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This article presents a boundary element formulation for cracked anisotropic elastic
half-planes and shows how the formulation can efficiently be applied to solve various
practical problems. The complete Green's functions for the anisotropic half-plane are
obtained and the corresponding boundary integral equations are derived. Also
presented are particular solutions associated with the body force of gravity and far-
field stresses, which are incorporated rigorously into the boundary element
formulation by superposition. For half-plane problems. this new formulation is
more efficient than the finite element method or even the boundary element
formulation using Green’s functions for the infinite plane.

Numerical examples are presented for the calculation of the stresses and the stress
intensity factors. For the isotropic case. our numerical results are in excellent
agreement with those obtained with previousiy published analytical solutions. For the
anisotropic case, our results show clearly that material anisotropy can have a great
effect on the stress distribution and on the magnitude of stress intensity factors.
© 1998 Elsevier Science Ltd.
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A BEM formulation for anisotropic

1 INTRODUCTION

Many problems in engineering and geosciences require models
associated with a half-plane domain. Examples can be found in
foundation engineering related to underground or surface
excavations, in geophysics when estimating analytically the
regicnal in-sit stresses in the Earth. and in advanced material
science when studying the stability of rough surfaces or the
initiation and propagation of flaws in heteroepitaxial thin films.

Previously, several analytical and numerical methods
werce proposed for the study of half-plane related problems.
The first analytical method, called the bipolar coordinates
transformation method, was used by Mindlin'~ and Ling” to
study the behavior of a single circular opening in an iso-
tropic  half-plane. The perturbation method is another
analvtical approach which, under the assumption of small
perturbation over a flat surface, can be suitable for studying
topographically or morphologically induced stresses.* 7
*Department of Civil Engineering, University of Colorado,
Boulder, CO 80309, USA.

The third analytical method is the exact conformal mapping
method which can be successfully applied to haif-plane
geometries for which the exact conformal mapping function
can be found;x‘g Otherwise, the numerical conformal
mapping technique can be applied.'™'" However, for very
complex geometries and boundary conditions, one needs to
resort to numerical methods. Examples of application of the
FEM to half-plane problems can be found in Zienkiewicz
et al.,"” Barla,"* and Soliman er /.'* An alternative to the
FEM is the boundary element method (BEM) which,
compared with the domain methods, requires discretization
of the problem boundary only. Applications of BEM related
methods to some specific half-plane problems were
conducted previously by Eissa,'” Fainstein er al..'® Carter
and Alebossein,'”” Xiao and Carter'® and Beer and
Poulsen."” However. these researchers used Kelvin-type
Green’s functions in their formulation, which requires
cither discretization or approximation along the flat surface
of the half-plane. The complete Green’s functions in an
isotropic  half-plane  were derived and used by
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Tells and Brebbia®” and Meek and Dai*' in their BEM
formulation. Green’s functions and boundary integral
equations were derived by Dumir and Mehta®* for ortho-
tropic half-plane problems. However, so far to the author’s
knowledge, there is no BEM formulation that can address
generalized anisotropic half-plane problems.

The purpose of this article is to present such a BEM
formulation. The complete Green’s functions in the
generalized anisotropic half-plane are derived and
incorporated into the boundary integral equations so that
the discretization along the horizontal flat surface can be
avoided. Particular solutions corresponding to the body
force of gravity and far-field stresses are also derived and
included rigorously in the BEM formulation, which makes
the problem very similar to the one associated with the
homogeneous equations except that, for the body force
and/or far-field stress cases, two extra integral terms related
to the particular solutions are added to the integral
2quations. Therefore, for the far-field stress problem, for
2xample, the artificial truncation of the semi-infinite
domain, or the transferring of the far-field stress onto the
boundary (or opening) of the problem is avoided.

In order to calculate the stress intensity factor (SIF) for
cracked anisotropic half-planes, the formulation proposed
recently by Pan and Amadei® is adopted and modified to
include the body force of gravity and far-field stresses. In
this BEM formulation, the displacement integral equation is
collocated on the no-cracked boundary of the problem and the
Taction integral equation on one side of the crack surfaces.

Numerical examples are presented for the calculation of
stresses and SIFs. For the isotropic case, our numerical results
are in excellent agreement with those obtained with previously
published analytical solutions. For the anisotropic case, our
results clearly show that material anisotropy can have a
great effect on the stress distribution and the SIFs.

2 BEM FORMULATION FOR 2D CRACKED
ANISOTROPIC MEDIA

For a linear elastic medium, we can express, by superposition,
the total displacements, stresses, and tractions as follows:

u?:u?—{—u? azj:0£}+o{’i Ti':Tih—f-Tip (nH

where the superscript t, denotes the total solution; h, the
homogeneous solution, and p, a particular solution corre-
sponding to the body forces and/or the far-field stresses.
Following the procedure by Pan and Amadei,>*** one can
show that the internal total displacement solution can be

expressed by the following integral:

(Xp) + -Isﬂ?(xp,Xs)u}(Xs)dS(Xs)
+ Jrﬂj(Xp,Xr+ )ui(Xp ) — ui(Xr 1T Xy )

= LUJ}(XP,Xs)T,-‘(Xs)dS(Xs)

+ JSTG(XP, X)) (Xs) — u (X,))dS(X5)

- LU:}(X,,,XSH;’(XS)dS(Xs) )

where dS and dI' are the line elements on the no-cracked
boundary and crack surface, respectively, with the corre-
sponding points being denoted by subscript s and I' (Fig. 1);
Ui and Tj are the Green’s displacements and tractions
which will be derived in the next section; A point on the
positive (or negative) side of a crack is denoted by X, (or
Xr.). In deriving eqn (2), we have assumed that the
tractions on the two faces of a crack are equal and opposite.
Let X, approach a point Y on the no-cracked boundary,
one arrives at the following boundary integral equation

byYs) + f T XS xe)
b | T Xl )~ WGy )
- LU;j(YS,XS)T;(XS)dS(XS)
+ | mora Xt — ironasex)

- JSUG(YS,Xs)ﬂP(XS)dS(Xs) (3)

: Element node

: Element end point

Tip : Displacement equation
r I : Traction equation
Tip

Kink

(b)

Fig. 1. Geometry of a cracked 2D anisotropic domain in (a), and
modeling with quadratic boundary elements in (b).
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where by; are coefficients that depend only upon the local
geometry of the no-cracked boundary at Y.

It is noted that all the terms on the right hand side of
egn (3) have only weak singularities, thus, are integrable.
Although the second term on the left-hand side of eqn (3)
has a strong singularity, it can be treated by the rigid-body
motion method. At the same time, the calculation of by,
which is geometry dependent, can also be avoided. For
problems without cracks, the second integral on the left-
hand side of eqn (3) which is related to the crack surface
1s discarded, and this equation thus reduces to the well-
known displacement integral equation. For a cracked
domain, however, eqn (3) is not enough for solving the
unknowns *°. For this situation, the traction integral
equation ***°** can be adopted and modified. Assume
that ¥ is a smooth point on the crack, the traction integral
equation can be derived as

DSITI(Yr ) = TI(YE )]+ n(Yrs)

X Jsclmikn;‘k(yl"-k LX) (X5)dS(Xs) +npn(¥Yr )

x f o Ten Ve X [ ) — s Xp )T Xy )
r
=057 (Yr )= TP (¥Yr M +n,(¥Yr,)

X l‘gclmikui}k(yfﬁv 1XS)TJI(X§)dS(X§) + nm(YT +
x JsclmikTS.k(YI‘+ X)) (X5)dS(X) = nn(Yp )

X JrsclmikUi}k(YI‘—#vXS)ij(XS)dS(XS) (4)

where n,, is the outward normal at the crack surface Y,
and ¢k 18 a 4th order stiffness tensor.

It is noted that a formulation similar to eqns (3) and (4)
for the homogeneous case (without particular solutions) was
presented by Pan and Amadei.?* This BEM formulation is
similar to the dual BEM developed by Portela e al.”’, but
with the displacement integral equation being collocated on
the no-cracked boundary only and the traction integral
equation on one side of the crack surface only.

I is noteworthy that in eqns (3) and (4), the effect of the
body force of gravity and/or the far-field stresses has been
included by superposition of the corresponding particular
solutions, which makes the problem very similar to the
one associated with the homogeneous equations except
that for the body force and/or far-field stress cases, two
extia integral terms related to the particular solutions are
added to the integral eqns (3) and (4). Thus, the artificial
truncation of the infinite domain®' or transferring of the
far-field stress onto the boundary (or opening) of the
problem™ is avoided. It is apparent that the former
method introduces errors because of the truncation of the
region and increases the size of the problem, the latter may
not be suitable for cases where the boundaries or openings
have complex shapes.

As mentioned before, for an uncracked domain, only
eqn (3) without the crack surface integral term is required.
Similarly, for problems containing crack surfaces only, like
cracks in an infinite or semi-infinite plane, only eqn (4) is
required with the no-crack boundary integral terms being
omitted.

The boundary integral eqns (3) and (4) can be discretized
and solved numerically for the unknown boundary displace-
ments (or displacement discontinuities on the crack surface)
and tractions. In solving these equations, the hypersingular
integral term involved in egn (4) can be handled by an
accurate and efficient Gauss quadrature formulae™*
while the numerical calculation of the Cauchy type integral
in eqn (3) can be avoided with the rigid-body motion
method.

Once the boundary problem is solved, eqn (2) can be
used to calculate the internal displacements. In order
to calculate the internal stresses, we need to first take
the derivative of eqn (2) with respect to the internal
coordinates X,. This procedure results in the following
equation:

UK+ | T X X))
| T X )~ X lar K )
)+ | U X TN S X
+ [ T X gascx)

- JSUG‘k(Xp’Xs)ﬂp(Xs)dS(Xs) (5)

Once the uj, are obtained, the known constitutive
relation can then be used to calculate the internal stresses.
It is noted that in the previous eqns (1)-(5), the Green’s
displacements and stresses (and their derivatives) and the
particular solutions of displacements and stresses (trac-
tions) need to be provided. This is discussed in the next
two sections.

3 GREEN’S FUNCTIONS IN ANISOTROPIC HALF
PLANES

The complex variable function method has been found
to be very suitable for the study of 2D anisotropic
elastic media™. Green’s functions for point sources
in such an infinite medium were studied by several
authors, notably by Eshelby er al**, Stroh™, and
Lekhnitskii™*. For an anisotropic half-plane, Green's
functions were studied by Suo™ using the one-
complex  function method, and by Ting and
co-workers®’~** based on the Stroh tensor method. Here,
we E(zllow the one-complex function method introduced by
Suo™.
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With three complex analytical functions fi(z;), one can, in
- 333
general, express displacements and stresses as '"*-¢

3
u; = 2Re [Z Aijfj(zj)]

Jj=1

=2Re lz Lif;'(z; ] (6)
=1

3

= —2Re [Z L,jm%zn]
j=1

In these equations, z; = x + u;y where x and y are Cartesian

coordinates; Re denotes the real part of a complex variable

or function; and p; (j = 1,2,3) are three distinct complex

roots with positive imaginary part of the following equation:

Lwh(p) — B(r) =0 7

where the complex functions /,, /5, and [/, are given in
Lekhnitskii.>* Also in eqn (6), the elements of the complex
raatrices [L] and {A] depend on the compliance tensor aj; in
the (x,y) coordinates. Their expressions can be found in Pan
and Amadei,”’ Lekhnitskii,33 or Suo.*®

For concentrated forces acting at the source point (xo, yo),
the complex functions in eqn (6) can be expressed as *©

3
, - —1
f(g) = Z ;Djkpkln(zj -2) ()
k=1
In eqn (8), ZJO =x"+ ujyu, Py (k = 1,2,3) is the magnitude
of the point force in the k-direction; and

D=A"'"B'"+B "Y' B=iAL"' (9)

where i = \/ — |; overbar means complex conjugate; super-
script — | means matrix inverse.

For a half-plane problem, we let the medium occupy the
lower half-plane (v =< 0) and let y = 0 correspond to
the traction-free surface. To find the complex functions in
eqn (6), we assume, as in Suo,’® the following vector
finction expression:

F'=F +F° (10)

where the superscripts 4 and f denote the solutions corre-
sponding to half- and full-plane, respectively, and ¢ is the
complementary part of the solutions. The vector function is
defined by

F)=[1/(./:@.(@1 (1

While F' is given by eqn (8), F¢ can be solved by substitut-
ing F" into the resultant traction equation and enforcing the
traction-free condition at y = 0. This procedure involves
the analytical continuation of complex functions.*® The
co>mplementary part of the function turns to be very
s;mple and can be written as

F = L 'LFf (12)

Using eqns (6)—(12), the Green’s functions corresponding
to the half-plane domain can be derived. For displacements,

these Green’s functions are

Uy = —Re
K

"
{ Z Ay[Diln(z; — Z

i=1 i=

1k]n(&J éi))]}
(13)
with
E=L"'L (14)
and for tractions, they are
1 wn , —n,
Tkl = —Re Z LIJ L L 0 '\ _]k - Z E —A lk)]
7l' =1 = < i=1 j Z

(15
In eqn (15), n, and n, are the outward normal components
of the field point z;. For the calculation of internal stresses
(eqn (5)), we need the derivative of the above Green’s
functions with respect to the source point z.. The
derivatives of the Green’s displaccment and traction yield

1
Up p= Re{ZAU[ E Z }
j=1 1= (,J 1
1 S T
Ug o= Re{ZAL][ 70_ZEJ‘iDik uljl}

j=Ii _| T4 i=1 Z)'_Li

3
kl X = { Z] Ll) [(Zj

3
- z E; L_Vpik
. J (Z' 042

i=1 Z)

and

(17)

3
‘<:
Il
e N
S
by
—N—
Il

3
- n)u
L}j[(uj, i
|

0y2 ik
(=)

_ Z Ej, (,LLJ X n )“15‘];}}
= -7

It is noteworthy that the Green’s functions in egns (13)—
(17) can be used to solve both plane stress and plane strain
problems®* in both anisotropic half- and full-planes (for the
full-plane case, the Green’s functions are those given by the
first summation terms in egns (13), (15)—(17)23). Although
the 1sotropic solution cannot be analytically reduced from
these Green’s functions, one can numerically approximate
it by selecting a very weak anisotropic (or nearly isotropic)
medium.?**

4 PARTICULAR SOLUTIONS OF GRAVITY AND
FAR-FIELD STRESSES

As mentioned in the previous section, if the particular
solutions corresponding to the body force of gravity and
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far-field stresses can be derived in exact closed-form, the
BEM formulation presented in this paper can then be
applied and implemented.>* For the body force of gravity,
the exact closed-form solutions can be obtained in a similar
way as for the corresponding half-space.*’ Assuming that
the gravity has the components g, and g, in the x- and
v-directions, respectively, the particular solution for the
displacement components can be found as:

i =a,pg > +bipgy’ Wl =axpg. X’ +bipgyt  (18)

where coefficients a; and b; depend on the elastic stiffness
and their expressions are given in Appendix A.
Similarly, the particular stresses can be expressed as

(o‘,’, 1 Fdl i dn
a5, dy  dy
PEA
0—53 = d4| d42 ( 19)
p pEY
O3 ds; ds
L Uﬁ)z | | de1  de2

Aguin, d;; depend on the elastic coefficients and their
expressions are given in Appendix A.

For a half-plane under a far-field stress 7 in the
x-direction, the particular stress solution is simply

o =T;0f =0 if (i,j) # (x, %) (20)

The corresponding particular displacements can be assumed as
21)

W =2aTx uf =2a,Tx

where a, and a, are coefficients given in Appendix A. It
should be emphasized that in most opening related
problems, we are only interested in the opening-induced
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displacements (or the displacements relative to those
before the opening). In these circumstances, the particular
displacement solutions related to the body force of gravity
and the far-field stresses can be set to zero.

5 NUMERICAL EXAMPLES

The aforementioned Green’s functions and the particular
solutions were incorporated into the boundary integral
eqns (2)—(5), and the results were programmed. In this
section, several numerical examples are presented to
verify the formulation and the program, and also to
show the efficiency of the present BEM formulation for
anisotropic and elastic half-planes. For the isotropic case,
the Young’s modulus was assumed as E = 4 (l()4 MPa) and
the Poisson’s ratio as ¥ = 0.25. In the anisotropic case, the
elastic constants were taken from Lekhniskii™ which
corresponds to a plywood material modeled as transversely
isotropic: E = 0.6 (10* MPa), E' = 1.2 (10* MPa), » = 0.25,
v =0.071, G'=0.07 (10°MPa). Here E and E' are
Young’s moduli in the plane of transverse isotropy and in
the direction normal to it, respectively, » and »’ are
Poisson’s ratios characterizing the lateral strain response
in the plane of transverse isotropy to a stress acting parallel
and normal to it, respectively; and G’ is the shear modulus
in planes normal to the plane of transverse isotropy. Also,
for the numerical examples related to the anisotropic case,
is an angle such that y = 0° denotes the case where the plane
of transverse isotropy contains the x-axis, and ¥ = 90°
denotes the case where the plane of transverse isotropy
contains the y-axis.

8

0
s Mindlin (1948)
h a —— BEM (Isotropy)

2} .

---—BEM(y = 0°

...... BEM (y = 90°)
-4 I A I A

0 30 60 90 120 150 180
0 (deg.)

Fig. 2. Variation of the normalized hoop stress

ogo/T along the wall of a circular opening, under a far-field stress of magnitude 7

(c/R=1.54).



190 E. Pan et al.

4
= Mindlin (1948) y
35 ¢ —— BEM (Isotropy) >
o .~ BEM(y = 0% — o x
...... BEM (v = 90°) - —
25 | - =
. . -

15 2
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Fig. 3. Variation of the normalized horizontal stress o,,/T along the flat surface (v = 0), under a far-field stress of magnitude 7 (¢/R = 1.54).

%.1 Example 1

This example corresponds to an internal circular opening
under a far-field stress T in the x (or horizontal) direction
cr gravity g in the y (or vertical) direction (Figs 2-5). While
the tar-field stress case is under a plane stress condition (this
also applies to the following examples), a plane strain
condition is assumed for the gravity case. The opening has

a radius R and its center is located at a depth ¢ such that
¢/R=1.54. Twelve quadratic elements with a total of 24
nodes were used to discretize the whole boundary of the
opening. Stresses were determined along the wall of the
opening and along the surface of the half-plane (v=0) for
the isotropic case and the anisotropic case when ¢ = (°
(horizontal transverse isotropy) and ¥ = 90° (vertical
transverse isotropy). Figures 2 and 3 show, respectively,

N J « Mindiin (1940)
M Y —— BEM (isotropy)
.I (o]
4l /' —. - BEM (y =0
U BEM (v =90°)
-5 A ) 1 L I
0 30 60 90 120 150 180

0 (deg.)

Fig. 4. Variation of the normalized hoop stress age/2pgR along a circular opening, under the body force of gravity (¢/R = 1.54).
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ox / 2pgR

—— isotropy

] 1,

A A n

1.5 2 25 3

x/R

Fig. 5. Variation of the normalized horizontal stress o,,/2pgR along the fiat surface (y =0). under the body force of gravity (c/R =1.54).

the variation of the normalized hoop stress og4/T along the
wall of the opening and the variation of the normalized
horizontal stress o,/T along the flat surface (y=0) when
T is acting only. Figs 4 and 5 are the corresponding stress
variations under gravity only. For the isotropic case, the
stresses obtained with our BEM program were compared
with those determined analytically by Mindlin'* using a
bipolar co-ordinate system. Figs 2-4 indicate that for the
isotropic case, our numerical solutions are in excellent
agreement with Mindlin’s solutions. These figures also
show that anisotropy has an effect on the stress magnitude
and distribution. For instance, in Figs 2 and 4, vertical
anisotropy (¢ = 90°) creates more tension at # = 0° and
180° than the isotropic case. In Fig. 4, more compression is
induced at § = 90° when the medium is anisotropic. For
points located along the flat surface (y=0), and under
gravity, Fig. 5 shows that anisotropy induces more com-
pression in the horizontal direction above the opening and
more tension away from the opening. Under T only (Fig. 3),
the effect of anisotropy on the magnitude of o,, becomes
apparent for x/R>1.5. For instance, at x/R=23, the
horizontal stress still differs significantly from the far-field
stress T (Fig. 3, e.g. 0,,/T = 1.3961 for the anisotropic case
¥ == 90°).

Table 1. Normalized hoop stress gy,/T

BEM (/R =0.5) Chen *?

¥ =0° ¥ = 90° Isotropy Isotropy
A 3.878 4.970 2.900 2.84
B —0.300 —0.236 -0.134 —0.11
C 5.011 6.100 3.993 3.8t
D —1.587 —0.756 -0.930 —0.90

5.2 Example 2

Our BEM formulation is numerical, it can be used to
analyze the stress distribution around an opening of any
shape or around multiple openings located site by site.
Fig. 6 shows a half-plane under a horizontal far-field
stress 7, which is weakened by two circular openings of
radius R separated by a distance e such that ¢/R=0.5. For
the isotropic case, Chen** solved the stresses using an
approximate method, i.e., the eigenfunction expansion and
variational methods. In our BEM modeling, 24 quadratic
elements with a total of 48 nodes for both circles were
used to discretize the boundary. The normalized hoop
stress concentrations at points A, B, C and D on the
boundary (Fig. 6) are listed in Table 1 for both the aniso-
tropic and isotropic cases. The variation of the normalized
horizontal stress o./T along the flat surface (y=0) is
plotted in Fig. 6. As we can see from Table 1, for the
isotropic case, the stresses from our BEM modeling are in
good agreement with those determined by Chen*?. For the
anisofropic case, one can observe from Table 1 and Fig. 6
the effect of the material anisotropy on the stress
distribution along the circular boundary and the flat surface.
For instance, at both points A and C on the opening, the
hoop stresses for the anisotropic case are much greater than
those for the isotropic case. Also, for points along the flat

Table 2. Stress concentrations at point A

BEM Ling *
Isotropy 3.065 3.065
¥ =0 4.197 -

¥ = 90° 5.542 _
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Fig. 6. Variation of the normalized horizontal stress o, /T along the flat surface (¥ =0), under a far-field stress of magnitude T (¢/R =().5).

surface (y = 0), we observed that the horizontal stresses for
both anisotropic cases arc greater than that for the isotropic
cise

5.3 Example 3
As a third example consider a half-circular opening (¢« = R)
under a far-field stress T in the horizontal direction (Figs 7

and X¥). For this case, 10 quadratic elements with a total of 21

6

nodes are used to discretize the boundary. The normalized
stress concentrations at the bottom point A are given in
Table 2 along with the result obtained with the analytical
solution by Ling” using a bipolar coordinate system. Table 2
indicates that for the isotropic case, our numerical result is
exactly the same as the analytical solution. Variations of the
normalized stresses along the circular and horizontal sur-
faces are shown, respectively, in Figs 7 and 8. Again, we
like to emphasize that the effect of anisotropy is apparent,

3
’_‘

2

1 e
—— Isotropy

ol —=y=0°
...... w = 90°

-1 N 1 " I 1 2 A

0 10 20 30 40 50 60 70 80 90

0 (deg.)

Fig. 7. Variation of the normalized hoop stress ogy/T along the half circle, under a far-tield stress of magnitude 7 (/R = 1).
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— Isotropy
-y =0°

i A

2 25 3
x/R

Fig. 8. Variation of the normalized horizontal stress o, /T along the flat surface (v = 0). under a far-field stress of magnitude 7 (/R =1).

and must be considered in the strength estimation of
defected materials and in predicting the stress distribution
of valley walls in layered media.

5.4 Example 4

As it final example consider an inclined crack under a far-
field horizontal stress of magnitude 7 (Fig. 9). The crack
length is @ and it is inclined 8 degrees to the horizontal
direction. The crack is discretized by 10 discontinuous
guadratic elements with a total of 30 crack nodes. Different
from the previous examples where only the displacement
integral eqn (3) is required, here only the traction boundary
intepral egn (4) i1s needed. Once the boundary value
problem is solved, the method presented in Pan and
Amadei** and Sollero and Aliabadi®” can then be employed
to cilculate the SIFs. The results, normalized with respect to
K(,::T\/mj. for B8 = 30° 45° and 90°, are shown in
Table 3 and 4, respectively. for the isotropic and aniso-
tropic cases. As can be secen from Table 3. the SIFs
determined with our BEM program are very close to those
obtained by Noda and Matsuo™ using the discontinuously
distributed dislocation method. Table 4 shows the corre-
sponding SIFs when the material is amsotropic. Comparison

Fig. 9. Geometry of an inclined edge crack under a fur-field stress.

of Tables 3 and 4 shows the effect of the material anisotropy
on the SIFs.

6 CONCLUSION

We have presented a general 2-D BEM formulation for
the analysis of problems related to anisotropic and
cracked half-planes. The corresponding program can be
used for the gravity and/or far-field stress cases, for
problems with or without boundary tractions on the flat
surface of the half-plane or along the surface of openings.
For the isotropic case, we compared our results with
existing analytical solutions, and found that even with
relatively coarse discretizations, very accurate results
could be obtained. This is because the Green’s functions
corresponding to the half-plane were included and no
discretization along the flat surfacc of the half-plane is
necessary. The results for the anisotropic case have clearly
shown the effect of anisotropy on the stress distribution and
the SIFs.

The current BEM program can find applications in
material sciences to study the effect of defects” size and
shape. and of material anisotropy. on the stress distribution,
the SIF, and on the stability of stressed surfaces.*”** It can

Table 3. Normalized SIFs for the isotropic case

B (degrees) BEM Noda and Matsuo **
K//K() KII/K() K]/K(l KII/K\'
90 1.1217 0 1.1215 0
45 0.7093 0.3578 0.7049 0.3645
30 (.4696 0.3283 0.4625 0.3362
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Table 4. Normalized SIFs for the anisotropic case by the BEM

B (degrees) Yy =0° Y = 90°
KK, Ky/Ky KK, Ku/Ky
90 1.0605 0 1.0675 0
45 0.7608 0.3837 0.7297 0.5004
30 04116 0.3217 0.3276 0.3477

also find applications in excavation-related engineering to
study problems when gravity and tectonic stresses co-exist.

Extension to the crack-growth simulation is now under

investigation. Completion of such work could be used to
predict the initiation and simulate the evolution of defects
or flaws in advanced materials like heteroepitaxial thin
films,*” or to model fatigue crack growth,*’ and to study
rock slope stability, borehole breakout, and rock fracture
propagation. It can also help in the performance assessment
of tunnels*® and in in-situ stress estimation in complex
environment.*’
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APPENDIX A

In the particular solutions of displacements caused by the
body force of gravity (eqn (18)) and by a far-fieid stress in
the x-direction (eqn (21)), the coefficients are

a; =0.5(cs5¢66 — C56C56) A1 a2 =0.5(c 15656 — C55C16)/ A
(A1)
by =0.5(c24Ca6 — €26€24) By by =0.5(c4a066 — Ca6Ca6)/Az
(A2)
where
T SN SR
Ay =c11655066 1+ 2C16C15Cs6 — C55C16 — C11C56 — Co6Cs
2 2 2
Ay = 22C4aC60 T 2026C24Ca6 — C4aC26 — C22C26 — Co6C24
(A3)

and c;; are the elastic stiffness coefficients.
Similarly, in the particular solution of stress caused by the

body force of gravity (eqn (19)), the coefficients are
diy=1 dyy =2a;cp2+dxc)

ds; =0 dg =0

(A4)
dy =2(ajc 14+ arcqe)

dip=2bycia+bicyg) dnp=1

dey =0

dp=0
(A5)
dsy =2(bycas + b cs6)



