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Abstract

Purpose – The purpose of this paper is to develop a meshless numerical method for three-
dimensional isotropic thermoelastic problems with arbitrary body forces.
Design/methodology/approach – This paper combines the method of fundamental solutions
(MFS) and the dual reciprocity method (DRM) as a meshless numerical method (MFS-DRM) to solve
three-dimensional isotropic thermoelastic problems with arbitrary body forces. In the DRM, the
arbitrarily distributed temperature and body force are approximated by polyharmonic splines with
augmented polynomial basis, whose particular solutions and the corresponding tractions are
reviewed and given explicitly. The MFS is then applied to solve the complementary solution.
Numerical experiments of Dirchlet, Robin, and peanut-shaped-domain problems are carried out to
validate the method.
Findings – In literature, it is commented that the Gaussian elimination can be used reliably to solve
the MFS equations for non-noisy boundary conditions. For noisy boundary conditions, the truncated
singular value decomposition (TSVD) is more accurate than the Gaussian elimination. In this paper, it
was found that the particular solutions obtained by the DRM act like noises and the use of TSVD
improves the accuracy.
Originality/value – It is the first time that the MFS-DRM is derived to solve three-dimensional
isotropic thermoelastic problems with arbitrary body forces.

Keywords Elasticity, Gaussian processes

Paper type Research paper

1. Introduction
Recently, meshless numerical methods have composed a vital research field in the
computing society. Among these methods, a large category is to approximate the
thought functions by radial basis functions (RBFs). Both governing equations and
boundary conditions are approximated by the RBFs for domain-type methods (Kansa,
1990). On the other hand, the method of fundamental solutions (MFS) is a boundary-
type meshless numerical method, in which the desired solution is represented by a
series of fundamental solutions with sources located outside the computational
domain. In the MFS, the fundamental solutions are taken as the RBFs that satisfy
governing equations analytically, thus only boundary conditions should be collocated.
The MFS was first proposed by Kupradze and Aleksidze (1964), and the mathematical
foundations of the method were then established by Mathon and Johnston (1977) and
Bogomolny (1985). Thereafter, the MFS was successfully applied to the elliptic
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boundary value problems (Fairweather and Karageorghis, 1998), the scattering and
radiation problems (Fairweather et al., 2003), the evaluations of eigenvalues
(Karageorghis, 2001; Tsai et al., 2006b), the Poisson’s equation (Golberg, 1995), and the
Stokes flow problems (Alves and Silvestre, 2004).

The MFS was also applied to solve elastostatic problems. Redekop (1982) applied
the MFS to solve planar elastic problems. On the other hand, Redekop and Thompson
(1983) and Karageorghis and Fairweather (2000) utilized the MFS for axisymmetric
problems. For three-dimensional problems, Redekop and Cheung (1987) obtained
solutions of exterior problems by the MFS. On the other hand, Poullikas et al. (2002)
recently considered the source locations of fundamental solutions also as unknowns
and utilized non-linear least-squares algorithms to solve the resulted algebraic
systems.

Although the MFS can reduce the dimensionalities compared to the domain-type
meshless numerical methods, its use is unfortunately limited to homogeneous solutions
of partial differential equations. In the cases where the non-homogeneous terms are
known functions, exact particular solutions can often be calculated. Fam and Rashed
(2005) recently applied the MFS with analytical particular solutions for three-
dimensional structures with body force. However in other cases the non-homogeneous
terms should also be approximated by the RBFs. This method was named as dual
reciprocity method (DRM) in the boundary element method society (Nardini and
Brebbia, 1982), and was combined with the MFS as a meshless numerical method to
solve Poisson’s equation (Golberg, 1995). Recently, the combination of MFS and DRM
(MFS-DRM) was also utilized to solve two-dimensional thermoelasticity with general
body forces (Medeiros et al., 2004). In this paper, we extend the MFS-DRM to three-
dimensional thermoelasticity with arbitrary body forces, in which the DRM is based on
the augmented polyharmonic splines (Duchon, 1976), whose particular solutions were
summarized in (Cheng et al., 2001).

Although the convergent property of MFS were established mathematically
(Mathon and Johnston, 1977; Bogomolny, 1985), the ill-conditioning and the locations of
source points are numerically problematic. Traditionally, the ill-conditioning was
mitigated by the singular value decomposition as illustrated by Ramachandran (2002).
Recently, Chen et al. (2006a) reviewed the issue and commented that the Gaussian
elimination could be used reliably to solve the MFS equations for non-noisy boundary
conditions. For noisy boundary conditions, they suggested the use of truncated
singular value decomposition (TSVD) by choosing a sufficiently large amount of
collocations and then cutting off half of the singular values. However, most of the
previous studies considered ranks less than 100, in which the ill-conditioning was not
critical and most equation solvers could be utilized safely to obtain accurate solutions
according to the author’s experiences. In this paper, we study issues of practically
implementing the MFS-DRM to three-dimensional thermoelasticity, in which both
Gaussian elimination and TSVD are considered. It is concluded that the particular
solutions obtained by the DRM act like noises and the use of TSVD improves the
accuracy. Alternatively, readers can also consider the recent modifications of MFS in
which the sources are located on the boundary to avoid the ill-conditioning (Chen et al.,
2006b, c; Young et al., 2005, 2007).

A brief outline of the paper is as follows. We introduce the formulations of MFS-
DRM for solving thermoelasticity with body forces in section 2. In section 3, some
numerical experiments are preformed and the issues of practically implementing the
MFS-DRM are stated. Finally, the conclusions are summarized in section 4.
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2. Formulations of the MFS-DRM
2.1 Governing equations
Consider an isotropic material in domain �, the governing equations of
thermoelasticity with body force, bi , are

�ij; j ¼ �bi ð1Þ

and the constitutive equation

�ij ¼
2G�

1� 2�
�ijekk þ 2Geij �m�ijT ð2Þ

with

eij ¼
1

2
ðui; j þ uj;iÞ ð3Þ

where �ij is the stress tensor, eij is the strain tensor, ui is the displacement vector, T is
the temperature, �ij is the Kronecker delta, G is the shear modulus, � is Poisson’s ratio,
and m ¼ 2G�Tð1þ �Þ=ð1� 2�Þ is the thermoelastic constant, with �T the coefficient
of linear thermal expansion. The above equations can be combined to give

Gui; jj þ
G

1� 2�
uj; ji ¼ mT;i � bi ð4Þ

To have a well-posed boundary value problem, on each part of the boundary either the
displacement or the traction boundary condition is prescribed as

ui ¼ �uui on �u ð5aÞ

ti ¼ �tti on �t ð5bÞ

where �u þ �t ¼ � is the boundary of the solution domain �; �uui and �tti are prescribed
boundary data, and

ti ¼ �ijnj ð6Þ

is the boundary traction, with nj denoting the boundary outward normal.
In the formulation of the MFS-DRM, the principle of superposition is applied to

decompose the displacement ui into two parts, the particular solution up
i and the

complementary solution uc
i as follows:

ui ¼ up
i þ uc

i ð7Þ

in which the particular solution satisfies

Gup
i; jj þ

G

1� 2�
up

j; ji ¼ mT;i � bi ð8Þ
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without the need of fulfilling any boundary condition. Thus, the complementary
solution uc

i is governed by

Guc
i; jj þ

G

1� 2�
uc

j; ji ¼ 0 ð9Þ

with
uc

i ¼ �uui � up
i on �u ð10aÞ

tc
i ¼ �tti � tp

i on �t ð10bÞ

In the MFS-DRM formulation, the particular solution is first obtained by the DRM
described below, and the complementary solution is then solved by the MFS. As a
result, the displacement can be evaluated by using Equation (7).

2.2 Dual reciprocity method
Now, we are in a position to introduce the DRM. Typically, we consider the second
order augmented polyharmonic spline, r3, which is the lowest order with regular
temperature particular solutions. Particular solutions of higher orders can be found in
the literature (Cheng et al., 2001). First of all the temperature T is approximated by

Tðx; A1; . . . ;A10;B1; . . . ;BM Þ ffi
X10

j¼1

Ajp jðxÞ þ
XM
j¼1

B jr3
j ð11Þ

with p jðxÞ ¼ f1; x; y; z; x2; y2; z2; xy; yz; zxg.
Where x ¼ ðx; y; zÞ is the position vector, and rj ¼ x� xj

�� �� is the Euclidean
distance form point xj ¼ ðxj; yj; zjÞ. In addition, Aj and Bj are M þ 10 unknown
coefficients which can be determined by collocation and constraint conditions as
follows

TðxiÞ ¼
X10

j¼1

Ajp jðxiÞ þ
XM
j¼1

B jr3
ij i ¼ 1; 2; . . . ;M ð12aÞ

XM
j¼1

B jpiðxjÞ ¼ 0 for i ¼ 1; 2; . . . ; 10 ð12bÞ

where rij ¼ xi � xj

�� ��. Similarly, the body forces bi are approximated by

biðx; C1
i ; . . . ;D10

i ;D
1
i ; . . . ;DM

i Þ ffi
X10

j¼1

Cj
i p

jðxÞ þ
XM
j¼1

Dj
ir

3
j ð13Þ

where the 3ðM þ 10Þ unknown coefficients Cj
i and Dj

i can also be obtain in a same way.
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Then, the particular solution up
i are approximated by

up
i ðxÞ ffi

X10

j¼1

A j ~PP
j

iðxÞ þ
XM
j¼1

B j ~FFiðrjÞ �
X3

k¼1

X10

j¼1

Cj
k
�PP

j

ikðxÞ �
X3

k¼1

XM
j¼1

D j
k
�FFikðrjÞ ð14Þ

in which ~PP
j

iðxÞ; ~FFiðrjÞ; �PP
j

ikðxÞ and �FFikðrjÞ are governed by

G~PP
j

i;kk þ
G

1� 2�
~PP

j

k;ki ¼ mp j
;i ð15aÞ

G~FFi;kk þ
G

1� 2�
~FFk;ki ¼ mðr3

j Þ;i ð15bÞ

G�PP
j

il;kk þ
G

1� 2�
�PP

j

kl;ki ¼ �ilp
j ð15cÞ

G�FFil;kk þ
G

1� 2�
�FFkl;ki ¼ �il r

3
j ð15dÞ

Using Equations (2) and (6), the corresponding tractions can be obtained

tp
i ðxÞ ffi

X10

j¼1

Aj ~QQ
j

iðxÞ þ
XM
j¼1

B j~SSiðrjÞ �
X3

k¼1

X10

j¼1

C j
k
�QQ

j

ikðxÞ �
X3

k¼1

XM
j¼1

Dj
k
�SSikðrjÞ ð16Þ

In Equations (14) and (16), ~PP
j

iðxÞ; ~FFiðrÞ; �PP
j

ikðxÞ; �FFikðrÞ; ~QQ
j

iðxÞ; ~SSiðrÞ; �QQ
j

ikðxÞ and �SSikðrÞ
have been derived in (Cheng et al., 2001) and are summarized with corrections of typos
in Appendix.

It should be noticed that the convergence of Equation (11) and the solvability of the
resulted linear equations from Equation (12) have been mathematically investigated by
Duchon (1976). However, few theoretical statements can be addressed for the
convergence of Equations (14) and (16). Therefore, numerical validations are performed
in this study.

2.3 Method of fundamental solutions
After the particular solution is solved, the boundary value problem (Equations (9) and
(10)) becomes well-posed. Thus, the complementary solution can be approximated by
the well-known MFS. In the spirits of MFS, the complementary solution is represented
approximately by

uc
i ðx; E1

1 ; . . . ;EL
1 ;E

1
2 ; . . . ;EL

2 ;E
1
3 ; . . . ;EL

3 ; s1; . . . ; sLÞ ffi
X3

k¼1

XN

j¼1

Ej
kU
�
ikðx; sjÞ ð17Þ

where
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U�ij ðx; sÞ ¼
ð3� 4�Þ�ij þ r;ir;j

16�Gð1� �Þr ð18Þ

is the fundamental solution defined by

GU �ij;kkðx; sÞ þ
G

1� 2�
U �kj;kiðx; sÞ ¼ ��ij�ðx� sÞ ð19Þ

with �ðx� sÞ the Dirac delta function. Then, the corresponding traction can be
obtained by using Equations (2) and (6) as follows:

tc
i ðx; E1

1 ; . . . ;EL
1 ;E

1
2 ; . . . ;EL

2 ;E
1
3 ; . . . ;EL

3 ; s1; . . . ; sLÞ ffi
X3

k¼1

XN

j¼1

Ej
kT
�
ikðx; sjÞ ð20Þ

with

T�ijðx; sÞ ¼ �
ð1� 2�Þr; knk�ij þ 3r; ir; jr; knk þ ð1� 2�Þðr;inj � r; jniÞ

8�ð1� �Þr2
ð21Þ

It is easily verified that Equation (17) satisfies the governing equations in Equation (9)
analytically. To determine the unknowns, Ej

k and sj, boundary conditions in Equation
(10) should be fulfilled in suitable ways. Traditionally, the N source points sj can be
treated either as unknown or a priori known. In which the first case results in a
cumbersome non-linear optimization with 6N unknowns, Ej

k and sj (Poullikas et al.,
2002). On the other hand, if the source points are considered as a priori known, the
boundary conditions are simply collocated at N ¼ N1 þ N2 boundary field points xl . It
results in a linear equations system as follows:

�uuc
i ðxlÞ � u p

i ðxlÞ ¼
X3

k¼1

XN

j¼1

Ej
kU
�
ikðxl ; sjÞ for l ¼ 1; 2; . . . ;N1 ð22aÞ

�tt
c
i ðxlÞ � t p

i ðxlÞ ¼
X3

k¼1

XN

j¼1

Ej
kT
�
ikðxl ; sjÞ for l ¼ N1 þ 1;N1 þ 2; . . . ;N1 þ N2 ð22bÞ

where u p
i ðxlÞ and t p

i ðxlÞ are given by Equations (14) and (16), respectively. In Equation
(22), there are 3N equations with 3N unknowns, E j

k, and thus can be solved, in which
the solvability was discussed by Bogomolny (1985). In this paper, we typically locate
the boundary field points uniformly and place the source points stipulated out as
depicted in Figure 1 (Tsai et al., 2006a).

Once the complementary and particular solutions are obtained, we can get the
desired solution by using Equation (7).

3. Numerical results
In order to validate the proposed MFS-DRM formulation, two numerical experiments
with Dirchlet and Robin boundary conditions are first considered. Then, the method is
applied to two problems of peanut-shaped domain and heated hollow ball. In all the
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four numerical experiments, both homogeneous and non-homogeneous cases are
considered. In addition, both the Gaussian elimination and the TSVD (Chen et al.,
2006a) are utilized to solve the MFS equations in Equation (22). Typically, half of the
singular values are ignored in the TSVD as suggested by Chen et al. (2006a). From
these results, it can be concluded that the Gaussian elimination can obtain accurate
solutions for homogeneous cases with non-noisy boundary conditions and the TSVD
performs better for non-homogeneous cases in which the particular solutions obtained
by the DRM act like noises to the MFS equations (Equation (22)).

In the results, the normalized root-mean-square error is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P�NN

j¼1

P3
i¼1ðui;numericalðxjÞ � ui;exactðxjÞÞ2Þ=3 �NN

q
Max

i; j
jui;exactðx jÞj

ð23Þ

where ui;numericalðxjÞ is the numerical solutions obtained by the MFS-DRM (Equations
(7), (14) and (17)) at xj, ui;exactðxjÞ is the corresponding exact solution, and �NN is the
number of total nodes considered.

Besides, the material considered in these numerical experiments is the structural steel
ASTM-A36 with density � ¼ 7,850 kg/m3, Young’s modulus E ¼ 200 GPa, Poisson’s
ratio � ¼ 0:29, and coefficient of linear thermal expansion �T ¼ 1:2� 10�5=�C. And,
the gravitational acceleration g ¼ 9.8 m/s2 is assumed.

3.1 Dirchlet boundary condition
We consider both homogeneous and non-homogeneous cases in this numerical
experiment. For the homogeneous case, we consider the solutions of Equation (4) in a
cube of 2 m� 2 m� 2 m with center at (0, 0, 0), in which T ¼ 0 and bi ¼ 0 and it is
subjected to Dirichlet boundary conditions u1 ¼ x; u2 ¼ y and u3 ¼ z. On the other hand,
T ¼ Eðx2 þ y3 þ z4Þ=m; b1 ¼ 2Ex; b2 ¼ 3Ey2 and b3 ¼ 3Ez3 for the non-homogeneous
case. The exact solutions of these two cases are both u1 ¼ x; u2 ¼ y; u3 ¼ z.

Figure 1.
Schematic diagram of the

source and field points
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Table I gives the normalized root-mean-square errors for different numbers of
ranks. For the homogeneous case, it is clear to notice that the MFS can obtain excellent
solutions almost up to machine error even for rank ¼ 2,598 and the Gaussian
elimination is able to solve the resulted algebraic linear equations system accurately
and stably. In addition, the TSVD did not improve the accuracy as stated by Chen et al.
(2006a). On the other hand, it is interesting for the non-homogeneous case that the
particular solutions obtained by the DRM act as noises to the right hand side of
the MFS equations. Thus, the TSVD can improve the accuracy as compared with the
Gaussian elimination.

3.2 Robin boundary condition
Then we modify the previous problem by imposing traction boundary conditions on
zj j ¼ 1 and formally solve the homogeneous and non-homogeneous cases by the MFS

and the MFS-DRM, respectively. The exact solution is the same as the previous case.
Tables II addresses the normalized root-mean-square errors of the homogeneous and
non-homogeneous cases. For the homogeneous Robin case, the solutions obtained by
the Gaussian elimination are excellent although slightly worse than the Dirichlet
problem. Similarly, the TSVD fails to obtain accurate solutions for the homogeneous
Robin problem. On the other hand, it is observed that the MFS-DRM does not give
accurate solutions for both the Gaussian elimination and TSVD.

To circumvent the problem, Balakrishnan and Ramachandran (1999) claimed that
the sources should be located close to the boundary for Neumann condition and away
from the boundary for the Dirchlet condition. In this work, we on the other hand rescale
the Young’s modulus to E ¼ 200. In other hand, we use GPa in stead of Pa as the unit
for stresses. The resulted normalized root-mean-square errors of the homogeneous and
non-homogeneous cases are addressed in Table III. Compared with the results without
rescaling in Table II, the accuracies are significantly improved especially for the non-
homogeneous cases. The results in Table III also support the major declarations of the
present paper that the Gaussian elimination can obtain accurate solutions for
homogeneous problems and the TSVD can remedy the interference of noises and
ill-conditioning for non-homogeneous problems.

Rank 654 1,158 1,806 2,598
Gaussian 3.25E-08 7.01E-10 4.97E-13 1.08E-14
TSVD 7.59E-07 1.24E-09 3.72E-11 2.58E-09

Rank 654 1,158 1,806 2,598
Gaussian 8.94E-04 3.42E-04 2.36E-04 8.61E-05
TSVD 8.74E-04 3.18E-04 1.42E-04 7.15E-05

Table I.
Normalized root-mean-
square errors of the
homogeneous (up) and
non-homogeneous
(down) Dirichlet
problems

Rank 654 1,158 1,806 2,598
Gaussian 3.93E-08 2.66E-08 9.25E-12 1.53E-10
TSVD 1.32E-06 2.09E-08 3.99E-08 4.51E-05

Rank 654 1,158 1,806 2,598
Gaussian 2.11E-03 1.64E-02 1.52E-02 3.58E-02
TSVD 1.93E-03 6.64E-04 3.42E-04 7.17E-03

Table II.
Normalized root-mean-
square errors of the
homogeneous (up) and
non-homogeneous
(down) Robin problems
without rescaling
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In order to have a better understanding of the rescaling method, we also give the
detailed accuracies for rank ¼ 2,598 in Table IV. It is clear that the rescaling method
does provide the flexibility of locating sources for Robin problems. Roughly, the value
of Young’s modulus should be rescaled to be in the same order of the displacement.
Further researches should be undertaken for the optimal choice of scaling.

3.3 Thermoelasticity with body force in a peanut-shaped domain
In order to demonstrate the flexibility of the proposed numerical method to treat
irregular domains, three-dimensional peanut shaped computational domains (Figure 1)
are also considered. The same problem with Dirchlet boundary condition on the
boundary of the peanut shaped domain is considered. The exact solution is the same as
the previous cases. The homogeneous and non-homogeneous cases of this problem are
solved formally by the MFS and MFS-DRM and the normalized root-mean-square
errors for different numbers of ranks are stated in Table V. The results are nice, and
perform similarly to the previous cases.

3.4 A heated hollow ball
Finally, we consider a problem of heated hollow ball. The radius of inner hole is a and
the radius of outer ball is b. The temperature at r ¼ a and r ¼ b are T ¼ 0 and T ¼ �TT ,

Rank 654 1,158 1,806 2,598
Gaussian 3.93E-08 7.76E-09 1.22E-12 1.88E-14
TSVD 1.32E-06 3.38E-09 4.91E-10 6.93E-08

Rank 654 1,158 1,806 2,598
Gaussian 2.11E-03 3.66E-03 3.99E-04 3.45E-04
TSVD 1.92E-03 6.64E-04 2.92E-04 1.50E-04

Table III.
Normalized root-mean-

square errors of the
homogeneous (up) and

non-homogeneous
(down) Robin problems

with rescaling

Unit of stress Pa kPa MPa GPa
Gaussian 1.53E-10 1.22E-12 3.65E-13 1.88E-14
TSVD 4.51E-05 3.94E-05 1.38E-05 6.93E-08

Unit of stress Pa kPa MPa GPa
Gaussian 3.58E-02 1.83E-02 1.59E-03 3.45E-04
TSVD 7.17E-03 1.83E-04 1.70E-04 1.50E-04

Table IV.
Normalized root-mean-

square errors of the
homogeneous (up) and

non-homogeneous (down)
Robin problems by using

different units of stress

Rank 198 438 774 1,206
Gaussian 4.13E-06 5.52E-08 3.69E-09 1.18E-10
TSVD 2.31E-0 4 2.78E-06 3.47E-07 6.44E-07

Rank 198 438 774 1,206
Gaussian 1.19E-03 6.38E-04 9.20E-04 1.68E-03
TSVD 2.71E-03 2.20E-04 1.19E-04 5.86E-05

Table V.
Normalized root-mean-

square errors of the
homogeneous (up) and

non-homogeneous
(down) peanut-shaped-

domain problem
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respectively. On the other hand, we set up fixed boundary condition, u ¼ 0, in
elasticity. The exact solution for this problem is

T ¼
�TTab

ða� bÞr �
�TTb

ða� bÞ ð24aÞ

ur ¼ �
ðaþ bÞr

2ða2 þ abþ b2Þ þ
a2b2

2ða2 þ abþ b2Þr2
� 1

2

� �
ð24bÞ

where

� ¼ �
�TTabm

ða� bÞ
1þ 2�

ð2þ 2�ÞG ð25Þ

and ur is the displacement in radial direction.
Table VI gives the normalized root-mean-square errors for the solutions obtained by

the MFS-DRM. Accurate solutions are also observed for this practical problem.

4. Conclusions
The three-dimensional MFS-DRM formulation is introduced in this article, in which the
augmented polyharmonic spline is adopted in the DRM and the corresponding
particular solutions are reviewed with corrections for typos in the article of Cheng et al.
(2001). Besides, in order to avoid the singularities for the thermal particular solution,
second order polyharmonic spline was utilized. Three numerical experiments were
carried out to validate the method. Both essential and mixed boundary conditions are
considered. The method is also applied to a problem of peanut-shaped domain to
demonstrate the flexibility to treat irregular domains. We also consider a practical
problem of heated hollow ball. Overall, good agreements with the exact solutions are
observed.

Furthermore, numerical issues of practical implementations are discussed. It is
found that the Gaussian elimination is able to obtain accurate solutions for
homogeneous cases with non-noisy boundary conditions and the TSVD performs
better for non-homogeneous cases in which the particular solutions obtained by the
DRM act like noises to the constant terms of MFS equations. For the Robin problems,
the rescaling of Young’s modulus significantly improves the accuracy.

Overall, the purpose of present work is to develop the fundamental meshless MFS-
DRM framework for thermoelasticity with arbitrary body forces. The convergence is
numerically established. It also provides the base for further applications to unsteady
problems as was done by the dual reciprocity boundary element method. This will be
our further researches.

Rank 516 768 1,068 1,416
NRMSE 1.44E-02 2.50E-03 5.12E-04 2.15E-04

Table VI.
Normalized root-mean-
square errors for the
problem of heated
hollow ball
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Appendix

The functions in Equations (14) and (16) are defined by

~PP
1

i ðxÞ ¼
mð1� 2�Þ�i1x

2Gð1� �Þ ðA1Þ

~PP
2

i ðxÞ ¼
mð1� 2�Þ�i1x2

4Gð1� �Þ ðA2Þ

~PP
3

i ðxÞ ¼
mð1� 2�Þ�i2y2

4Gð1� �Þ ðA3Þ

~PP
4

i ðxÞ ¼
mð1� 2�Þ�i3z2

4Gð1� �Þ ðA4Þ
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~PP
5

i ðxÞ ¼
mð1� 2�Þ�i1x3

6Gð1� �Þ ðA5Þ

~PP
6

i ðxÞ ¼
mð1� 2�Þ�i2y3

6Gð1� �Þ ðA6Þ

~PP
7

i ðxÞ ¼
mð1� 2�Þ�i3z3

6Gð1� �Þ ðA7Þ

~PP
8

i ðxÞ ¼
mð1� 2�Þx2ð3�i1yþ �i2xÞ

12Gð1� �Þ ðA8Þ

~PP
9

i ðxÞ ¼
mð1� 2�Þy2ð3�i2zþ �i3yÞ

12Gð1� �Þ ðA9Þ

~PP
10

i ðxÞ ¼
mð1� 2�Þz2ð3�i3xþ �i1zÞ

12Gð1� �Þ ðA10Þ

~FFiðrjÞ ¼
mð1� 2�Þrj;ir

4
j

12Gð1� �Þ ðA11Þ

�PP
1

ikðxÞ ¼
½2ð1� �Þ�ik � �1i�1k�x2

4Gð1� �Þ ðA12Þ

�PP
2

ikðxÞ ¼
½2ð1� �Þ�ik � �1i�1k�x3

12Gð1� �Þ ðA13Þ

�PP
3

ikðxÞ ¼
½2ð1� �Þ�ik � �2i�2k�y3

12Gð1� �Þ ðA14Þ

�PP
4

ikðxÞ ¼
½2ð1� �Þ�ik � �3i�3k�z3

12Gð1� �Þ ðA15Þ

�PP
5

ikðxÞ ¼
½2ð1� �Þ�ik � �1i�1k�x4

24Gð1� �Þ ðA16Þ

�PP
6

ikðxÞ ¼
½2ð1� �Þ�ik � �2i�2k�y4

24Gð1� �Þ ðA17Þ
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�PP
7

ikðxÞ ¼
½2ð1� �Þ�ik � �3i�3k�z4

24Gð1� �Þ ðA18Þ

�PP
8

ikðxÞ ¼
f4½2ð1� �Þ�ik � �1i�1k�y� ½�1i�2k þ �1k�2i�xgx3

48Gð1� �Þ ðA19Þ

�PP
9

ikðxÞ ¼
f4½2ð1� �Þ�ik � �2i�2k�z� ½�2i�3k þ �2k�3i�ygy3

48Gð1� �Þ ðA20Þ

�PP
10

ik ðxÞ ¼
f4½2ð1� �Þ�ik � �3i�3k�x� ½�3i�1k þ �3k�1i�zgz3

48Gð1� �Þ ðA21Þ

�FFikðrjÞ ¼
r5

j ½�5rj;irj;k þ ð15� 16�Þ�ik�
480Gð1� �Þ ðA22Þ

~QQ
1

i ðxÞ ¼
m½� þ �i1ð1� 2�Þ�ni

ð1� �Þ ðA23Þ

~QQ
2

i ðxÞ ¼
m½� þ �i1ð1� 2�Þ�nix

ð1� �Þ ðA24Þ

~QQ
3

i ðxÞ ¼
m½� þ �i2ð1� 2�Þ�niy

ð1� �Þ ðA25Þ

~QQ
4

i ðxÞ ¼
m½� þ �i3ð1� 2�Þ�niz

ð1� �Þ ðA26Þ

~QQ
5

i ðxÞ ¼
m½� þ �i1ð1� 2�Þ�nix

2

ð1� �Þ ðA27Þ

~QQ
6

i ðxÞ ¼
m½� þ �i2ð1� 2�Þ�niy

2

ð1� �Þ ðA28Þ

~QQ
7

i ðxÞ ¼
m½� þ �i3ð1� 2�Þ�niz

2

ð1� �Þ ðA29Þ

~QQ
8

i ðxÞ ¼
m½� þ �i1ð1� 2�Þ�nixy

ð1� �Þ þmð1� 2�Þ½�i1n2 þ �i2n1�x2

2ð1� �Þ ðA30Þ
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~QQ
9

i ðxÞ ¼
m½� þ �i2ð1� 2�Þ�niyz

ð1� �Þ þmð1� 2�Þ½�i2n3 þ �i3n2�y2

2ð1� �Þ ðA31Þ

~QQ
10

i ðxÞ ¼
m½� þ �i3ð1� 2�Þ�nizx

ð1� �Þ þmð1� 2�Þ½�i3n1 þ �i1n3�z2

2ð1� �Þ ðA32Þ

~SSiðrjÞ ¼
mr3

j

6ð1� �Þ ½ð1þ 4�Þni þ ð3� 6�Þrj;i
@rj

@n
� ðA33Þ

�QQ
1

ikðxÞ ¼
½ð1� �Þð�ikn1 þ �1inkÞ þ ��1kni � �1i�1kn1�x

ð1� �Þ ðA34Þ

�QQ
2

ikðxÞ ¼
½ð1� �Þð�ikn1 þ �1inkÞ þ ��1kni � �1i�1kn1�x2

2ð1� �Þ ðA35Þ

�QQ
3

ikðxÞ ¼
½ð1� �Þð�ikn2 þ �2inkÞ þ ��2kni � �2i�2kn2�y2

2ð1� �Þ ðA36Þ

�QQ
4

ikðxÞ ¼
½ð1� �Þð�ikn3 þ �3inkÞ þ ��3kni � �3i�3kn3�z2

2ð1� �Þ ðA37Þ

�QQ
5

ikðxÞ ¼
½ð1� �Þð�ikn1 þ �1inkÞ þ ��1kni � �1i�1kn1�x3

3ð1� �Þ ðA38Þ

�QQ
6

ikðxÞ ¼
½ð1� �Þð�ikn2 þ �2inkÞ þ ��2kni � �2i�2kn2�y3

3ð1� �Þ ðA39Þ

�QQ
7

ikðxÞ ¼
½ð1� �Þð�ikn3 þ �3inkÞ þ ��3kni � �3i�3kn3�z3

3ð1� �Þ ðA40Þ

�QQ
8

ikðxÞ ¼

3½ð1� �Þð�ikn1 þ �1inkÞ þ ��1kni � �1i�1kn1�x2y
þ½ð1� �Þð�ikn2 þ �2inkÞ þ ��2kni � �2i�1kn1 � �1i�2kn1 � �1i�1kn2�x3

6ð1� �Þ ðA41Þ

�QQ
9

ikðxÞ ¼

3½ð1� �Þð�ikn2 þ �2inkÞ þ ��2kni � �2i�2kn2�y2z
þ½ð1� �Þð�ikn3 þ �3inkÞ þ ��3kni � �3i�2kn2 � �2i�3kn2 � �2i�2kn3�y3

6ð1� �Þ ðA42Þ
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�QQ
10

ik ðxÞ ¼

3½ð1� �Þð�ikn3 þ �3inkÞ þ ��3kni � �3i�3kn3�z2x
þ½ð1� �Þð�ikn1 þ �1inkÞ þ ��1kni � �1i�3kn3 � �3i�1kn3 � �3i�3kn1�z3

6ð1� �Þ ðA43Þ

�SSikðrjÞ ¼
r4

j ½ð7� 8�Þð�ikð@rj=@nÞ þ rj;inkÞ � ð1� 8�Þrj;kni � 3rj;irj;kð@rj=@nÞ�
48ð1� �Þ ðA44Þ

Please note the typos in Table II and Equation (90) of Cheng et al. (2001) corresponding to
Equations (A23)-(A32), and (A44).
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