarithmically with � → ∞. The results for the five
models are shown in Figure 6. For large values of � and � the hereditary model with parameter �
(fifth) and the second model (with constant stiffness but made causal) lead to noticeable overstating
displacements according to overstating the compliance for small frequencies. For the second model
displacements increase without limit, whereas for the fifth model the limiting value equals with
high precision the value 1/(k�) which gives a good confirmation for correctness of calculations.
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Figure 6. Response of SDoF on sudden application of constant force for five models at
damping parameter: (a) �= 0.2; and (b) 0.4.

m1 m2

α1 α2

k1,η1 k2,η2 k3,η3

Figure 7. Example of two degree of freedom system.

The correction for b made in Equation (27) results in adequate behaviour of the first model even
for large time values and large values of damping coefficients �. The normalized limiting values
of displacements for this model are 1.039, 1.064, 1.079 for � = 0.1, 0.2, 0.4 respectively; these
values equal the corresponding values of kX1(0). For models 3 and 4 the normalized limiting
values equal one.

Summarizing note that the two models—first and third—are rather close in the all above
examples. The hereditary model 4 leads to a shifting of the resonance frequency which is exhibited
in all examples. This fault is excluded in model 5, however the diminishing the static stiffness can
result in an erroneous longtime response as in the example with the constant acting force. The
causal model corresponding to model 2 also leads to inadequate longtime response; in the case of
constant force displacements increase without limit with increase of time.

System with two degrees of freedom

Further, we analyse the case of a system having more than one degree of freedom when advantages
and shortcomings of the models are seen more explicitly. Consider a system (Figure 7) consisting
of equal masses m1 =m2 = M connected with springs having stiffness k1 = k2 = k3 = k and damp-
ing parameters �1 = �2 = �0, �3 = 0. Masses and stiffness are distributed symmetrically whereas
damping properties are non-symmetric. In this example, some incorrectness of the equivalent
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viscous damping method, which impose modes of the symmetric undamped system on the given
non-symmetrical system, can be demonstrated. The natural frequencies are

�1 =
√

k

M
, �2 = �1

√
3 (38)

Consider complex compliances for masses corresponding to two forces: exp(i�t) applied to the
mass m1 and − exp(i�t) applied to the mass m2. Denote 
1 and 
2 complex amplitudes for masses
m1 and m2 respectively. The system of equations for these values has the following form:

−z2
1 + (a + ib)
1 + (a + ib)(
1 − 
2) = 1

k
(39)

−z2
2 + 
2 − (a + ib)(
1 − 
2) = −1

k
(40)

where a and b have different determinations for the different considered models 1, 2, 4, 5 (see
the description after Equation (29) where � = �0). While using the method of equivalent viscous
damping (model 3) we study a symmetrical motion, i.e. the motion of a one degree of freedom
system with mass M and complex stiffness

k∗ = 3k(1 + ĩ�z/
√
3) (41)

where

�̃ = �1 + 4�2
6

= 5

6
�0 (42)

The coefficient �̃ is found using the requirement that for each mass in a symmetrical harmonic
motion at frequency z = 31/2, loss of energy equals the half of total loss of energy for the given
system in the motion. In Figure 8 values k|
1| and k|
2| for second and third models are shown for
the given symmetrical loading. The method of equivalent viscous damping (third model) results
in identical amplitudes of masses. For the second model the amplitudes of masses are different;
at z = 1 the first mass has zero amplitude and the amplitude of the second mass is about twice
as great as the result for the equivalent viscous model. This model is unacceptable near the first
resonance frequency for the considered loading.

Further consider imaginary parts Y (z) of the complex compliance of the first mass for the
five models described above in the case of the given symmetrical loading. For models 1, 2, 4,
5, Equations (39), (40) are used with suitable values of a and b, and Y (z) = Im(
1). For the
third model, the mass M attached to a spring with stiffness (41) is considered. In Figure 9 the
corresponding results are shown. We observe again the behaviour of the equivalent viscous model
differing from that for other models. At the first natural frequency (z = 1) values Y are zero for
all the models except model 3. For the two hereditary models, especially for model 4, the shift
of resonance frequencies because of growth of parameter a is to be noted. The application of
parameter � in the model 5 softens this phenomenon. Consider real parts X (z) =Re(
1) of the
complex compliance for the models described above in the case of the given symmetrical loading.
For the model 2, 4, 5 we use directly the relationship X (z) =Re(
1), for the first model Equation
(28) is applied using already discussed value Y (z) and for the third model the above simple system
is considered. The shortcomings of models 3, 4, 5 are seen also in Figure 10 where the values
kX (z) are represented. For models 2, 4, 5 value of kX (1) = 0 whereas for model 1 this value is
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Figure 9. Imaginary part of compliance for two degree of freedom system for five models at damping
parameter: (a) �= 0.2; and (b) 0.4; system of Figure 7 is loaded symmetrically by two harmonic forces.

equal about 1.3� and for the third model kX (1) ≈ 0.48 which differs sharply from the results for
other models.

It interesting to study transient vibrations of mass m1 when two symmetrical forces sin(�1t)
and − sin(�1t) are applied to masses m1 and m2, respectively. The frequency of excitation equals
the first natural frequency of the given mechanical system. In order to obtain equation of motion
for the mass m1, one can use values Y (z) considered above and integrate by s the function
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parameter: (a) �= 0.2; and (b) 0.4; system of Figure 7 is loaded symmetrically by two harmonic forces.

sin[z(� − s)] sin(s)/�1 from 0 to � under integral sign in Equation (26). The equation of motion
of the first mass has the form:

U (�) = −2

�

∫ ∞

0
Y (z)

z sin(�) − sin(z�)

z2 − 1
dz (43)

For z → 1, the limit of the multiplier to Y (z) equals 0.5[sin(�)−� cos(�)]. The results of calculations
for � = 0.4 are shown in Figure 11. The displacements corresponding to model 3 (equivalent
viscous) become steady state after several oscillations; the amplitude of vibrations equals the
amplitude for z = 1 in Figure 8 with high precision. For other models, the amplitudes decrease
accordingly to their steady-state values (zero for models 2, 4, 5 and a small value for model 1).

Vibrations of shear beam

Consider a vertical shear beam with fixed bottom section having unit cross-section area with
complex shear modulus G =G0(a + ib) and density � under action of the lateral volume load
exp(i�t) = exp(iz�) with unit amplitude. Let H be the length of the beam and location of beam
points is defined by co-ordinate y measured from the beam bottom. Such a system is of importance
when studying shear wave propagation through deformable medium. Natural frequencies of the
beam (for G =G0) are

� j = �(2 j − 1)

2H

√
G0

�
( j = 1, 2, . . .) (44)

with the following corresponding modes of vibrations:

w j (�) = sin

(
2 j − 1

2
��

)
(45)
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where

�= y

H
(46)

As above the frequency �1 is used for determination of z = �/�1. Steady-state complex amplitudes
of lateral vibrations of the beam will be

u0(y)= 1

��2
[cos(�y) + sin(�y) tan(�H) − 1] (47)

where

� =�
√

�

G0(a + ib)
(48)

Or

u0(y)= 1

��2
1z

2

[
cos

(
�z�

2
√
a + ib

)
+ sin

(
�z�

2
√
a + ib

)
tan

(
�z

2
√
a + ib

)
− 1

]
(49)

The imaginary part of the compliance, Y (z), for the point y = H has the form:

Y (z) = 1

��2
1z

2
Im

(
1/ cos

�z

2
√
a + ib

)
(50)

This results in the following expression relating to the endpoint acceleration:

Ya(z) =−1

�
Im

(
1/ cos

�z

2
√
a + ib

)
(51)

Copyright q 2006 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2007; 36:13–33
DOI: 10.1002/eqe



LINEAR MODELS WITH NEARLY FREQUENCY INDEPENDENT COMPLEX STIFFNESS 29

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

η = 0.2
Model 4

5
1, 2, 3

0 2 4 6 8 10 12 14 16

-3

-2

-1

0

1

2

3

4

5

6

7

ρY
aj

ρY
aj

η = 0.4

z
0

(a) (b)
2 4 6 8 10 12 14 16

z

5

1, 2

3

Model 4

1, 2

Figure 12. Imaginary part of acceleration amplitude at top of beam for five models at
damping parameter: (a) �= 0.2; and (b) 0.4.

Equations (50), (51) with appropriate values of a and b is used for models 1, 2, 4, 5: for model 1,
a and b are defined by Equation (27); for model 2, a = 1, b= �; for model 4, by Equations (6) and
(7) with z̃ = 21.2z; for model 5, by Equations (17), (18) with a = � + �Sa , N = 4 and parameters
k j , � j found above. For the model 3 (equivalent viscous), one can consider the series expansion
of Equation (49) using the modes (45) and taking for the modes a + ib= 1 + i�z/(2 j − 1). This
ensures for the material the same damping parameter, �, at natural frequencies z j = 2 j − 1. We
obtain instead of Equation (49)

u0(y)= 4

���2
1

∞∑
j=1

w j (�)

2 j − 1

1

(2 j − 1)2 − z2 + i�z(2 j − 1)
(52)

The corresponding value for the endpoint acceleration will be (instead of Equation (51))

Ya = 4�z3

��

∞∑
j=1

(−1) j+1

[(2 j − 1)2 − z2]2 + �2z2(2 j − 1)2
(53)

Note that according to Equation (52), modal damping parameters increase with growth of numbers
of modes whereas the material coefficient of damping is kept constant. The function Ya(z) by
Equation (53) for model 3 and by Equation (51) for model 1, 2, 4, 5 is represented in Figure 12.
The values Ya for models 1, 2, 3 practically coincide (unlike the previous examples, now they
are close also for small frequencies tending to zero for z → 0). The results for models 4, 5
deviate significantly from those for other models; beside the shift for resonance frequencies, larger
resonance amplitudes are observed. We see that the increase in the real part of stiffness leads to
diminishing the system damping although the damping parameter, b, does not change practically
with frequency.
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Figure 13. Relative acceleration history at top of beam excited by bottom motion with accelerogram (56)
for �= 1 at damping parameter: (a) �= 0.2; and (b) 0.4.

If the bottom of the beam moves in the transverse direction with the acceleration f (�), then
from Equations (26), (50) the following equation results for the relative acceleration of the end
point of the beam:

Uar(�) = 2

�

∫ ∞

0
�Ya(z)F(z, �) dz (54)

where

F(z, �) =
∫ �

0
sin[z(� − s)] f (s) ds (55)

Consider the following function representing ground accelerations [15, 29]:

f (�) =
{
A cos(��) (0���2�/�)

0 (�>2�/�)
(56)

where A is a reference acceleration, � is the non-dimensional frequency of the applied acceleration
impulse. The function F(z, �) will be

F(z, �) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Az

cos(��) − cos(z�)

z2 − �2
(0���2�/�)

Az
cos[(2�/� − �)z] − cos(z�)

z2 − �2
(�>2�/�)

(57)

Further consider two examples: � = 1 and 3, i.e. the frequency of the impulse equals the first
and the second natural system’s frequency. Since values Ya for models 1, 2, 3 are very close,
compare endpoint accelerations only for three models: 1, 4, 5. This is done in Figures 13 (�= 1)
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Figure 14. Relative acceleration history at top of beam excited by bottom motion with accelerogram (56)
for �= 3 at damping parameter: (a) �= 0.2; and (b) 0.4.

and 14 (�= 3). The results for model 5 are in some proximity to that for model 1 in the case
� = 1 which corresponds to the proximity of values Ya for these models in vicinity of the first
natural frequency (Figure 12). This does not take place in the case �= 3. In general, the behaviour
of the values Uar is in agreement with the behaviour of Ya . Two facts should be noticed: (1)
maximum values of accelerations are about four times larger in the first case than in the second
one; (2) the double increase in the damping parameter � results in a relatively slight decrease in
accelerations Uar.

CONCLUSIONS

The paper is dedicated to discussion and development of questions relating to the frequency
independent damping. As the concept of strictly constant complex stiffness leads to non-causality,
a series of models is considered which allow an approximately constant stiffness. Well-known
Biot model is supplemented with three hereditary models having properties similar to those of the
Biot model. It is suggested to diminish the static stiffness of such models in order to obtain the
required value of the stiffness at the first natural frequency of the given mechanical system and to
compensate, at least partly, the increase in the real part of the stiffness inherent in the considered
hereditary models. A new method of constructing a causal model with approximately constant
stiffness is developed which allows to perform effective calculations for steady state and transient
vibrations. Examples of mechanical systems having one, two and infinite degrees of freedom
are studied on the basis of five models including two hereditary models, the causal model built
according to the suggested method, the model relating to strictly constant stiffness which turns into
the corresponding causal model when dealing with transient vibrations, and the equivalent viscous
model. The latter model in majority of cases is rather acceptable, however some limitations exist
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for its application as is shown above in the example with two degree of freedom. In addition, the
determination of natural frequencies and modes in the case of large mechanical systems can be
rather laborious exceeding labor inputs corresponding to the new model.

NOMENCLATURE

t time
F force
x displacement
k static stiffness
� damping parameter (loss factor)
� non-dimensional scale parameter
G(u) kernel in the hereditary relationship
Ei (−u) exponential integral
� circular frequency of excitation
�1 the first natural (without accounting on damping) circular frequency
�h the highest natural circular frequency taken into account
z �/�1, non-dimensional frequency
z̃ z/�, one more non-dimensional frequency
zh �h/�1, the highest non-dimensional frequency taken into account
� �1t , non-dimensional time
ka real part of the complex stiffness (storage modulus)
kb imaginary part of the complex stiffness (loss modulus)
K0(u) modified Bessel function
Sa, Sb multipliers to � in equations for a and b, respectively
k j , � j parameters in Prony series expansion for the kernel G
�<1 positive coefficient for diminishing the static stiffness
X (�) + iY (�) complex compliance of the whole system
	(t) Dirac 	-function
U (t) transient response of the mechanical system
M mass of an element of the system
G G0(a + ib), complex shear modulus of the shear beam
� density of the shear beam
H length of the shear beam
u0(y) amplitude of vibration of a point with co-ordinate y
� y/H , relative co-ordinate of a point of the shear beam
w j (�) modes of vibrations of the shear beam
Uar relative acceleration of the end point of the shear beam for ground motion
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