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a b s t r a c t

The paper aims to assess plastic limit loads of thick-walled hollow cylinders of strain-hardening

viscoplastic materials under internal pressure. Particularly, the problem concerned features in the

interaction between strengthening and weakening behavior during the deformation process. Therefore,

the relating onset of instability and the stability condition also deserve to be further investigated.

Analytical and finite-element limit analysis efforts are both made for complete and comparative

investigation. By the concept of sequential limit analysis, the plastic limit loads were acquired by

solving a sequence of limit analysis problems via computational optimization techniques. Applying the

velocity control as a computational strategy to simulate the action of pressure, the paper investigates

analytically and numerically the plastic limit load, the onset of instability and the stability condition of

plane-strain circular cylinders. Especially, analytical solutions of the onset of instability were solved

explicitly by the fixed point iteration. Validation of the present analytical and finite-element efforts was

made completely with good agreement between the analytical solutions and the numerical results.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Plastic limit load of cylinders is useful information requested
frequently for an optimal structural design. As it is well known,
limit analysis is a direct method to capture the asymptotic
behavior of an elastic–plastic material by the lower bound or the
upper bound theorem. Moreover, finite-element limit analysis
[e.g. 1–15] further enhance the accuracy of limit analysis and
broaden its applicability to more complex problems in engineer-
ing applications by taking advantage of techniques of finite-
element methods [16] and mathematical programming [17]. On
the other hand, if we consider structures made of strain-
hardening viscoplastic materials, it is appropriate to evaluate
the load-bearing capacity by limit analysis sequentially to
illustrate the interesting interaction between strengthening and
weakening behavior during the deformation process. By sequen-
tial limit analysis, it is to conduct a sequence of limit analysis
problems with updating local yield criteria in addition to the
configuration of the deforming structures. In each step and
therefore the whole deforming process, rigorous upper bound or
lower bound solutions are acquired sequentially to approach the
real limit solutions. Accordingly, efforts [18–30] have illustrated
ll rights reserved.
extensively that sequential limit analysis is an accurate and
efficient tool for the large deformation analysis.

In this paper, we consider the limit analysis problem of a
plane-strain cylinder under internal pressure. The thick-walled
cylinder considered is made of strain-hardening viscoplastic
materials. Thus, it is not only a typical limit analysis problem
aimed to seek the plastic limit loads sequentially, but it is also an
interesting problem involving the interaction of strengthening
and weakening behavior reflecting the properties of the strain-
hardening and the strain-rate sensitivity during the deformation
process. The strengthening behavior is due to from the material
hardening properties. And the weakening phenomenon is corre-
sponding to the strain-rate sensitivity and the widening deforma-
tion of a pressurized cylinder. Thus, it also deserves to pay
attention to the onset of instability and the stability condition of
the plastic limit load. Note that, the onset of instability concerned
is about the plastic instability marked by the limit load maximum
while dealing with thick-walled cylinders [31,32]. Namely,
the strengthening due to material hardening is exceeded by the
weakening resulting from the strain-rate sensitivity and the
widening deformation. On the other hand, it is well known in
the elastic–plastic numerical analysis that the action of internal
pressure can be simulated either by using the stress (or load)
control or by using the velocity (or displacement) control.
Identified by the simulation method of the action of pressure
load, two different normalization conditions were adopted in
the computational procedures of finite-element limit analysis

www.sciencedirect.com/science/journal/ms
www.elsevier.com/locate/ijmecsci
dx.doi.org/10.1016/j.ijmecsci.2008.10.007
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Nomenclature

a0 initial interior radius
a current interior radius
_a current velocity of the interior radius
b0 initial exterior radius
b current exterior radius
{C} coefficient matrix relating to the incompressibility

constraint
D problem domain
qDs static boundary
qDk kinematic boundary
EU convergence tolerance
G a constant relating to the velocity control
h hardening exponent
[K] assembled stiffness matrix
[Ke1] element stiffness matrix
[Ke2] element stiffness matrix
m strain-rate sensitivity
n
*

unit outward normal vector of a boundary
Ne number of elements used to discretize the domain
p({U}) discretized inner product of the incompressibility

constraint
Pi internal pressure
q load factor
q(s) lower bound functional
q̄ðu
*
Þ upper bound functional

qn exact limit load
q̃ðfUgÞ finite-element discretized upper bound functional
q̃ðfUn

gjÞ finite-element discretized upper bound functional
calculated in the ith iteration

R yield strength ratio
S length of the innermost edge
t
*

scalable distribution of a traction vector

t transposition superscript
Dt step size
Dti step size in the ith iteration
{U} nodal-point velocity vector
{U}0 arbitrarily starting value of nodal-point velocity

vector
{U}j+1 unknown nodal-point velocity vector in the (i+1)th

iteration
fUn
gj nodal-point velocity vector calculated in the ith

iteration
u
*

velocity field
u
*

s velocity field prescribed at the static boundary
J � J2 Euclidean norm
JsJ3 von Mises primal norm on stress tensor
jj_�jj�_ von Mises dual norm on strain-rate tensor
s stress tensor
sr stress component in the radial direction
sY yield strength
(sY)j+1

n yield strength updated in the (i+1)th iteration of the
nth step

s0 initial yield strength
sN saturation value of yield strength
s̄ equivalent stress
�̄ equivalent strain
�̄1 equivalent strain for the first step
�̄n equivalent strain for the nth step
_� strain-rate tensor
_̄� equivalent strain rate
_̄�0 reference strain rate
_̄�

n

jþ1 equivalent strain rate updated in the (i+1)th iteration
of the nth step

d small real number
r vector differential operator
b penalty parameter
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[20–30]. In the stress control approach, the normalization
condition is based on the simulation of the action of pressure
load by imposing a uniform stress (pressure) field [20–22,25,
29,30]. In the velocity control approach, the normalization
condition is obtained by simulating the action of pressure load
with a uniform velocity field [23–24,26–28]. Particularly, in the
finite-element limit analysis of circular hollow cylinders under
internal pressure [26–28], we adopted the velocity (or displace-
ment) control approach with the innermost edge expanded
uniformly at a constant speed in the radial direction. It is noted
that all the previous work [8,20–30] were conducted numerically
by using a combined smoothing and successive approximation
(CSSA) algorithm presented by Yang [33]. Particularly, the author
and his co-worker extended the CSSA algorithm [33] with rigorous
convergence analysis and validation to sequential limit analysis of
viscoplasticity problems [26], or/and involving materials with
nonlinear isotropic hardening [27–29].

The paper is aimed to analytically and numerically investigate
the interesting interaction of strengthening and weakening
behavior of pressurized cylinders made of strain-hardening
viscoplastic materials. By the concept of sequential limit analysis,
the plastic limit loads are acquired by solving a sequence of limit
analysis problems via computational optimization techniques
based on the CSSA algorithm [33]. Meanwhile, the velocity control
is employed as a computational strategy to simulate the action of
pressure. The resulting onset of instability and the stability
condition corresponding to the velocity control are firstly
investigated analytically in the paper to fully reveal the strength-
ening and weakening interaction. It is also noted that the Norton-
Hoff viscoplastic model is utilized in the previous work [26,28] to
consider the strain-rate sensitivity as utilized in regularized limit
analysis [34]. On the other hand, the current work involving the
strain-rate sensitivity is based on the rigid-plastic model with the
updating yield strength step-wisely.
2. Problem formulation

We consider a plane-strain viscoplastic problem of the von
Mises-type material with nonlinear isotropic hardening. It is
noted that such problems feature in involving hardening material
properties and weakening behavior corresponding to the strain-
rate sensitivity in addition to widening deformation. The purpose
is to seek the plastic limit load of a pressurized thick-walled
hollow cylinder. Naturally, the problem statement leads to
the lower bound formulation. By employing duality theorems
[e.g. 8,13], we can establish the corresponding upper bound
formulation from the lower bound formulation and further
theoretically equates the greatest lower bound to the least upper
bound. Therefore, we can approach the real limit solution by
maximizing the lower bound or by minimizing the upper bound.

2.1. Problem statement (lower bound formulation)

We consider a general plane-strain problem with the domain D

consisting of the static boundary qDs and the kinematic boundary
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qDk [13]. The quasi-static problem is to seek the maximum
allowable driving load under constraints of static and constitutive
admissibility such that

maximize qðsÞ
subject to r � s ¼ 0 in D

s � n
*
¼ q t

*
on qDs

jjsjj_psY in D

(1)

where n
*

indicates the unit outward normal vector of the boundary
and the traction vector t

*
is scalable distribution of the driving

load on qDs with the load factor q; JsJ3 means the von Mises
primal norm on stress tensor s and sY is a material constant
denoting the yield strength. Therefore, this constrained problem is
to maximize the load factor q representing the magnitude of the
driving load for each step.

The primal problem (1) is the lower bound formulation seeking
the maximum solution under constraints of static and constitutive
admissibility. The statically admissible solutions satisfy the
equilibrium equation and the static boundary condition. And the
constitutive admissibility is stated by the yield criterion in an
inequality form. We can interpret the solutions as sets as shown in
the work of Huh and Yang [8], Yang [30]. First, the equilibrium
equation is linear and the constitutive inequality is convex and
bounded. Accordingly, the intersection of statically admissible set
and constitutively admissible set is convex and bounded. More-
over, the existence of a unique maximum to the convex
programming problem is confirmed.

2.2. Upper bound formulation

Now we intend to transform the lower bound formulation to
the upper bound formulation by firstly restating weakly equili-
brium equations in the form asZ

D
u
*
�ðr � sÞdA ¼ 0 (2)

where u
*

is a kinematically admissible velocity field. Integrating
by parts, using the divergence theorem and imposing static
boundary conditions, we may rewrite Eq. (2) to give an expression
for q(s) asZ
qDs

u
*
�q t

*
dS ¼ q

Z
qDs

u
*
� t
*

dS

¼

Z
D
s : _�dA (3)

where _� is the strain-rate tensor.
Since the power s : _� is nonnegative. It is clear that

s : _� ¼ js : _�j. Further, according to a generalized Hölder inequality
[35], and the normality condition in plasticity [36], it results in

s : _� ¼ js : _�jpjjsjj_jj_�jj�_ ¼ s̄ _̄� (4)

where jj_�jj�_ is the dual norm [8] of JsJ3 based on the flow rule
associated with the von Mises yield criterion. s̄ is the equivalent
stress and _̄� is the equivalent strain.

Combining Eqs. (3) and (4) and considering the constitutive
law JsJ3psY, we have

q

Z
qDs

u
*
� t
*

dS ¼

Z
D
s : _�dAp

Z
D
jjsjj_jj_�jj�_ dA

psY

Z
D
jj_�jj�_ dA (5)

To further deal with the left-hand side of the inequality (5), we
can adopt the velocity control along the innermost boundary as a
computational strategy, namely a normalization condition in the
computations. By using the velocity control, the velocity field u

*

along the boundary qDs is prescribed as u
*

s in each step. Therefore,
we haveZ
qDs

u
*
� t
*

dS ¼ Gðu
*

s; SÞ (6)

where Gðu
*

s; SÞ is a constant in each step but may be of
various values in a process. Therefore, q(s) can be bounded above
by q̄ðu

*
Þ as

qðsÞpsY

G

Z
D
jj_�jj�_ dA ¼ q̄ðu

*
Þ (7)

Thus, the upper bound formulation is stated in the form of a
constrained minimization problem as

minimize q̄ðu
*
Þ

subject to q̄ðu
*
Þ ¼

sY

G

Z
D
jj_�jj�_ dA

r � u
*
¼ 0 in D

kinematic boundary conditions on qDk (8)

Therefore, the upper bound formulation seeks sequentially the
least upper bound on kinematically admissible solutions. Accord-
ingly, the primal–dual problems (1) and (8) are convex program-
ming problems following the work of Huh and Yang [8] and as
shown by Yang [13]. Thus, there exist a unique maximum and
minimum to problems (1) and (8), respectively.

Thus, the extreme values of the lower bound functional q(s)
and its corresponding upper bound functional q̄ðu

*
Þ are equal to

the unique, exact solution qn for each step in a process. Namely

maximize qðsÞ ¼ qn ¼minimize q̄ðu
*
Þ (9)
3. Computations

Traditionally, the assumption of a suitable failure mechanism
[37] is critical to reduce the duality gap between the lower bound
and the upper bound. However, finite-element limit analysis can
be applied effectively to more complex problems by the use of
finite-element methods [16] together with mathematical pro-
gramming techniques [17].

By sequential limit analysis, the pressurized problem is
formulated as a sequence of limit analysis problems and solved
iteratively by a combined smoothing and successively approxima-
tion (CSSA) algorithm [33]. The CSSA algorithm adopted is
comparable for its simple implementation and unconditional
convergence. Upper bound plastic limit loads are then to
be acquired iteratively through a computational optimization
procedure.

3.1. Discretized functional

The upper bound formulation turns out to a constrained
quadratic programming problem. The constrained minimization
problem (8) is then stated approximately in the finite-element
discretized form such that

minimize q̃ðfUgÞ ¼
XNe

e¼1

sY

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fUgt½Ke1�fUg

q

subject to fUgtfCg ¼ 0 (10)

where Ne denotes the number of elements used to discretize the
domain; [Ke1] is the element stiffness matrix; {U} is the nodal-
point velocity vector and superscript t denotes transposition and
{C} is a coefficient matrix.
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3.2. Numerical algorithm

The CSSA algorithm presented by Yang [33] is now utilized to
deal with the nonlinear problem (10) sequentially. Accordingly,
the functional at the current step n is reorganized in the follow-
ing form:

minimize q̃ðfUgÞ þ
b
2

pðfUgÞ

with pðfUgÞ ¼
XNe

e¼1

fUgt½Ke2�fUg (11)

where the penalty parameter b is a sufficiently large positive
constant [38], and [Ke2] is the element stiffness matrix.

In the paper, the behavior of viscoplastic, nonlinear isotropic
hardening is described in the form as [39]

sY ¼ ½s1 � ðs1 � s0Þ expð�h�̄Þ�
_̄�
_̄�0

� �m

(12)

where s0 is the initial yield strength, sN is the saturation value of
s0 and h is the hardening exponent. �̄ is the equivalent strain and _̄�
the equivalent strain rate. _̄�0 and m are positive-valued material
parameters called the reference strain rate and strain-rate
sensitivity, respectively.

While conducting a sequence of limit analysis problems
sequentially, we need to update the current yield criterion in
addition to the configuration of the deforming structures. At the
first step, we have the equivalent strain �̄1

¼ 0. For the current
step nX2, the value of �̄n is obtained as the following expression:

�̄n
¼
Xn�1

i¼1

_�iDti (13)

where Dti is the step size.
Further, we update the yield strength in the form as

ðsY Þ
n
jþ1 ¼ ½s1 � ðs1 � s0Þexpð�h�̄n

Þ�

_̄�
n

jþ1

_̄�0

 !m

(14)

where (sY)j+1
n is the yield strength updated for the current

iteration (j+1) of the nth step, _̄�
n

jþ1 is the equivalent strain rate
updated in the (i+1)th iteration of the nth step with the current
velocity vector {U}j+1.

To solve the minimization problem (11), we apply the
necessary condition for the minimum of q̃ðfUgÞ þ ðb=2ÞpðfUgÞ,
namely taking its first derivative with respect to {U}. Moreover,
the objective functional is smoothed by a small real number d to
overcome the numerical difficulty resulting from non-smoothness
over some rigid regions [8,29]. Reorganizing the nonlinear
equations, linear matrix–vector equations are then produced as

½K�fUg ¼ 0 (15)

with

½K�fUg ¼
XNe

e¼1

ðs̄Þnjþ1

½Ke1� fUgjþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fUn
gtj ½Ke1� fU

n
gj þ d2

q þ b
XNe

e¼1

½Ke2� fUgjþ1 (16)

where the subscriptions j, (j+1) indicate quantities corresponding
to any successive iterations. In Eq. (16), {U}j+1 is the unknown at
the current iteration (j+1) with {U*}j calculated at the preceding
iteration j. For the case j ¼ 0, an arbitrary {U}0 is adopted to start
the iterations. A monotonically convergent sequence of q̃ðfUn

gjÞ is
then generated iteratively. Stopping criterion based on the ratio of
Euclidean norms Eu ¼ jjfU

n
gj � fU

n
gj�1jj2=jjfU

n
gj�1jj2 is applied to

check the convergence of each step. All the abovementioned
procedures have been summarized as a flowchart shown in the
previous work by Leu and Chen [29].
4. Analytical solutions

For rigorous validation, we derive the analytical solutions of
thick-walled hollow cylinders made of strain-hardening visco-
plastic materials subjected to internal pressure in plane-strain
conditions. In addition to the plastic limit load, it is also
interesting to show the interaction between strengthening and
weakening behavior during the deformation process. Therefore,
the onset of instability and the stability condition are also derived
analytically for rigorous validation. Note that the hardening
exponent h ¼

ffiffiffi
3
p

is used in the derivations. And the boundary
conditions sr(r ¼ a) ¼ Pi, sr(r ¼ b) ¼ 0 are considered.

4.1. Plastic limit load

We consider a plane-strain problem invovling a thick-walled
hollow cylinder with the initial interior and exterior radii
denoted by a0 and b0. Also, its current interior and exterior
radii are denoted by a and b. The cylinder concerned is made of
strain-hardening viscoplastic materials simulated by the von
Mises model. The behavior of viscoplastic, nonlinear isotropic
hardening is as adopted by Haghi and Anand [39] as shown
in Eq. (12).

As detailed in the previous work [28], we can obtain the plastic
limit load expressed in the form as

Pi

s0
¼

1ffiffiffi
3
p

� �mþ1 2_aa
_̄�0

� �m 1

m

1

b2m
�

1

a2m

� ��

þ
1

mþ 1

s1
s0
� 1

� �
ða2

0 � a2Þ
1

a2mþ2
�

1

b2mþ2

� ��
(17)

where _a is the current velocity of the interior radius. Note that, the
sign convention for the internal pressure Pi is positive for tension
and negative for compression.

For the case with m ¼ 0

lim
m!0

a�m � amb�2m

m
¼ ln

b2

a2

 !
(18)

Thus, we reduce the viscoplasticity problems to rate indepen-
dent plasticity problems [27] with the strain-rate sensitivity
m ¼ 0, such that

Pi

s0
¼

1ffiffiffi
3
p ln

a2

b2

� �
þ

s1
s0
� 1

� �
a2

0

a2
�

b2
0

b2

 !" #
(19)

For the case with sN ¼ s0, we reduce to non-hardening power-
law viscoplasticity problems such that

Pi

s0
¼

1

m

1ffiffiffi
3
p

� �mþ1 2 _aa
_̄�0

� �m 1

b2m
�

1

a2m

� �� �
(20)

It is also noted that such analytical solution for non-hardening
power-law viscoplasticity problems is available with the concept
for the first-step limit values in the literature as presented by
Peirce et al. [40].

4.2. Onset of instability

For the pressurized problem involving strain-hardening visco-
plastic materials, there is an instability phenomenon during the
whole deformation process. Namely, the instability is about the
occurrence of a weakening phenomenon while the effect of strain-
rate sensitivity and widening deformation counteracts that of the
strain hardening [31,32]. Therefore, investigation of the onset
of instability is to consider the existence of the maximum value of
the limit load. We apply the necessary condition for the maximum
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Fig. 1. Finite-element model of a thick-walled hollow cylinder.

S.-Y. Leu / International Journal of Mechanical Sciences 50 (2008) 1578–15851582
of Pi/s0, namely the following mathematical expression

qðPi=s0Þ

qa
¼ 0 (21)

Note that, the current interior radius is a and the value of _a is a
constant for the velocity control. Thus, we obtain the onset of
instability associated with the velocity control as in the form

1

amþ1
þ

am�1

b2m
�

2amþ1

b2mþ2
�
s1=s0 � 1

mþ 1

2

amþ1
�

2amþ1

b2mþ2

� �

�
mþ 2

mþ 1
ðs1=s0 � 1Þ

a2
0 � a2

amþ3
�

m

mþ 1
ðs1=s0 � 1Þ

�
a2

0 � a2

b2mþ2
am�1 þ 2ðs1=s0 � 1Þ

a2
0 � a2

b2mþ4
amþ1 ¼ 0 (22)

Further, with the incompressibility condition a2–a0
2
¼ b2–b0

2, the
nonlinear equation can be reorganized as

ðmþ 2Þðs1=s0 � 1Þ
a2

0

a2
¼ ðms1=s0 þ 1Þ

� 2ðms1=s0 þ 1Þ
a2mþ2

b2mþ2
þ ðms1=s0 þ 1Þ

a2m

b2m

�mðs1=s0 � 1Þ
a2mb2

0

b2mþ2
þ 2ðmþ 1Þðs1=s0 � 1Þ

a2mþ2b2
0

b2mþ4
(23)

To solve the nonlinear equation, we apply the method of fixed
point iteration [41] to numerically acquire the onset of instability
in terms of a/a0. Thus, the nonlinear equation is reorganized as

a2
0

a2
¼

1

mþ 2

ms1=s0 þ 1

s1=s0 � 1
�

2

mþ 2

ms1=s0 þ 1

s1=s0 � 1

a2mþ2

b2mþ2

þ
1

mþ 2

ms1=s0 þ 1

s1=s0 � 1

a2m

b2m
�

m

mþ 2

a2mb2
0

b2mþ2

þ 2
mþ 1

mþ 2

a2mþ2b2
0

b2mþ4
(24)

And we get the solution of a/a0 in the form ready for the method
of fixed point iteration [41]

a

a0
¼

1

mþ 2

ms1=s0 þ 1

s1=s0 � 1
�

2

mþ 2

ms1=s0 þ 1

s1=s0 � 1

a2mþ2

b2mþ2
þ

1

mþ 2
�

ms1=s0 þ 1

s1=s0 � 1

a2m

b2m
�

m

mþ 2

a2mb2
0

b2mþ2
þ 2

mþ 1

mþ 2

a2mþ2b2
0

b2mþ4

0
BBBBBBBB@

1
CCCCCCCCA

�1=2

(25)

4.3. Stability condition

We come to consider the condition of stability, namely the
existence of a hardening phenomenon before the weakening
behavior. Mathematically, it is to consider the increase of the
plastic limit load during the widening process expressed in the
following form with the current interior radius a:

qðPi=s0Þ

qa
40 (26)

Note that, the sign convention for the internal pressure Pi is
positive for tension and negative for compression. Therefore, we
have the following expression:

1

amþ1
þ

am�1

b2m
�

2amþ1

b2mþ2
�
s1=s0 � 1

mþ 1

2

amþ1
�

2amþ1

b2mþ2

� �

�
mþ 2

mþ 1
ðs1=s0 � 1Þ

a2
0 � a2

amþ3
�

m

mþ 1
ðs1=s0 � 1Þ

�
a2

0 � a2

b2mþ2
am�1 þ 2ðs1=s0 � 1Þ

a2
0 � a2

b2mþ4
amþ1o0 (27)
Certainly, the larger the value of sN/s0 the more obvious the
strengthening range. Therefore, the critical case of a ¼ a0 and
b ¼ b0 is corresponding to the minimum value of sN/s0. Thus,
corresponding to the viscoplastic strain-hardening behavior with
the hardening exponent h ¼

ffiffiffi
3
p

, we can substitute the values of
a ¼ a0 and b ¼ b0 into the inequality (27) and get the existence of
the stability condition as

s1=s0 � 1

mþ 1

2

amþ1
0

�
2amþ1

0

b2mþ2
0

 !
4

1

amþ1
0

þ
am�1

0

b2m
0

�
2amþ1

0

b2mþ2
0

(28)

After reorganization, we get the stability condition in terms of
the yield strength ratio in the form as

s1=s04
mþ 3

2
þ

mþ 1

2

ðb0=a0Þ
2
� 1

ðb0=a0Þ
2mþ2

� 1
(29)

For the case with the strain-rate sensitivity m ¼ 0, we then
obtain the stability condition reduced to the form as

s1=s04
3

2
þ

1

2
¼ 2 (30)
5. Comparisons and validations

We consider thick-walled cylinders made of strain-hardening
viscoplastic materials subjected to internal pressure in plane-
strain conditions. Comparisons between numerical results and
analytical solutions are made to demonstrate the reliable
applications of the computational optimization procedure pre-
sented in the paper.

The initial inner and outer radii of the hollow cylinder are
denoted as a0 and b0, respectively. The innermost edge is
subjected to the action of internal pressure simulated by using
the velocity control. The pressure needed to keep the expanding
cylinder fully plastic is then computed sequentially by using the
CSSA algorithm [33]. In the following case studies, we adopt the
dimensional consistently parameters: a0 ¼ 5.0, b0 ¼ 10.0, h ¼

ffiffiffi
3
p

,
_a ¼ 1:0, _̄�0 ¼ 1:0, and a constant step size Dt ¼ 0.01.
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Fig. 2. Limit internal pressure (Pi/s0) versus the inner radius (a/a0) with various

yield strength ratios (R ¼ sN/s0) and the strain-rate sensitivity m ¼ 0.3.
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Fig. 3. Effect of the strain-rate sensitivity m on limit internal pressure (Pi/s0) with

R ¼ sN/s0 ¼ 2.05.
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Due to the loading and geometric symmetry, only one quarter
of the axisymmetric structure is simulated for the circular hollow
cylinder as shown in Fig. 1. With symmetry boundary conditions
imposed along boundaries in the Cartesian coordinate system, one
quarter of a cylinder is used to simulate axial symmetry. Four-
node quadrilateral isoparametric elements are utilized to dis-
cretize the problem domain. A sequence of limit analysis
problems is solved to obtain sequentially numerical solutions of
deforming problems. Note that the first-step solution is the limit
value of internal pressure causing the cylinder of dimensions a0

and b0 fully plastic. Following the first step, each step in
sequential limit analysis starts with the result obtained in the
preceding step to update the yield strength and geometry with the
constant step size Dt ¼ 0.01.

Numerical cases are considered with various values of
the yield strength ratio, namely the hardening parameter,
R ¼ sN/s0 and the strain-rate sensitivity m ¼ 0.3. With an
arbitrarily initial value {U}0 and the convergence tolerance
EU ¼ 1.0 E�5, the results related to various values of the yield
strength ratio R ¼ sN/s0 and the strain-rate sensitivity m ¼ 0.3
are summarized in Fig. 2. On the other hand, as shown in Figs. 3–5,
we consider the effect of the strain-rate sensitivity m on limit
internal pressure Pi/s0 with various values of the yield strength
ratios R ¼ sN/s0 ¼ 2.05, R ¼ sN/s0 ¼ 2.1, R ¼ sN/s0 ¼ 2.3, re-
spectively. As shown, all the computed upper bounds agree very
well with the analytical solutions. That also demonstrates the
validation of the step-wisely rigid-plastic model for the strain-rate
sensitivity.

Based on the concept of sequential limit analysis, the paper
is aimed to deal with the widening problems featuring in
hardening material properties and weakening behavior. After
the validation of the accuracy of the computational plastic
limit load, the next issue is to demonstrate the interaction
of the strengthening and weakening phenomenon. We concern
the stability condition and the onset of the instability.
Note that, the paper considers the viscoplastic strain-hardening
behavior [39] with the hardening exponent h ¼

ffiffiffi
3
p

. As detai-
led in analytical derivations, there exists strengthening
phenomenon for s1=s04ðmþ 3Þ=2þ ððmþ 1Þ=2Þððb0=a0Þ

2
� 1Þ=

ððb0=a0Þ
2mþ2

� 1Þ with the action of internal pressure simulated
by the velocity control. Namely, the hollow cylinders
with s1=s04ðmþ3Þ=2þ ððmþ1Þ=2Þððb0=a0Þ

2
� 1Þ=ððb0=a0Þ

2mþ2
� 1Þ

are strengthened up until the onset of instability with the
strain-hardening exponent h ¼

ffiffiffi
3
p

. Following that, however,
the weakening phenomenon is observed while the effect of the
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internal pressure (Pi/s0) with R ¼ sN/s0 ¼ 2.1.
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Fig. 5. Effect of the strain-rate sensitivity m on limit internal pressure (Pi/s0) with R ¼ sN/s0 ¼ 2.3.

Table 1
Effects of the yield strength ratio sN/s0 and the strain-rate sensitivity m on the

onset of instability in terms of the inner radius a/a0

sN/s0 m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2.05 1.015 1.010 1.005 – – – – –

2.1 1.033 1.028 1.022 1.015 1.009 1.002 – –

2.3 1.096 1.088 1.080 1.072 1.064 1.056 1.048 1.039

Table 2
Effects of the strain-rate sensitivity m on the stability condition in terms of the

yield strength ratio sN/s0

m

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

2.009 2.021 2.035 2.052 2.071 2.093 2.117 2.143
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strain-hardening is counteracted by that of the strain-rate
sensitivity m together with widening deformation.

As shown in Fig. 2, the strengthening phenomenon is more
significant with a higher value of the hardening parameter in
terms of the yield strength ratio R ¼ sN/s0. On the other hand,
the weakening behavior is corresponding to the strain-rate
sensitivity m and widening deformation as shown in Figs. 3–4.
Fig. 3 shows that there are significant strengthening phenomena
for the cases with R ¼ sN/s0 ¼ 2.05, and m ¼ 0.1, 0.2 and 0.3,
respectively. But there are no strengthening phenomena for the
cases with R ¼ sN/s0 ¼ 2.05, and m ¼ 0.4 and 0.5, respectively.
Fig. 4 illustrates that there is still a strengthening phenomenon
even for the cases with R ¼ sN/s0 ¼ 2.1 and m ¼ 0.6. But there is
no obvious strengthening phenomenon for the case with R ¼ sN/
s0 ¼ 2.1 and m ¼ 0.7. However, the strengthening effect is
dominant even for the case with R ¼ sN/s0 ¼ 2.3 and m ¼ 0.8
as shown in Fig. 5.

Table 1 lists the analytical results by Eq. (25) showing the
effects of the yield strength ratio R ¼ sN/s0 and the strain-rate
sensitivity m on the onset of instability in terms of inner radius
a/a0. Table 2 lists the analytical results by the inequality (29)
showing the effects of the strain-rate sensitivity m on the stability
condition in terms of the yield strength ratio R ¼ sN/s0 with the
ratio of the initial exterior radius to interior radius b0/a0 ¼ 2.
Again, the computed results and the analytical solutions for the
onset of instability and the stability condition, respectively, agree
very well as shown in Figs. 2–5.
6. Conclusions

The paper has systematically presented the numerical and
analytical investigation of limit analysis of thick-walled cylinders
under internal pressure made of strain-hardening viscoplastic
materials [39]. As pointed out in the paper, it is also an interest-
ing problem to demonstrate the interaction of strengthening
and weakening behavior resulting from the properties of the
strain-hardening and the strain-rate sensitivity during the
deformation process.

By using the concept of sequential limit analysis, the plastic
limit loads for plane-strain circular cylinders under internal
pressure were acquired by solving a sequence of limit analysis
problems via computational optimization techniques using a
combined smoothing and successively approximation (CSSA)
algorithm [33]. Numerically, the velocity control was adopted to
simulate the action of internal pressure by a uniform velocity field
along the innermost edge.

Based on the velocity control approach, the stability condi-
tion for the pressurized thick-walled hollow cylinders is
also obtained analytically as s1=s04ðmþ 3Þ=2þ ððmþ 1Þ
=2Þððb0=a0Þ

2
� 1Þ=ððb0=a0Þ

2mþ2
� 1Þ with the yield strength ratios

sN/s0, the strain-rate sensitivity m, the hardening expo-
nent h ¼

ffiffiffi
3
p

, and the initial interior and exterior radii a0

and b0. Namely, it is found that, with the hardening expo-
nent h ¼

ffiffiffi
3
p

, the strengthening phenomena exist only for the
cases that the relationship s1=s04ððmþ 3Þ=ð2ÞÞ þ ððmþ 1Þ=
ð2ÞÞðððb0=a0Þ

2
� 1Þ=ððb0=a0Þ

2mþ2
� 1ÞÞ is held between the strain-

rate sensitivity m and the yield strength ratio sN/s0. On the
other hand, the related onset of instability was obtained in an
implicit form and solved in a novel way by the fixed point
iteration [41].

Finally, validation of the present investigation is confirmed by
good agreement between the analytical solutions and numerical
results of the plastic limit load, the onset of instability and the
stability condition.
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