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The quadrature method for Hadamard finite-part integral on a circle is discussed and the emphasis is
placed on the pointwise superconvergence phenomenon of the composite trapezoidal rule, i.e. when the
singular point coincides with some a priori known points, the accuracy can be better than what is globally
possible. The existence and uniqueness of the superconvergence points are proved and the correspondent
superconvergence estimate is obtained. An indirect method is introduced and then applied to solve the
integral equation of the second kind containing finite-part kernels, including that arising in the scattering
theory. Some numerical results are also presented to confirm the theoretical results and to show the efficiency
of the algorithms.

Keywords: finite-part integral; composite trapezoidal rule; superconvergence; finite-part integral equation
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1. Introduction

In recent decades, much attention has been paid to the evaluation of the finite-part integrals of
the form ∫ b

a

= f (t)

(t − s)p+1
dt, p = 1, 2, · · · , s ∈ (a, b), (1)

where
∫= denotes a Hadamard finite-part integral (or hypersingular integral). The aim of this paper

is to investigate a relatively less studied integral

I (c, s, f ) :=
∫ c+2π

c

= f (t)

sin2 (t − s)/2
dt, s ∈ (c, c + 2π), (2)

where f (t) is a 2π -periodic function and c an arbitrary constant. Integrals of this kind appear
frequently in the formulation of certain classes of boundary value problems in a circular or an
elliptic domain in terms of Hadamard finite-part integral equations [12,35,40,42].
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Equation (2) can be defined in a number of ways and these definitions are generally equivalent
[42]. Here we propose the following new definition∫ c+2π

c

= f (t)

sin2(t − s)/2
dt = lim

ε→0

{∫ s−ε

c

f (t)

sin2(t − s)/2
dt +

∫ c+2π

s+ε

f (t)

sin2(t − s)/2
dt − 8f (s)

ε

}
.

(3)

f (t) is said to be finite-part integrable with respect to the weight sin−2[(t − s)/2] if the limit
on the right-hand side of Equation (3) exists. This definition implies that I (c, s, f ) is a linear
operator on f .

We recall that the finite-part integral (Equation (1)) with p = 1 is defined by (see, e.g. [21,
32–34]).∫ b

a

= f (t)

(t − s)2
dt = lim

ε→0

{∫ s−ε

a

f (t)

(t − s)2
dt +

∫ b

s+ε

f (t)

(t − s)2
dt − 2f (s)

ε

}
, s ∈ (a, b). (4)

Obviously, definition (3) is a natural extension of Equation (4). Compared with those definitions
given by Yu [42], Equation (3) is relatively preliminary. The equivalence of Equation (3) with
those definitions in [42] is beyond the aim and the scope of the present paper and will be given
elsewhere. In the sequel, Equation (3) will be used as the starting point of our analysis. In addition,
we shall employ a result to state that finite-part integrals of the form in Equation (2), defined by
Equation (3), do appear in boundary element methods (BEMs).

Theorem 1.1 Let � ⊂ R
2 be the interior domain of the unit circle with its boundary denoted by

∂�. Assume u ∈ C2(�̄) is a solution of harmonic equation. Denote by u0 and un the Dirichlet
and Neumann boundary data of u on ∂�, respectively. Then, it holds that

un(θ) = − 1

4π
=
∫ π

−π

u0(θ
′)

sin2(θ ′ − θ)/2
dθ ′, θ ∈ (−π, π), (5)

where the finite-part integral is defined by Equation (3).

Proof Since � is the interior domain of the unit circle, it is well known that u can be expressed
by its Dirichlet boundary data u0 via the following Poisson integral formula

u(r, θ) = 1

2π

∫ π

−π

(1 − r2)u0(θ
′)

1 + r2 − 2r cos(θ ′ − θ)
dθ ′, 0 ≤ r < 1, (6)

where r, θ denote the polar coordinates. Differentiating Equation (6) with respect to r yields

∂u(r, θ)

∂r
= 1

2π

∫ π

−π

[−4r + 2(1 + r2) cos(θ ′ − θ)]u0(θ
′)

[1 + r2 − 2r cos(θ ′ − θ)]2
dθ ′. (7)

By using the identity,

1

2π

∫ π

−π

−4r + 2(1 + r2) cos(θ ′ − θ)

[1 + r2 − 2r cos(θ ′ − θ)]2
[u0(θ) + u′

0(θ) sin(θ ′ − θ)]dθ ′ = 0, 0 ≤ r < 1,

we rewrite Equation (7) as

∂u(r, θ)

∂r
= 1

2π

∫ π

−π

−4r + 2(1 + r2) cos(θ ′ − θ)

[1 + r2 − 2r cos(θ ′ − θ)]2
[u0(θ

′) − u0(θ) − u′
0(θ) sin(θ ′ − θ)]dθ ′.

(8)
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Since u ∈ C2(�̄), the integrand in Equation (8) is actually continuous and consequently,

un = lim
r→1−

∂u(r, θ)

∂r
= − 1

4π

∫ π

−π

u0(θ
′) − u0(θ) − u′

0(θ) sin(θ ′ − θ)

sin2(θ ′ − θ)/2
dθ ′. (9)

It is easy to see that the integrand function in Equation (9) is continuous except one removable
discontinuity point at θ . Hence, by Equation (3), we get

∫ π

−π

u0(θ
′) − u0(θ) − u′

0(θ) sin(θ ′ − θ)

sin2(θ ′ − θ)/2
dθ ′

= =
∫ π

−π

u0(θ
′) − u0(θ) − u′

0(θ) sin(θ ′ − θ)

sin2(θ ′ − θ)/2
dθ ′

= =
∫ π

−π

u0(θ
′)

sin2(θ ′ − θ)/2
dθ ′ − u0(θ) =

∫ π

−π

1

sin2(θ ′ − θ)/2
dθ ′ − u′

0(θ) =
∫ π

−π

sin(θ ′ − θ)

sin2(θ ′ − θ)/2
dθ ′.

Still by Equation (3),

=
∫ c+2π

c

1

sin2(t − s)/2
dt = lim

ε→0

{∫ s−ε

c

1

sin2(t − s)/2
dt +

∫ c+2π

s+ε

1

sin2(t − s)/2
dt − 8

ε

}

= lim
ε→0

(
4 cot

ε

2
− 8

ε

)
= 0. (10)

Similarly,

=
∫ c+2π

c

sin(t − s)

sin2(t − s)/2
dt = 0.

It follows that∫ π

−π

u0(θ
′) − u0(θ) − u′

0(θ) sin(θ ′ − θ)

sin2(θ ′ − θ)/2
dθ ′ = =

∫ π

−π

u0(θ
′)

sin2(θ ′ − θ)/2
dθ ′. (11)

Substituting Equation (11) into Equation (9) leads to Equation (5), which completes the proof. �

Equation (5), which is usually referred to as the natural integral equation for harmonic prob-
lem, is of precisely the form obtained by Yu [37,38,42]. The difference is that we obtain this
equation through a preliminary approach. Generally speaking, the natural integral equations,
such as Equation (5), have not so much importance themselves, for they are seldom used
directly for solving boundary value problems (BVPs). However, for some BVPs in unbounded
domains, by introducing a circle or an ellipse as an artificial boundary and by employing
the correspondent natural integral equation on this artificial boundary, some domain decom-
position methods as well as certain coupled algorithms can be naturally constructed (see,
e.g. [12,42,39,20,43,9,10,27,36,24,18]).

Since such an equation leads to non-integrable kernels only defined as finite parts, they are
quite difficult to approximate. Nedelec [23] introduced a variational formulation which avoids this
difficulty and then used stable finite element approximations. Han and Wu [13] reduced an original
exterior problem to an equivalent boundary value problem on a bounded domain with integral
conditions by introducing an artificial boundary as a circle, and then solving them by a finite
element method. However, there also exist several direct methods, such as collocation methods,
to solve such equations. Kress [19] described a fully discrete method based on trigonometric
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interpolation for the numerical solution of the finite-part equation arising from the scattering
problem. Here, we will also consider how to solve certain integral equations containing finite-part
kernels based on the composite trapezoidal rule and its superconvergence result which will be
presented in the following text. Before doing these, we first suggest the corresponding quadrature
method to compute Equation (2).

Numerous works have been devoted in developing efficient quadrature formulae for eval-
uating Equation (1), such as the Gaussian method [25,16,30,15,29], Newton–Cotes method
[21,8,28,32,41,33,44,34], transformation method [6,11], global interpolation method [14,17,19]
and so on. Relatively speaking, the quadrature method for (2) has been less studied.

Among the quadrature rules of Newton–Cotes type, the composite trapezoidal rule is the easiest
one for implementation. It is well known that the convergence rate of the composite trapezoidal
rule for Riemann integrals is O(h2). However, the same convergence rate cannot be expected
for Hadamard finite-part integrals due to the hypersingularity of the integrand. For example, the
convergence rate of the composite trapezoidal rule for finite-part integral (1) with p = 1, 2 is only
O(h2−p), p order lower than its counterpart for Riemann integrals (cf. [21,33]).

The superconvergence phenomenon has been extensively investigated for finite element method,
spline approximation and collocation method (see, e.g. [31,3,2]). The pointwise superconvergence
phenomenon of the Newton–Cotes methods, i.e. when the singular point s coincides with some
a priori known points, the convergence rate of the rule is higher than what is globally possible,
was explored in [32–34,44] for finite-part integral (1) on the interval with p = 1, 2.

In this paper we are concerned with the composite trapezoidal rule for Equation (2) and the
emphasis is placed on its pointwise superconvergence phenomenon. We find that the pointwise
superconvergence phenomenon also appears in the evaluation of Equation (2) by the compos-
ite trapezoidal rule. It is interesting to note that the local coordinates of our superconvergence
points are the same as that for Equation (1) (cf. [33]). However, the superconvergence phe-
nomenon on a circle exhibits some different nature, e.g. it occurs in every subinterval of the
partition, while for the composite trapezoidal and Simpson’s rules for Equation (1), this phe-
nomenon only occurs in those subintervals that are not very close to the ending points of the
integral interval [33]. Furthermore, an indirect method based on the superconvergence result is
also suggested so that one can avoid the selection of the singular point. This is very impor-
tant when solving the integral equation of the second kind with finite-part kernels, since in this
case, the collocation points are needed to coincide with the nodal ones. In this paper, the super-
convergence result is applied to solve the finite-part integral equation arising from the scattering
theory.

The rest of this paper is organized as follows. The composite trapezoidal rule for Equation (2)
is briefly introduced and then, the main result of this paper is stated in the next section. Then
in Section 3 the proof of the main result is obtained. An indirect method is suggested and the
corresponding algorithms are presented to certain integral equations in Section 4. Some numerical
examples are obtained to show the validity of the theoretical analysis and the efficiency of the
algorithms in Section 5 and concluding remarks are made in the last section.

2. The composite trapezoidal rule and its superconvergence

Let c = t0 < t1 < · · · < tn−1 < tn = c + 2π be a uniform partition of the interval [c, c + 2π ]
with mesh size h = 2π/n. Denote by fL(t) the piecewise linear interpolant of f (t), defined by

fL(t) = 1

h
[f (ti)(t − ti−1) + f (ti−1)(ti − t)], t ∈ [ti−1, ti], 1 ≤ i ≤ n. (12)
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Replacing f (t) in Equation (2) with fL(t) and making use of f (t0) = f (tn), we obtain the
composite trapezoidal rule

I (c, s, fL) = =
∫ c+2π

c

fL(t)

sin2(t − s)/2
dt =

n∑
i=1

ωi(s)f (ti), (13)

where ωi(s)(1 ≤ i ≤ n) denote the Cotes coefficients. By Equation (3) and through direct
calculations, we have

ωi(s) = 4

h
ln

∣∣∣∣ 1 − cos(ti − s)

cos h − cos(ti − s)

∣∣∣∣ . (14)

For this quadrature rule, we have the error estimate as follows.

Theorem 2.1 Assume that f (t) ∈ C2[c, c + 2π ] and f (c) = f (c + 2π). Let I (c, s, fL) be com-
puted by Equations (13) and (14) with a uniform mesh. Then, for s �= ti(0 ≤ i ≤ n), there exists
a positive constant C, independent of h and s, such that

|I (c, s, f ) − I (c, s, fL)| ≤ Cγ −1(h, s)h, (15)

where

γ (h, s) = min
0≤i≤n

|s − ti |
h

. (16)

Proof Let EL(t) = f (t) − fL(t) and define

κs(t) =

⎧⎪⎨
⎪⎩

(t − s)2

sin2(t − s)/2
, t �= s,

4, t = s.

(17)

Then, from Equations (3) and (4), we see that

I (c, s, f ) − I (c, s, fL) = =
∫ c+2π

c

EL(t)

sin2(t − s)/2
dt = =

∫ c+2π

c

EL(t)κs(t)

(t − s)2
dt, s ∈ (c, c + 2π).

Now we split the error into two parts

I (c, s, f ) − I (c, s, fL) = 4 =
∫ c+2π

c

EL(t)

(t − s)2
dt + =

∫ c+2π

c

EL(t)[κs(t) − 4]
(t − s)2

dt. (18)

The first part can be directly estimated by Theorem 3 in [28], i.e.

∣∣∣∣ =
∫ c+2π

c

EL(t)

(t − s)2
dt

∣∣∣∣ ≤ C min{γ −1(h, s), | ln γ (h, s)| + | ln h|}h. (19)

As for the second part, we observe that [κs(t) − 4](t − s)−2 is non-negative and only has a remov-
able discontinuity at t = s. So the correspondent finite-part integral degenerates to a Riemann
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integral and consequently,

∣∣∣∣ =
∫ c+2π

c

EL(t)[κs(t) − 4]
(t − s)2

dt

∣∣∣∣
≤ max

t∈[c, c+2π ]{|EL(t)|}
∫ c+2π

c

κs(t) − 4

(t − s)2
dt

= max
t∈[c, c+2π ]{|EL(t)|} =

∫ c+2π

c

κs(t) − 4

(t − s)2
dt

= max
t∈[c, c+2π ]{|EL(t)|}

{
=
∫ c+2π

c

1

sin2(t − s)/2
dt − =

∫ c+2π

c

4

(t − s)2
dt

}

= 8π

(c + 2π − s)(s − c)
max

t∈[c, c+2π ]{|EL(t)|}

≤ Cγ −1(h, s)h, (20)

where Equation (10) and the interpolation error estimate

max
t∈[c, c+2π ]{|EL(t)|} ≤ Ch2

have been used. Now Equation (15) follows from Equations (18), (19) and (20). �

It is evident that Equation (15) achieves its optimal bound O(h) when the singular point s is
located near the centre of a subinterval. However, we find that when s coincides with some special
points, the convergence rate can be higher than O(h). We present the main result in the following
theorem and the proof will be given in the next section.

Theorem 2.2 Let I (c, s, fL) be computed by Equations (13) and (14) with a uniform mesh.
Assume that f (t) is periodic with period 2π and

s = tm−1 + h

2
± h

3
, 1 ≤ m ≤ n. (21)

Then there exists a positive constant C, independent of h and s, such that

|I (c, s, f ) − I (c, s, fL)| ≤
{

Ch1+α, f (t) ∈ C2+α(−∞, +∞),

C| ln h|h2, f (t) ∈ C3(−∞, +∞),
(22)

where 0 < α < 1.

When f (t) ∈ C2+α(−∞, +∞), Theorem 2.2 implies that the composite trapezoidal rule has its
superconvergence at some special points. These special points are distributed in every subinterval
of the partition and furthermore, they have the same local coordinates which are independent of
the subintervals as well as the partition parameter h. The superconvergence for finite element
method and collocation method usually arises from mesh points or Gaussian points. However,
it is interesting to note that the superconvergence points in the composite trapezoidal rule for
Equation (2) are neither mesh points nor Gaussian points.
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3. The proof of the main result

We need some lemmas and additional notations for the proof of Theorem 2.2. Throughout this
section, C will denote a generic constant that is independent of h and s and it may have different
values in different places. In addition, we assume s ∈ (tm−1, tm) for some m and let s = tm−1 +
(τ + 1)h/2 with τ ∈ (−1, 1) denoting its local coordinate. By Equation (16),

γ (h, s) =

⎧⎪⎪⎨
⎪⎪⎩

1 + τ

2
, τ ≤ 0,

1 − τ

2
, τ > 0.

(23)

Define

=
∫ tm

tm−1

f (t)

sin2(t − s)/2
dt = lim

ε→0

{∫ s−ε

tm−1

f (t)

sin2(t − s)/2
dt +

∫ tm

s+ε

f (t)

sin2(t − s)/2
dt − 8f (s)

ε

}
(24)

and

In,i(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ti

ti−1

(t − ti−1)(t − ti)

sin2(t − s)/2
dt, i �= m,

=
∫ tm

tm−1

(t − tm−1)(t − tm)

sin2(t − s)/2
dt, i = m.

(25)

Lemma 3.1 Assume s = tm−1 + (τ + 1)h/2 with τ ∈ (−1, 1). Let In,i(s) be defined by
Equation (25). Then it holds that

In,i(s) = −4h

∞∑
k=1

1

k
{cos[k(ti − s)] + cos[k(ti−1 − s)]}

+ 8
∞∑

k=1

1

k2
{sin[k(ti − s)] − sin[k(ti−1 − s)]} .

(26)

Proof For i = m,

In,m(s) = lim
ε→0

{(∫ s−ε

tm−1

+
∫ tm

s+ε

)
(t − tm−1)(t − tm)

sin2(t − s)/2
dt − 8(s − tm−1)(s − tm)

ε

}

= lim
ε→0

{
2

(∫ s−ε

tm−1

+
∫ tm

s+ε

)
(2t − tm − tm−1) cot

t − s

2
dt

}

= 4h ln

∣∣∣∣sin
tm−1 − s

2
sin

tm − s

2

∣∣∣∣ − lim
ε→0

{
8

(∫ s−ε

tm−1

+
∫ tm

s+ε

)
ln

∣∣∣∣sin
t − s

2

∣∣∣∣ dt

}
.

Analogously, for i �= m, using integration by parts on the correspondent Riemann integral, we have

In,i(s) = 4h ln

∣∣∣∣sin
ti − s

2
sin

ti−1 − s

2

∣∣∣∣ − 8
∫ ti

ti−1

ln

∣∣∣∣sin
t − s

2

∣∣∣∣ dt, i �= m. (27)

Now, by using the following well-known identity (see, e.g. [26]),

ln

(
2 sin

t

2

)
= −

∞∑
k=1

1

k
cos kt, t ∈ (0, 2π),

we obtain Equation (26). �
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Lemma 3.2 Under the same assumptions of Lemma 3.1, it holds that

n∑
i=1

In,i(s) = 8h ln
(

2 cos
τπ

2

)
. (28)

Proof By Equation (26), we have

n∑
i=1

In,i(s) = −4h

∞∑
k=1

1

k

n∑
i=1

{cos[k(ti − s)] + cos[k(ti−1 − s)]}

+ 8
∞∑

k=1

1

k2

n∑
i=1

{sin[k(ti − s)] − sin[k(ti−1 − s)]}

= −8h

∞∑
k=1

1

k

n∑
i=1

cos[k(ti − s)]

= −8h

∞∑
j=1

1

j
cos[nj (t1 − s)]

= −8h

∞∑
j=1

1

j
cos[j (1 + τ)π ]

= 8h ln

[
2 sin

(1 + τ)π

2

]
= 8h ln

(
2 cos

τπ

2

)
,

where
n∑

i=1

cos[k(ti − s)] =
{

n cos[k(t1 − s)], k = nj,

0, else

has been used. �

Lemma 3.3 Under the same assumptions of Lemma 3.1, it holds that

∣∣∣∣∣∣
n∑

i=1,i �=m

f ′′(ηi) − f ′′(s)
2

In,i(s)

∣∣∣∣∣∣ ≤
{

C(h, s, c)h1+α, f (t) ∈ C2+α[c, c + 2π ],
C(h, s, c)h2| ln h|, f (t) ∈ C3[c, c + 2π ], (29)

where ηi ∈ [ti−1, ti], 0 < α < 1 and

(h, s, c) = max
c≤t≤c+2π

{κs(t)}γ −2(h, s). (30)

Proof We observe from Equation (27) that In,i(s)(i �= m) is actually the error of the trapezoidal
rule for certain Riemann integral on [ti−1, ti]. Thus, there exists t̃i ∈ (ti−1, ti), such that

In,i(s) = − h3

6 sin2(t̃i − s)/2
, i �= m,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
2
0
0
7
-
2
0
0
8
-
2
0
0
9
 
N
a
t
i
o
n
a
l
 
C
h
e
n
g
 
K
u
n
g
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
7
:
2
3
 
2
 
A
p
r
i
l
 
2
0
1
0



International Journal of Computer Mathematics 863

which leads to

∣∣∣∣∣∣
n∑

i=1,i �=m

f ′′(ηi) − f ′′(s)
2

In,i(s)

∣∣∣∣∣∣ ≤
n∑

i=1,i �=m

h3|ηi − s|α
12(t̃i − s)2

(t̃i − s)2

sin2(t̃i − s)/2

≤ max
c≤t≤c+2π

{κs(t)}
m−1∑
i=1

h3|ti−1 − s|α
12(ti − s)2

(31)

+ max
c≤t≤c+2π

{κs(t)}
n∑

i=m+1

h3|ti − s|α
12(ti−1 − s)2

,

where κs(t) is defined in Equation (17). Noting s = tm−1 + (τ + 1)h/2(−1 < τ < 1), we have

m−1∑
i=1

h3|ti−1 − s|α
12(ti − s)2

≤
m−1∑
i=1

h3+α + h3|ti − s|α
12(ti − s)2

≤ h1+α

12

m−1∑
i=1

1 + |i − m + 1 − (1 + τ)/2|α
(i − m + 1 − (1 + τ)/2)2

(32)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ch1+α

(1 + τ)2
, 0 < α < 1,

Ch2| ln h|
(1 + τ)2

, α = 1.

Similarly,

n∑
i=m+1

h3|ti − s|α
12(ti−1 − s)2

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ch1+α

(1 − τ)2
, 0 < α < 1,

Ch2| ln h|
(1 − τ)2

, α = 1.

(33)

Now, putting Equations (31), (32) and (33) together and making use of Equation (23) we get
Equation (29). The proof is then complete. �

Lemma 3.4 Assume f (c) = f (c + 2π) and let I (c, s, fL) be computed by Equations (13) and
(14) with a uniform mesh. Then

I (c, s, f ) − I (c, s, fL) = 4hf ′′(s) ln
(

2 cos
τπ

2

)
+ RL(s), (34)

where

|RL(s)| ≤
{

C(h, s, c)h1+α, f (t) ∈ C2+α[c, c + 2π ],
C(h, s, c)h2| ln h|, f (t) ∈ C3[c, c + 2π ], (35)

and 0 < α < 1.
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Proof First, we recall from the property of Lagrange interpolation that there exists ξi ∈ (ti−1, ti),
which may depend upon t , such that

f (t) − fL(t) = f ′′(ξi)

2
(t − ti−1)(t − ti), t ∈ [ti−1, ti].

Then, by the mean value theorem of integration and Lemma 3.2, we have

(∫ tm−1

c

+
∫ c+2π

tm

)
f (t) − fL(t)

sin2(t − s)/2
dt =

n∑
i=1,i �=m

∫ ti

ti−1

f ′′(ξi)(t − ti−1)(t − ti)

2 sin2(t − s)/2
dt

=
n∑

i=1,i �=m

f ′′(ηi)

2
In,i(s)

=
n∑

i=1,i �=m

f ′′(ηi) − f ′′(s)
2

In,i(s) − f ′′(s)
2

In,m(s)

+ 4hf ′′(s) ln
(

2 cos
τπ

2

)
, (36)

where ηi ∈ [ti−1, ti]. Second, by setting

Em(t) = f (t) − fL(t) − f ′′(s)
2

(t − tm−1)(t − tm), t ∈ [tm−1, tm]

and through a similar derivation of Equation (18), we get

=
∫ tm

tm−1

f (t) − fL(t)

sin2(t − s)/2
dt = =

∫ tm

tm−1

Em(t)

sin2(t − s)/2
dt + f ′′(s)

2
In,m(s)

= 4 =
∫ tm

tm−1

Em(t)

(t − s)2
dt + =

∫ tm

tm−1

Em(t)[κs(t) − 4]
(t − s)2

dt + f ′′(s)
2

In,m(s). (37)

Putting Equations (36) and (37) together yields Equation (34) with

RL(s) = 4R(1)
L (s) + R(2)

L (s) + R(3)
L (s), R(1)

L (s) = =
∫ tm

tm−1

Em(t)

(t − s)2
dt,

R(2)
L (s) = =

∫ tm

tm−1

Em(t)[κs(t) − 4]
(t − s)2

dt, R(3)
L (s) =

n∑
i=1,i �=m

f ′′(ηi) − f ′′(s)
2

In,i(s).

Now we estimate RL(s) term by term. Note that f (t) ∈ C2+α[c, c + 2π ](0 < α ≤ 1) implies

|E (i)
m (t)| ≤ Ch2−i+α, i = 0, 1, 2.

Then, by using the identity (cf. [16,28,22,7])

=
∫ b

a

f (t)

(t − s)2
dt = (b − a)f (s)

(b − s)(s − a)
+ f ′(s) ln

b − s

s − a
+

∫ b

a

f (t) − f (s) − f ′(s)(t − s)

(t − s)2
dt,

we have

|R(1)
L (s)| ≤

∣∣∣∣ hEm(s)

(tm − s)(s − tm−1)

∣∣∣∣ +
∣∣∣∣E ′

m(s) ln
tm − s

s − tm−1

∣∣∣∣ +
∣∣∣∣
∫ tm

tm−1

1

2
E ′′

m(σ(t))dt

∣∣∣∣
≤ Cγ −1(h, s)h1+α,
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where σ(t) ∈ (tm−1, tm). As for the second term, by an argument similar to that of Equation (20),
we see that∣∣∣R(2)

L (s)

∣∣∣ ≤ max |Em(t)|
∫ tm

tm−1

κs(t) − 4

(t − s)2
dt

= max |Em(t)| =
∫ tm

tm−1

κs(t) − 4

(t − s)2
dt

= max |Em(t)|
{

=
∫ tm

tm−1

1

sin2(t − s)/2
dt − =

∫ tm

tm−1

4

(t − s)2
dt

}

= max |Em(t)|
{
−2 cot

s − tm−1

2
− 2 cot

tm − s

2
+ 4h

(tm − s)(s − tm−1)

}

≤ Cγ −1(h, s)h1+α. (38)

The third term R(3)
L (s) can be estimated directly by Lemma 3.3. Putting these estimates together

leads to Equation (35). �

We must point out that in Lemma 3.4, we actually obtain the error expansion of the trapezoidal
rule (Equation (13)) and moreover, get the explicit expression of the first-order term. Thanks to
this error expansion, the finding and the proof of the uniqueness of the superconvergence points
become very easy, which is quite different from the case where finite-part integral (1) with p = 1, 2
is involved (cf. [32,33]). Besides, if the second-order derivative of f (t) at s can be evaluated, then
by adding the first term in the right-hand side of Equation (34) into the trapezoidal rule (13), a
modified trapezoidal rule with approximate second-order accuracy is obtained.

Lemma 3.5 Assume that f (t) is a periodic function with period 2π . Assume further that f (t) is
finite-part integrable with respect to the weight sin−2[(t − s)/2]. Then

=
∫ c+2π

c

f (t)

sin2(t − s)/2
dt = =

∫ c̃+2π

c̃

f (t)

sin2(t − s)/2
dt (39)

holds for any s ∈ (c, c + 2π) and c̃ ∈ (s − 2π, s).

Proof We just prove the case c ≤ c̃ < s since the argument for s − 2π < c̃ < c is analogous.
By definition (3), we have

=
∫ c+2π

c

f (t)

sin2(t − s)/2
dt = lim

ε→0

{∫ s−ε

c

f (t)

sin2(t − s)/2
dt +

∫ c+2π

s+ε

f (t)

sin2(t − s)/2
dt − 8f (s)

ε

}

= lim
ε→0

{∫ s−ε

c̃

f (t)

sin2(t − s)/2
dt +

∫ c̃+2π

s+ε

f (t)

sin2(t − s)/2
dt − 8f (s)

ε

}

+
∫ c̃

c

f (t)

sin2(t − s)/2
dt −

∫ c̃+2π

c+2π

f (t)

sin2(t − s)/2
dt

= =
∫ c̃+2π

c̃

f (t)

sin2(t − s)/2
dt +

∫ c̃

c

f (t)

sin2(t − s)/2
dt

−
∫ c̃

c

f (2π + t ′)
sin2(2π + t ′ − s)/2

dt ′

= =
∫ c̃+2π

c̃

f (t)

sin2(t − s)/2
dt,

which completes the proof. �
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Proof of Theorem 2.2 Recall that fL(t), defined by Equation (12), is the linear interpolant of
f (t) on [c, c + 2π ]. We extend fL(t) to (−∞, ∞) to obtain a 2π -periodic function and denote
the resulting function still by fL(t). Clearly, fL(t) becomes the linear interpolant of f (t) on
(−∞, +∞). By Lemma 3.5, it holds for any s = tm−1 + (τ + 1)h/2(−1 < τ < 1, 1 ≤ m ≤
n − 1) and c̃ ∈ (s − 2π, s) that

I (c, s, f ) − I (c, s, fL) = I (c̃, s, f ) − I (c̃, s, fL). (40)

We first consider the case where m > [n/2] and choose c̃ = tm−1−[n/2]. Let c̃ = t̃0 < t̃1 < · · · <

t̃n−1 < t̃n = c̃ + 2π be a uniform partition of [c̃, c̃ + 2π ] with mesh size h. It is evident that fL(t)

is still the linear interpolant of f (t) on this new partition and consequently, the result of Lemma 3.4
holds, which leads to

I (c̃, s, f ) − I (c̃, s, fL) = 4hf ′′(s) ln
(

2 cos
τπ

2

)
+ RL(s), (41)

where

|RL(s)| ≤
{

C(h, s, c̃)h1+α, f (t) ∈ C2+α[c̃, c̃ + 2π ], 0 < α < 1,

C(h, s, c̃)h2| ln h|, f (t) ∈ C3[c̃, c̃ + 2π ] (42)

with (h, s, c̃) defined by Equation (30). Now, by the assumption (21), we find that

s = tm−1 + h

2
± h

3
= t̃[n/2] + h

2
± h

3
, (43)

which implies that the local coordinate of s is τ = ±2/3. Then we are led to the results that
the first term in the right hand-side of Equation (41) vanishes and moreover, γ (h, s) = 1/6 by
Equation (23). Therefore, from Equations (17), (30) and (43), we deduce that

(h, s, c̃) = 36 max
c̃≤t≤c̃+2π

{κs(t)} ≤ 36 max|θ |≤11π/6

{
θ2

sin2 θ/2

}
≤ C. (44)

Incorporating this result with Equations (41) and (42) yields

|I (c̃, s, f ) − I (c̃, s, fL)| ≤
{

Ch1+α, f (t) ∈ C2+α[c̃, c̃ + 2π ], 0 < α < 1,

Ch2| ln h|, f (t) ∈ C3[c̃, c̃ + 2π ].

Now Equation (22) follows directly from Equation (40). �

We observe from Equation (41) that, the first-order term vanishes if and only if τ = ±2/3.
Thus, the uniqueness of the superconvergence points is verified immediately. We state our result
next.

Theorem 3.6 For the composite trapezoidal rule defined by Equations (13) and (14), there exist
only two superconvergence points in each subinterval [tm−1, tm](1 ≤ m ≤ n), i.e. s = tm−1 +
h/2 ± h/3, at which the superconvergence estimate (22) holds.
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4. Some applications

4.1 An indirect method

The superconvergence result of the composite trapezoidal rule for evaluating Equation (2) was
discussed in the previous section, and it is natural to apply them for solving integral equation.
From Equations (15) and (16), we can see that the singular point should be different from the
nodal ones. But in many cases, e.g. for solving integral equation of the second kind by the
collocation method, we always hope the collocation points coincide with the nodal ones, and
therefore the aforementioned quadrature method cannot be directly applied. Here, to avoid the
selection of the singular point, we suggest an indirect method for evaluating finite-part integral
(2) based on the superconvergence result of the composite trapezoidal rule:

I ∗(c, s, fL) := 1

s2 − s1
[(s − s1)I (c, s2, fL) + (s2 − s)I (c, s1, fL)], (45)

where s1 and s2 are two superconvergence points nearest to s such that s1 ≤ s ≤ s2.

Theorem 4.1 Suppose that the 2π -periodic function f (t) ∈ C4(−∞, ∞) and the mesh is uni-
form. Let I ∗(c, s, fL) be computed by Equation (45) with s1 and s2 being two superconvergence
points nearest to s and s1 ≤ s ≤ s2. Then

|I (c, s, f ) − I ∗(c, s, fL)| ≤ Ch2. (46)

Proof If s1 = s or s2 = s, then Equation (46) is obvious by Theorem 2.2. Now consider the
general case where s1 < s < s2. Set

I ∗(c, s, f ) := 1

s2 − s1
[(s − s1)I (c, s2, f ) + (s2 − s)I (c, s1, f )].

On the one hand, by Theorem 2.2, we have

|I ∗(c, s, fL) − I ∗(c, s, f )| ≤ |I (c, s2, fL) − I (c, s2, f )| + |I (c, s1, fL) − I (c, s1, f )| ≤ Ch2.

(47)

On the other hand, since f (t) ∈ C4(−∞, ∞), I (c, s, f ), being function of s, belongs to
C2(−∞, ∞) (see [8]). Note that I ∗(c, s, f ) is actually the linear interpolant of I (c, s, f ) with
respect to s. Thus

|I (c, s, f ) − I ∗(c, s, f )| ≤ max
s∈[s1,s2]

| d2

ds2
I (c, s, f )|h2 ≤ Ch2. (48)

Finally, we can get the result by Equations (47), (48) and the triangle inequality. �

4.2 Solving integral equation of the second kind containing finite-part kernels

A natural application is to solve finite-part integral equation by using the composite trapezoidal rule
and its superconvergence result. Finite-part integral equations often arise in numerical analyses of
partial differential equation and many physical problems, such as in fracture mechanics, elasticity
problems, acoustics as well as electromagnetic scattering [12,42,19,1,4,5], and there exist several
numerical methods to solve them.
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To make our idea clear, a simple model problem will be first discussed so as to show the
convergence rate of the numerical schemes suggested before. Then, we will apply them to the
scattering problem in the next subsection.

Here, we consider how to solve the following integral equation of the second kind containing
finite-part and logarithm kernels:

=
∫ π

−π

ϕ(t)

sin2(t − s)/2
dt +

∫ π

−π

ln 4 sin2 t − s

2
ϕ(t) dt + πϕ(s) = g(s), s ∈ [−π, π ], (49)

where g(s) is a known 2π -periodic term and ϕ(t) is to be determined.

Algorithm 4.1 Note that {si : si = ti + (τ + 1)h/2}n−1
i=0 with τ = ±2/3 are the superconver-

gence points, we can use the composite trapezoidal rule by choosing {si}n−1
i=0 as the collocation

points to evaluate the finite-part term and then get the following linear systems:

n∑
j=1

[
ωj(si) + h ln 4 sin2 tj − si

2

]
φ(tj ) + a(ti)φ(ti) = f (si), i = 1, · · · , n. (50)

Here, we use the classical composite trapezoidal rule for the evaluation of the logarithmic integrals.

Algorithm 4.2 Algorithm 4.1 has a drawback that one cannot approximate the third term in
the left-hand of Equation (49) as good as possible. Numerical experiments show that even if we
choose the superconvergence points as collocation points, the convergence rate of Algorithm 4.1
is always O(h), which is the same as that of the case without the choice of the superconvergence
ones. Here we suggest a more natural algorithm based on the previous indirect method which
can exactly approximate the third term of Equation (49). Numerical experiments show that its
accuracy can achieve a convergence rate one order higher than that of Algorithm 4.1. Using the
indirect formula (45) for evaluating the finite-part term and the corresponding indirect form of
the classical trapezoidal rule for the logarithm term in the left-hand of the integral equation (49),
we get the following system:

n∑
j=1

1

(si2 − si1)

[
ω̂j (si2)(ti − si1) + ω̂j (si1)(si2 − ti)

]
φ(tj ) + a(ti)φ(ti) = f (ti), i = 1, · · · , n.

(51)

where

ω̂j (s) = ωj(s) + h ln 4 sin2 tj − s

2
,

ωj (s) is defined by Equation (14) and si1, si2 are two superconvergence points nearest to ti and
si1 ≤ ti ≤ si2.

4.3 Application in the scattering theory

The mathematical treatment of the scattering of time-harmonic electromagnetic waves by an
infinitely long cylindrical obstacle with a simply connected bounded cross-section D ⊂ R

2 leads
to exterior boundary value problems for the Helmholtz equation:

�u + k2u = 0 in R
2/D̄ (52)

with k > 0. In the subsequent analysis we denote the boundary of D by �, the outward unit
normal to � by ν and the boundary � is assumed to be C2. The total field u can be decomposed
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as u = ui + us , where ui is the incident field, which is assumed to be an entire solution to
the Helmholtz equation, and us is the unknown scattered field, which is required to satisfy the
Sommerfeld radiation condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |x|, (53)

uniformly in all directions. In [19], Kress considered the scattering problem as a special case
of the following exterior Neumann problem. Given a function g ∈ C0,α(�), 0 < α < 1, find a
solution u ∈ C2(R2\D̄)

⋂
C1,α(R2\D) to the Helmholz equation which satisfies the Sommerfeld

radiation and the boundary condition

∂u

∂ν
= g, on �. (54)

In order to arrive at a uniquely solvable integral equation, the solution to the exterior Neumann
problem was obtained in the form of a combined double- and single-layer potential

u(x) =
∫

�

{
∂�(x, y)

∂ν(y)
− iη�(x, y)

}
ϕ(y)ds(y), x ∈ R

2/D̄, (55)

with unknown density ϕ ∈ C1,α(�) and some real coupling parameter η, where �(x, y) =
1
4 iH

(1)
0 (k|x − y|) is the fundamental solution to the Helmholtz function in R

2 and H
(1)
0 is the

Hankel function of order zero and of the first kind. Then for the jump relations for single-
and double-layer potentials it follows that Equation (55) solves the exterior Neumann problem
provided the density is a solution of the integral equation

T ϕ − iηK ′ϕ + iηϕ = 2g, (56)

where K ′ and T denote the integral operators defined by

(K
′
ϕ)(x) := 2

∫
�

∂�(x, y)

ν(x)
ϕ(y)ds(y), x ∈ �,

(T ϕ)(x) := 2
∂

∂ν(x)

∫
�

∂�(x, y)

ν(y)
ϕ(y)ds(y), x ∈ �.

Similar to the procedure of [19], we describe the parametrization of the integral equation (56) as
follows. From now on, we assume that the boundary curve � is analytic and given through

� = {x(t) = (x1(t), x2(t)) : 0 ≤ t ≤ 2π},
where x : R → R

2 is analytic and 2π -periodic with |x ′(t)| > 0 for all t , such that the orientation
of � is counterclockwise. Using H

(1)
1 = −H

(1)
0

′
, where H

(1)
1 denotes the Hankel function of order

one and of the first kind, note that ds(y) := √
x ′

1(τ )2 + x ′
2(τ )2dτ = |x ′(τ )|dτ and

∂�(x, y)

∂ν(x)
= ik

4

H
(1)
1 (k|x(t) − x(τ)|)

|x(t) − x(τ)| ν(x(t)) · [x(τ) − x(t)].
Thus, the kernel H in

(K ′ϕ)(x) = 1

|x ′(t)|
∫ 2π

0
H(t, τ )φ(x(τ ))dτ

is given by

H(t, τ ) := ik

2
n(t) · [x(τ) − x(t)]H

(1)
1 (k|x(t) − x(τ)|)

|x(t) − x(τ)| |x ′(τ )|, (57)

where n(t) := |x ′(t)|ν(x(t)) = (x ′
2(t), −x ′

1(t)).
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By direct calculation, we obtain that

∂�(x, y)

∂ν(y)
= ik

4

H
(1)
1 (k|x − y|)

|x − y| ν(y) · (x − y),

∂2�(x, y)

∂ν(x)∂ν(y)
= ik

4
H

(1)
0 (k|x − y|)kν(x) · (x − y)ν(y) · (x − y)

|x − y|2

+ ik

4
H

(1)
1 (k|x − y|)

[
ν(x) · ν(y)

|x − y| − 2
ν(x) · (x − y)ν(y) · (x − y)

|x − y|3
]

.

Thus, the kernel M in

(T ϕ)(x) = 1

|x ′(t)|
∫ 2π

0
M(t, τ )ϕ(x(τ ))dτ

is given by

M(t, τ ) = ik

2

{
k
H

(1)
0 (k|x(t) − x(τ)|))

|x(t) − x(τ)|2 n(t) · [x(t) − x(τ)]n(τ) · [x(t) − x(τ)]

− 2
H

(1)
1 (k|x(t) − x(τ)|))

|x(t) − x(τ)|3 n(t) · [x(t) − x(τ)]n(τ) · [x(t) − x(τ)]

+ H
(1)
1 (k|x(t) − x(τ)|))

|x(t) − x(τ)| n(t) · n(τ)

}
. (58)

We then rewrite Equation (58) as follows:

M(t, τ ) = 1

4π sin2(t − τ)/2
+ M1(t, τ ), (59)

where

M1(t, τ ) = M(t, τ ) − 1

4π sin2(t − τ)/2
.

If we now piece Equations (57) and (59) together, we see that the parameterized integral
Equation (56) is of the form

1

4π
=
∫ 2π

0

1

sin2(t − τ)/2
φ(τ)dτ +

∫ 2π

0
K(t, τ )φ(τ)dτ + a(t)φ(t) = f (t) (60)

for the unknown function φ(t) := ϕ(x(t)) and the right-hand side given by f (t) :=
2|x ′(t)|g(x(t)). We have the set a(t) := iη|x ′(t)| and the kernel

K(t, τ ) = M1(t, τ ) − iηH(t, τ ),

which are 2π -periodic functions.

Algorithm 4.3 Since Equation (60) is also an integral equation of the second kind containing
finite-part kernels, and K(t, τ ) contains only continuous and logarithmic kernels, we can suggest
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an indirect algorithm similar to Algorithm 4.2 and then get the following system:

n∑
j=1

1

(si2 − si1)

[
ω̃j (si2)(ti − si1) + ω̃j (si1)(si2 − ti)

]
φ(tj ) + a(ti)φ(ti) = f (ti), i = 1, . . . , n.

(61)
where

ω̃j (s) = 1

4π
ωj (s) + hK(s, tj ),

and si1, si2 are coincident with that of Algorithm 4.2. The main advantage of Algorithm 4.3 over
the method suggested in [19] is that no complicated analysis needs to be done when constructing
the numerical scheme, and it is very easy to implement.

5. Numerical examples

In this section, computational results are reported by five examples to confirm our theoretical
analysis and to show the efficiency of the algorithms. Throughout, the computation is performed
in double precision.

Example 5.1 We consider the finite-part integral (2) with f (t) = 1 + 2 cos t + 2 cos 2t and c =
−π . Obviously the integrand function f (t) is smooth enough and by a direct calculation,

=
∫ π

−π

1 + 2 cos t + 2 cos 2t

sin2(t − s)/2
dt = −8π(cos s + 2 cos 2s), (62)

where s ∈ (−π, π). Here we adopt a uniform mesh with an odd n. Numerical results are presented
in Table 1 for a dynamic singular point s = t[n/4] + (1 + τ)h/2 and in Table 2 for s = tn−1 + (1 +
τ)h/2. In the first case, singular point s is not close to the ending-points of the interval (−π, π)

while in the second it approaches the ending-point π as h goes to zero. We can see from Tables 1
and 2 that in both cases errors at the superconvergence points, τ = ±2/3, are O(h2) which is in
good agreement with our theoretical analysis, while errors at the non-superconvergence points
are O(h).

Example 5.2 Now we consider an example with a fixed singular point. We still use Equation (62)
and set s = 0 or 1. Here two mesh strategies are adopted. In the first one (Mesh I), s is always
placed at the midpoint of some subinterval and in the second (Mesh II), s is placed at a point
with local coordinate τ = −2/3. Then s is a superconvergence point on Mesh II. Both meshes
are uniform except two subintervals near the ending points, which may have smaller or longer
mesh size. Numerical results are presented in Table 3. We find that the accuracy of the composite

Table 1. Errors of the composite trapezoidal rule with s = t[n/4] + (1 + τ)h/2.

n τ = 0 τ = 1/2 τ = 2/3 τ = −2/3

255 5.57443E-1 2.84096E-1 1.09599E-2 9.56223E-3
511 2.75461E-1 1.39069E-1 2.72896E-3 2.35978E-3
1023 1.36915E-1 6.87914E-2 6.80860E-4 5.86067E-4
2047 6.82535E-2 3.42102E-2 1.70041E-4 1.46031E-4
4095 3.40758E-2 1.70587E-2 4.24920E-5 3.64483E-5

hα 1.008 1.015 2.003 2.009
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Table 2. Errors of the composite trapezoidal rule with s = tn−1 + (1 + τ)h/2.

n τ = 0 τ = 1/2 τ = 2/3 τ = −2/3

255 4.18578E-1 2.13717E-1 8.83328E-3 9.11517E-3
511 2.06737E-1 1.04474E-1 2.20820E-3 2.24373E-3
1023 1.02724E-1 5.16381E-2 5.52016E-4 5.56476E-4
2047 5.11998E-2 2.56689E-2 1.37996E-4 1.38554E-4
4095 2.55593E-2 1.27969E-2 3.44929E-5 3.45690E-5

hα 1.008 1.016 2.000 2.011

Table 3. Errors of the composite trapezoidal rule on different meshes.

s = 0 s = 1

n Mesh I Mesh II Mesh I Mesh II

255 6.94536E-1 1.14271E-2 1.57305E-1 9.94010E-3
511 3.43755E-1 2.84778E-3 7.75009E-2 2.39413E-3
1023 1.71000E-1 7.10813E-4 3.85158E-2 6.11856E-4
2047 8.52810E-2 1.77555E-4 1.91925E-2 1.53004E-4
4095 4.25857E-2 4.43654E-5 9.57990E-3 3.83101E-5

hα 1.007 2.002 1.009 2.005

trapezoidal rule on Mesh II is O(h2), while the accuracy on Mesh I is only O(h), which both
agree well with the theoretical analysis.

Example 5.3 We consider the finite-part integral Equation (49) with right-hand term g(t) =
−2π(5 cos t + 8 cos 2t). Its exact solution is ϕ(t) = 2 cos t + 2 cos 2t . InAlgorithm 4.1, we adopt
a uniform mesh and get the linear system (Equation (50)) with two set of collocation points:

S1 = {ti + h/2 + h/3, 0 ≤ i ≤ n − 1},
S2 = {ti + h/2, 0 ≤ i ≤ n − 1}.

Obviously, S1 consists of the superconvergence points, and S2 does not. Although the result for S1

is much better than that of S2, the convergence rate is always O(h) whether we choose S1 or S2.
This may be due to the coarse approximation to the third term in the left-hand of Equation (60).
In Algorithm 4.2, we adopt a uniform mesh and get the linear system (Equation (51)) with the
collocations points as nodal ones and two sets of si1 and si2:

S3 = {si1 = ti−1 + h/2 + h/3, si2 = ti + h/2 − h/3, 1 ≤ i ≤ n},
S4 = {si1 = ti − h/2, si2 = ti + h/2, 1 ≤ i ≤ n}.

Obviously, S3 consists of the superconvergence points, and S4 contains non-superconvergence
ones. Numerical results in Table 4 show that the accuracy for Algorithm 4.2 is much improved if
we choose S3.

Example 5.4 Now we consider an example with less regularity. Let

ϕ(t) = |t (t2 − π2)|3, t ∈ [−π, π ],
and we extend it to a periodic function, still denoted by ϕ(t), with period 2π by taking ϕ(t) =
ϕ(t + 2π). Obviously, ϕ(t) ∈ C3[c, c + 2π ], c is an arbitrary constant. For convenience, we first
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Table 4. L∞ error for Example 5.3.

Algorithm 4.1 Algorithm 4.2

n S1 S2 S3 S4

16 0.3409817 0.8333414 0.1368259 1.200549
32 0.1537028 0.3624361 3.5379302E-2 0.4243268
64 7.1390398E-2 0.1669393 9.0258289E-3 0.1786756
128 3.4252074E-2 8.0446385E-2 2.2817904E-3 8.1812330E-2

hα 1.105 1.124 1.969 1.292

Table 5. L∞ error for Example 5.4.

n Algorithm 4.2 Kress’ method

32 19.83552 0.7372616
64 5.007455 0.1026070
128 1.244693 2.3605831E-02
256 0.3188093 1.4028244E-02
hα 1.986 1.905

choose ϕ(t) = |t (t2 − π2)|3 as the exact solution of Equation (49), and then use the trapezoidal
rule (45) by using a mesh with size small enough to get the right-hand term. Finally, we obtain
the approximation solutions by Algorithm 4.2 and Kress’ method, respectively. From [19], we
know that if the exact solution ϕ(t) is analytic, the error decreases exponentially. But for the less
regular ϕ(t), its accuracy will descend, which can be seen from Table 5. Moreover, also from
Table 5, we can see that even for ϕ(t) ∈ C3[c, c + 2π ], the convergence rate of Algorithm 4.2 can
achieve O(h2), which shows that our method is competitive with Kress’ method in this special
case. Thus, it is still meaningful for us to study the superconvergence result of the trapezoidal rule
for the integral equation containing finite-part kernels.

Example 5.5 Here we consider the scattering of a plane wave ui by a sound-hard cylinder with a
non-convex kite-shaped cross-section with boudary � described by the parametric representation

x(t) = (cos t + 0.65 cos 2t − 0.65, 1.5 sin t), 0 ≤ t ≤ 2π.

The incident wave is given by a smooth functionui(x) = eikd·x whered denotes a unit vector giving
the direction of propagation. For the scattered wave us we have to solve an exterior Neumann
problem with boundary values g = −∂ui/∂ν on �. The far-field pattern u∞ is defined by the
asymptotic behaviour of the scattered wave

us(x) = eik|x|
√|x|

{
u∞(x̂) + O(

1√|x| )
}

, |x| → ∞,

uniformly for all direction x̂ := x/|x|. From the asymmptotics for the Hankel function for large
argument, we see that the far-field pattern of the combined double- and single-layer potential is
given by

u∞(x̂) = e−iπ/4

√
8πk

∫
�

{kx̂ · ν(y) + η}e−ikx̂·yϕ(y) ds(y). (63)

After solving the integral equation (60) numerically byAlgorithm 4.3, the integral (63) is evaluated
by the classical trapezoidal rule. Tables 6 and 7 give some approximate values for the far-field
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Table 6. Numerical results for Example 5.5 by Algorithm 4.3 with S4.

n Reu∞(d) Imu∞(d) Reu∞(−d) Imu∞(−d)

k = 1 32 0.1101255 0.1359606 −1.140504 −0.505935
64 0.1340470 0.1686133 −1.117780 −0.507786

128 0.1436574 0.1810827 −1.109203 −0.508598
256 0.1478166 0.1865426 −1.105564 −0.508927

k = 3 32 −9.2281945E-2 0.6230944 −1.857214 −0.854712
64 −7.0194438E-2 0.6906148 −1.721669 −0.821593

128 −5.1378526E-2 0.7057285 −1.672501 −0.820651
256 −4.3204948E-2 0.7094656 −1.653001 −0.821785

k = 5 32 −0.4244972 −0.4010827 −2.308823 −1.309626
64 −0.3705059 −0.3258927 −2.116996 −1.254386

128 −0.3225423 −0.3033766 −2.017308 −1.258708
256 −0.2998221 −0.2989495 −1.978207 −1.266769

Table 7. Numerical results for Example 5.5 by Algorithm 4.3 with S3.

n Reu∞(d) Imu∞(d) Reu∞(−d) Imu∞(−d)

k = 1 32 0.1419960 0.1848495 −1.108783 −0.508948
64 0.1490904 0.1898673 −1.103974 −0.509103

128 0.1509149 0.1911187 −1.102754 −0.509165
256 0.1513736 0.1914326 −1.102448 −0.509184

k = 3 32 −8.913858E-2 0.6941959 −1.705979 −0.834866
64 −5.004480E-2 0.7081655 −1.654401 −0.824769

128 −3.991257E-2 0.7105141 −1.641329 −0.823619
256 −3.733771E-2 0.7110443 −1.638012 −0.823419

k = 5 32 −0.3839110 −0.3381853 −2.122159 −1.328245
64 −0.3114551 −0.3022698 −1.993552 −1.277937

128 −0.2885902 −0.2987530 −1.959255 −1.275653
256 −0.2826746 −0.2982955 −1.950472 −1.275797

patterns u∞(d) and u∞(−d) in the forward direction d and backward direction −d. The direction
of the incident wave is d = (1, 0), and the coupling parameter is recommended in [19] to be
chosen as η = k. Since the incident wave is analytic and the error of Kress’ method decreases
exponentially, the numerical result in Table 8 (presented in [19]) can be viewed as, to some extent,
the exact solution. Comparing the results in Tables 6 and 7 with that in Table 8, we can see that
the accuracy of Algorithm 4.3 is much improved if we choose the superconvergence points.

Table 8. Numerical results for Kress’ method.

n Reu∞(d) Imu∞(d) Reu∞(−d) Imu∞(−d)

k = 1 8 0.13973626 0.18093027 −1.11011577 −0.50681485
16 0.15158507 0.19159181 −1.10228822 −0.50925214
32 0.15153740 0.19153454 −1.10234229 −0.50918721
64 0.15153740 0.19153454 −1.10234230 −0.50918720

k = 3 8 0.11163356 0.91056703 −1.67222931 −0.86694951
16 −3.641571E-2 0.71129456 −1.63684382 −0.82343826
32 −3.646654E-2 0.71122115 −1.63689151 −0.82335680
64 −3.646654E-2 0.71122115 −1.63689151 −0.82335679

k = 5 8 0.53567309 0.12509154 −1.92379981 −1.40068649
16 −0.27473745 −0.29834046 −1.95374230 −1.27549747
32 −0.28067233 −0.29817977 −1.94749252 −1.27590706
64 −0.28067233 −0.29817977 −1.94749251 −1.27590706
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6. Concluding remarks

We have proved the superconvergence estimate of the composite trapezoidal rule for the finite-
part integral (2) and also obtained the uniqueness of the superconvergence points. The theoretical
result is confirmed by the numerical one. Although our result is obtained for the uniform mesh,
Example 5.2 indicates that this result is still valid for certain non-uniform mesh, say, local uni-
form mesh in the neighbourhood of the singular point combined with quasi-uniform mesh in
the remaining part of the interval. Numerical results in the previous section also indicate that
when the singular point coincides with a superconvergence point, the accuracy can be one order
higher than that when the non-superconvergence point is involved. So a natural question raised
is that whether it is possible to remove the factor | ln h| from estimate (22). The answer is cer-
tainly positive. Actually, we can prove that the superconvergence rate can be O(h2) provided
that f (t) ∈ C3+α(−∞; +∞)(0 < α < 1). Here we omit this part of the argument just because it
involves tedious details and its presentation will spoil the structure of the present paper and make
our main idea obscure.

We have also suggested an indirect method which can avoid the selection of the singular point,
and applied it to solve the integral equation of the second kind containing finite-part kernels,
including that arising in the scattering theory. Numerical experiments show their efficiency in
the less regular case. Theoretical analysis of these global error bounds for finite-part integral
equations is beyond the aim and scope of the present paper and will be given elsewhere.
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