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SUMMARY

A symmetric indirect Tre�tz method is developed to solve the free vibration problem of a 2D membrane.
It is proved that in this approach the spurious eigensolution exists, and an auxiliary matrix is constructed
to help extraction of the spurious solution using the generalized singular-value decomposition. In addition
to the spurious eigensolution, this regular formulation su�ers from its ill-posed nature, i.e. the numerical
instability. In order to deal with the numerical instability, the Tikhonov’s regularization method, in
conjunction with the generalized singular-value decomposition, is suggested. The proposed approach
has some merits when compared with other regular boundary element formulations reported so far;
namely the capacity of representing eigenmodes and the ability to deal with a multiply connected
domain of genus 1. Several numerical examples are demonstrated to show the validity of the current
approach. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: Tre�tz method; regular boundary element; generalized singular-value decomposition;
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1. INTRODUCTION

The eigenproblems are extremely important in many �elds of engineering. It is well known that
the engineer should avoid designing the eigenfrequencies of the structure to coincide with the
driving force frequency. In addition, the eigenvalues and corresponding eigenfunctions are both
used to represent arbitrary functions in the linear theory of vibration analysis, which means
that they construct the spectrum of the operator [1]. It is then not surprising that eigenproblem
analysis becomes the �rst step in exploring the wonderful world of vibration problems. For
an arbitrarily shaped domain, the numerical methods are usually required in analysis since the
analytical solution might not be available. Among them, the �nite element method (FEM) and
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the boundary element method (BEM) are more attractive to both academic and engineering
�elds due to their merits of own numerical calculations. The main advantage of the BEM as
applied to vibration problems in time or frequency domain formulations is the dimensionality
reduction and this has led to the proposals of various BEM formulation schemes [2–4]. For
a Helmholtz equation, the complex-valued singular boundary elements have been employed
by Kamiya et al. [3] in solving the eigenproblems. To avoid complicated computation in
the domain of a complex number, two alternatives, the real-part formulation and regular
formulation were proposed by De Mey [5]. The real-part formulation basically adopts the
real-part function of the complex-valued auxiliary function (the fundamental solution) as the
auxiliary function. The multiple reciprocity boundary element method (MR=BEM), which
treats the Helmholtz equation as a Poisson’s equation with an external source, has been
developed to transform the domain integral into boundary integrals [6] and applied to solve
the eigenproblem [7]. Basically the MR=BEM uses a real-valued computation. The relationship
between the real-part formulation suggested by De Mey and the MR=BEM was not clear until
Yeih’s work [7]. Yeih et al. [7] proved that the real-part formulation and the MR=BEM are
equivalent mathematically, and the spurious eigenvalues encountered in both formulations stem
from lacking constraint equations contributed by the imaginary part of the complex-valued
fundamental solution. Many e�orts were reported on treating the spurious eigensolution for
solving the eigenproblem using the real-part formulation or the multiple reciprocity method
[8; 9]. Another approach proposed by De Mey is the regular formulation. This method adopts
a non-singular auxiliary function to construct the constraint equations. Kim and Kang [2]
used the wave-type base functions, one regular formulation in our opinion, to analyse the free
vibration of membranes. In their paper, the wave-type base functions, which are periodic along
each element and propagating into the domain of interest, were selected to construct the needed
equations. They pointed out that some incorrect answers would appear and they explained this
phenomenon as the incompleteness of the basis functions. Later, Kang et al. [4; 10] proposed
another regular formulation using the so-called non-dimensional dynamic in�uence function.
Simply speaking, their method took the response at any point inside the domain of interest as a
linear combination of many non-singular point sources located on the selected boundary nodes.
They claimed that their method worked very well and no numerical instability behaviours were
reported, which was later criticized by Chen et al. [11]. Kang’s method is an indirect method
such that it can represent mode shape easily. Recently, Chen et al. [12] used the circular
domain and the property of circulants to examine theoretically the possibility of using the
imaginary dual BEM as a solver for the Helmholtz eigenproblems. They reported that spurious
eigensolutions also appeared in the imaginary dual BEM; however, no numerical examples
were illustrated in their paper. Kuo et al. [13] pointed out that the ill-posed behaviour should
exist in the regular BEM formulation and they also proposed a combination of the Tikhonov’s
regularization method and the generalized singular-value decomposition to treat such an ill-
posed formulation. The regular formulations Kuo et al. proposed are a combination of the
imaginary-part direct dual BEM and the plane wave method. In their paper, the mathematical
structure of using the regular boundary integral formulation to solve the free vibration problem
was explained very clearly. However, their proposed methods although can deal with the
numerical instability but have two unfavourable properties: �rst, their methods cannot represent
the mode shape because they are direct type regular boundary formulations; second, their
methods fail in treating a multiply connected domain. Such a drawback although can be
overcome by introducing an arti�cial boundary as suggested in Reference [10], it loses the
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APPLICATION OF SYMMETRIC INDIRECT TREFFTZ METHOD 1177

merit of boundary element method, i.e. discretization on boundary solely, and it requires users
to construct an arti�cial boundary.
Another regular boundary type approach is the Tre�tz method, which has been widely used

to deal with many types of problems, such as plane elasticity problems [14], plate bending
problems [15] and acoustics [16], and the �rst applications of various modern forms of this
method can be traced back to 1978 [17]. The boundary type Tre�tz method basically employs
the complete set of solutions satisfying the governing equation as the beginning step. To
derive the boundary integral equation, either the reciprocity law, which is similar to those
used in the conventional BEMs, or the weight residual method can be used. A main bene�t
for the Tre�tz method is that it does not involve singular integrals due to the properties of its
solution basis functions (T functions); thus, it can be categorized into the regular boundary
element method. Besides, this advocated approach yields a solution that o�ers simultaneously
the advantages of the classical FEM and BEM solutions, without having their drawbacks
[17]. A thorough review article about the Tre�tz method can be found in Reference [17].
In addition, some successful applications of special purposes functions, such as those for a
circular hole, elliptical holes and obtuse or reentrant corners are also reported in Reference
[17]. Although the Tre�tz method has been successfully used in solving many problems, to
the eigenproblem using the Helmholtz equation few attempts [18] have been found in the
literature to authors’ best knowledge. The reason may come from the ill-posed behaviour
nature of a regular formulation as Kuo et al. [13] mentioned.
In this paper, our purpose is to construct an indirect Tre�tz method to solve the free

vibration problem and satisfy the following requirements:

(1) the proposed method should be able to deal with the spurious eigensolutions if they
exist;

(2) the proposed method can overcome the numerical instability of regular boundary for-
mulations;

(3) the proposed method can deal with a multiply connected domain without introducing
any arti�cial boundary;

(4) the proposed method can represent the eigenmode within its own formulation.

2. FORMULATIONS

2.1. Problem set-up and the di�culty in the conventional indirect Tre�tz method

Consider a 2D membrane � enclosed by the boundary �, the governing equation of free
vibration of a membrane can be modeled by the Helmholtz equation as

(∇2 + k2)u(x)=0; x∈� (1)

where ∇2 is the Laplace operator, k is the wave number, and u(x) is the physical quantity
at x.
The direct Tre�tz method is constructed as follows. Let a �eld W (x) satisfy the

Helmholtz equation, i.e.

(∇2 + k2)W (x)=0; x∈� (2)
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Figure 1. (a) A simply connected domain; and (b) a multiply connected domain of genus 1.

then by the reciprocity theorem one can have∫
�
W (x)

@u(x)
@n

d�(x)=
∫
�
u(x)

@W (x)
@n

d�(x) (3)

where n denotes the outnormal direction at the boundary point x. The choice of W (x) depends
on the problem itself. A complete set of W (x), written as {Wi(x)}, is chosen to give enough
bases to represent physical quantities. This complete set is called the T-complete function
set. In the mathematical language, the T-complete function set provides complete function
bases to represent any physical �elds. For example, for a simply connected domain shown
in Figure 1(a) and having the origin located inside the interested domain, it is convenient to
have the T-complete set as

{J0(kr); Jm(kr) cos(m�); Jm(kr) sin(m�)} for m=1; 2; 3 : : :

in which Jm is the Bessel function of mth order, r is the distance from the origin to a domain
point and � is the angle between the x-axis and the radial vector from the origin to that
domain point. For a multiply connected domain of genus 1 (i.e. with one hole) and locating
the origin inside the hole as shown in Figure 1(b), the T-complete set is

{J0(kr); Y0(kr); Jm(kr) cos(m�); Jm(kr) sin(m�); Ym(kr) cos(m�); Ym(kr) sin(m�)}
for m=1; 2; 3; : : :, where Ym is the second kind Bessel function of mth order.
To derive the indirect Tre�tz method, an intuitive way is to derive an indirect method

using the direct one, i.e. using Equation (3). The spirit of the indirect method is to represent
physical quantities by a linear combination of bases, that is

u(x) =
∑
q
aqWq(x) (4a)

t(x) =
@u(x)
@n

=
∑
q
aq
@Wq(x)
@n

(4b)
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where Wq(x) is the qth base function used in the Tre�tz method, and aq is the undetermined
coe�cient. Substituting (4a) and (4b) into (3), we have

∫
�

∑
q
Wi(x)

@Wq(x)
@n

aq d�(x)=
∫
�

∑
q

@Wi(x)
@n

Wq(x)aq d�(x) (5)

Equation (5) is a conventional indirect Tre�tz method. In the following, we will examine the
di�culty of using (5) to solve the free vibration problem.
Let us consider a Dirichlet problem, u=0, on the boundary of a circular domain with the

radius equal to 1, (5) becomes
∫
�

∑
q
Wi(x)

@Wq(x)
@n

aq d�(x) = 0 (6)

It is easy to prove that (6) has a spurious eigensolution resulting from Wi(x), i.e. from the
weighting function. It is not our purpose to use (6), therefore, we skip the proof. For details
of the derivation, interesting readers can refer to Kuo’s work [13]. The method to prove is
basically the same as using the property of a circulant matrix.
Also while solving (6) we will encounter the ill-posed behaviour as the element number

increases. Therefore, we need to construct the auxiliary problem according to Kuo’s suggestion
[13]. Let us take the Neumann problem as the auxiliary problem for example, we have

∫
�

∑
q

@Wi(x)
@n

Wq(x)aq d�(x)=0 (7)

It then can be seen that the leading matrices in (6) and (7) are transpose to each other.
Remember that the original idea for doing so is to extract the spurious eigenvalue out from
both systems. However, the true eigensolution of the original problem in (6) is the same as
the spurious eigensolution in (7) and vice versa. It makes the algorithm suggested by Kuo
et al. fail. Furthermore, this method only can deal with simple boundary conditions such
as the Dirichlet or Neumann problem but cannot deal with a general boundary condition,
�1u+ �1t=0.

2.2. Symmetric indirect Tre�tz method

Now let us try to construct a symmetric indirect Tre�tz method for solving a general boundary
value problem, �1u+ �1t=0. First, we propose to replace the boundary conditions by

�1u+ �1t= �g (8)

then select the weighted function as �1Wi − �1(@Wi=@n) and a boundary integral equation can
be formulated as ∫

�

(
�1Wi − �1 @Wi@n

)
(�1u+ �1t − �g) d�(x)=0 (9)

Now let us substitute (4a) and (4b) into (9), we have

[Kij][aj] = [Him][ �gm] (10)
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where

Kij =
∫
�

(
�1Wi − �1 @Wi@n

)(
�1Wj + �1

@Wj
@n

)
d�(x)

=
∫
�
�1�1

[
Wi(x)Wj(x)− @Wi(x)

@n
@Wj(x)
@n

]
d�(x)

+
∫
�

[
�21Wi(x)

@Wj(x)
@n

− �21
@Wi(x)
@n

Wj(x)
]
d�(x) (11a)

and

Him=
∫
�m

(
�1Wi(x)− �1 @Wi@n

)
d�(x) (11b)

in which �m is the mth element on the boundary.
In the formulation of (11a), the matrix [Kij] is a symmetric one. The proof is shown in

the following. Considering that

Kij − Kji=
∫
�
�21

(
Wi
@Wj
@n

−Wj @Wi@n
)
d�−

∫
�
�21

(
@Wi
@n
Wj −Wi @Wj@n

)
d� (12)

then, (12) leads to zero since the reciprocity theorem tells us that∫
�

(
Wi
@Wj
@n

−Wj @Wi@n
)
d�=0 (13)

The auxiliary matrix, [H] in (11b), is constructed in order to help extraction of spurious
eigensolutions. This matrix is not necessary to be a square matrix and is not a symmetric one
even when it is a square one. To check the rank de�ciency of [K] and [H] matrices, we will
have an overall description as follows.
First, let us con�rm that the true eigensolution will cause the rank de�ciency of the [K]

matrix but will not cause the rank de�ciency of the [H] matrix. Suppose that the true eigen-
solution, u, can be written as (4a) and satis�es the boundary condition, �1u + �1t=0, then
we will have

[Kij][aj] = 0 (14)

for a non-trivial [a]. This means that the true eigensolution makes the matrix [K] degenerated.
This result comes directly from substituting (4a) and (4b) into the �rst line in (11a). The
true eigensolution itself cannot result in the rank de�ciency of the [H] matrix on the other
hand. Considering the following equation:

[ai]T[Him]=
∫
�m

[∑
i

(
�1Wi − �1 @Wi@n

)
ai

]
d�(x) (15)

it is not trivial in general. This means that an eigensolution satis�es the boundary condition,
�1u + �1t=0; for sure it cannot satisfy its linearly independent boundary condition,
�1u− �1t=0. This theorem has been proved in Reference [13].
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Let us consider another eigenproblem with the boundary condition, �1u − �1t=0, and its
solution is written as

u=
∞∑
j=1
Wjcj (16)

It can be proved that this solution will result in the rank de�ciency of [K] and [H] matrices
simultaneously. Now let us perform

[ci]T[Kij]=
∫
�

[∑
i

(
�1Wi − �1 @Wi@n

)
ci

]
·
(
�1Wj + �1

@Wj
@n

)
d�≈ 0 (17)

it leads to zero when the number of elements is very large. This means that the non-trivial
vector [c] in (16) will result in the rank de�ciency of the matrix [K] too; thus it is for sure
a spurious eigensolution. It should be noticed that (17) becomes trivial because the quantity,∑

i (�1Wi − �1(@Wi=@n))ci, is zero due to the application of (16). To cancel out the spurious
eigensolution, we will prove that the spurious solution, nontrivial vector [c] in (16), also
makes the rank de�ciency of the matrix [H]. Because (16) satis�es the boundary condition,
�1u− �1t=0, we have

∞∑
j=1

(
�1Wj − �1 @Wj@n

)
cj=0 (18)

It then can be concluded that

[ci]T[Him]=
∫
�m

[∑
i

(
�1Wi − �1 @Wi@n

)
ci

]
d�=0 (19)

Therefore, the spurious eigensolution will result in the rank de�ciency of the [H] matrix as
well. Once again, (19) leads to zero because the quantity,

∑
i (�1Wi−�1(@Wi=@n))ci, is zero due

to the application of (16). It then can be said that the generalized singular-value decomposition
method suggested in Reference [13] is available for extracting out the spurious eigensolution
from [K] and [H] matrices and leaving the true eigensolution. However, such an algorithm
still su�ers from the ill-posed behaviour as other regular formulation does. In Reference [13],
the Tikhonov’s regularization method in conjunction with the generalized singular-value de-
composition was introduced to treat the numerical instability. A brief introduction of such a
method is given in the following.

2.3. The method to deal with numerical instability

Now let us brie�y introduce the idea of treating numerical instability. We have a system
as [K][a]= [H][g]. Since both problems can have common spurious eigensolutions, we can
intuitively decomposed both matrices into the following form as

[P][W1][a]= [P][W2][g]= 0

where [P][W1]= [K] and [P][W2]= [H]. Then the spurious eigenvalues will result in the
rank de�ciency of the matrix [P] and the true eigenvalues will result in the rank de�ciency
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of the matrix [W1] for the original problem. When the spurious eigenvalues are encountered,
basically we want to extract them out by �nding the matrix [P]. That is to perform a numerical
operation of L’Hospital rule on an inde�nite form of 0=0. The above-mentioned technique can
be achieved using the QR factorization, which is the �rst step of the generalized singular value
decomposition.
Remember that the serious problem we encounter is not the spurious eigensolution but

numerical instability of this algorithm. To treat this, we will add some small quantities into
the matrices [K] and [H] to make the numerically tiny singular values occurring in both
matrices become ‘numerical spurious eigenvalues’ such that the QR factorization can extract
them out. Let [K] and [H] have the following singular value decompositions as

[K] = [P][�1][V∗
1 ] (20a)

[H] = [P][�2][V∗
2 ] (20b)

where [P] is the left unitary matrix and is the same for both matrices, [V∗
i ] is the right

unitary matrix of system i, superscript ‘∗’ means take the transpose and complex-conjugate
of the matrix, and [�i] is a singular value matrix of system i with singular values allocated
in the diagonal line. When one of the singular values is numerically very small at a speci�c
wave number, it can be said that the system has degenerated, i.e. that the wave number is
an eigenvalue. However, when a non-singular BEM is adopted there exist many numerical
tiny values in the singular values, which are not true zeros. This phenomenon becomes very
severe when the number of elements increases and=or a direct eigenvalue search is used at
a low wave number. Now let us add two small quantities in the matrices to construct new
in�uencing matrices as

[K̂] = [P]([�1] + �1[I])[V∗
1 ] (21a)

[Ĥ] = [P]([�2] + �2[I])[V∗
2 ] (21b)

where �i is the small value added to system i. The above-mentioned method is the so-called
Tikhonov’s regularization [19] that is commonly used to deal with an ill-posed matrix in
inverse problems. The choice of the regularization parameter, �i, is dependent on the problem
itself; however, if they are larger than the unreasonable tiny values of singular values in the
original two systems, but still small enough not to overcoat the true eigenvalue, one then can
successfully extract the contaminated tiny value out. If one takes the QR factorization of [K̂]
and [Ĥ], the unreasonable ones can be extracted out.

2.4. Multiply connected domain and modal shape representation

It has already been mentioned in the previous section that, except for the numerical instability,
the regular formulations reported so far more or less encounter two di�culties, i.e. failure in
dealing with a multiply connected domain without introducing an arti�cial boundary and=or
failure in representing mode shapes for the direct type representation. In this subsection, we
focus on explaining why our proposed approach can overcome these two di�culties at the
same time. First, let us look at the multiply connected domain.
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Previously mentioned regular formulations resulted in trivial integral equations for a multiply
connected domain. When a multiply connected domain of genus 1, as shown in Figure 1(b),
is considered, the Tre�tz method can easily deal with this case. One only needs to place the
origin of the reference coordinate frame inside the hole. The complete T-function set involves
the �rst kind Bessel functions and the second kind Bessel function at the same time. It is
very easy to tell that for a multiply connected domain the solution should be allowed to tend
to in�nity value inside the hole (it is not our interested domain). This means that we have to
put the second kind Bessel functions in our bases in order to represent the solution because
they have in�nite value at the origin. Previous methods fail simply because they do not have
the second kind Bessel functions in their bases. For example, the fundamental solution used in
the imaginary-part BEM in Reference [13] is simply Jm(k �r) in the singular integral equation
(UT equation) or J ′m(k �r) in the hypersingular integral equation (LM equation) where �r is
the distance between the source point and observation point. These functions are obviously
regular (�nite-valued) at origin, and such a property results in failure in dealing with a multiply
connected domain. On the other hand, since the Tre�tz method allows use of the second kind
Bessel functions it can easily overcome this di�culty.
It should be mentioned that when the proposed symmetric indirect Tre�tz method is used

to solve the free vibration problem of a multiply connected domain, a modi�cation in (10)
is required. For a multiply connected domain, the contaminations of higher order modes
at a low wave number become severe. Let us go back to take a look of (10) now. The
[H] matrix needs not to be a square matrix theoretically, if we choose the �rst i-bases in
complete T-function set and have n elements on the boundary. Then the [H] matrix is an
i× n matrix. However, in the most cases we arrange the element number and base function
number to be equal such that the [H] matrix becomes square. This results in the di�culty for
dealing with a multiply connected domain. For example, let us deal with an annular region
with the Dirichlet boundary condition given on the boundaries. The true eigenequation is
Jp(kr2)Yp(kr1) − Jp(kr1)Yp(kr2)=0 where r1 and r2 represent for the outer radius and inner
radius, respectively. When the quantity kr is very small and p tends to a large number, the
calculation of multiplication of the �rst kind and second kind Bessel functions becomes a
tragedy because at this case the value of the �rst kind Bessel function tends to zero. But
the value of the second kind Bessel function tends to in�nity. How precisely the computer
can perform this calculation depends on its capacity. Remember that how a higher order
mode will be encountered depends on our initial choice of the base functions. If we pick the
base functions to a very high order, numerical instability cannot be overcome even when the
Tikhonov’s regularization method is used. Fortunately, in engineering reality we only want to
know lower order modes usually and do not require higher order Bessel functions. However,
we have to deal with a square matrix in computation practice. This means we have to modify
(10) and this modi�cation is introduced in the following.
Introducing the following operation:

[H̃]≡ [H][H]T (22)

then both [K] and [H̃] are square matrices. The symmetric property for [H̃] matrix is obtained.
This transformation means the problem we are dealing with now is

[K][a]= [H̃][g̃] (23)
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where [g]= [H]T[g̃]. It can be easily proved that by such an operation the spurious eigen-
solution existing in the original formulation now still exists in this modi�ed formulation.
After modi�cation, we can arbitrary choose the element number as well as the base-function
number. It is for sure that both the Tikhonov’s regularization method and the generalized
singular-value decomposition method should be used as before. Numerical examples will be
given in the next section.
After discussing the multiply connected domain, we will discuss about the mode shape

representation in regular formulations. In general, two kinds of regular formulations can be
found. One is the direct type and the other is the indirect type. For the direct type, physical
quantities on boundary are used directly. If the BEM is a regular formulation, it leads to the
following expression:

[U][t]− [T][u]= 0 (24)

where [U] and [T] matrices are corresponding leading coe�cient matrices resulting from the
direct BEM. From (24), one can obtain boundary unknown data. However, (24) does not
tell us any information about inner points. The in�uencing matrices, [U] and [T], are built
by placing the observation point and source point on the boundary. Even if we change the
observation point to an inner point, (24) becomes a trivial equation. It means that the direct
type regular formulation cannot construct the physical quantities inside the domain within its
own formulation and thus it requires help from other formulations.
On the other hand, the indirect type BEM represents physical quantities inside the domain

by a superposition of some sources. The unknowns in the resulting equation are strengths of
these sources. After obtaining the strengths of sources, the solution then can be constructed
easily. This merit also keeps for the regular BEM. In our opinion, the indirect type regular
BEM is more practical than a direct one because it can represent modal shapes easily.

3. NUMERICAL EXAMPLES

Example 1
A circular domain with radius Ro = 1:0 and the Dirichlet boundary condition, u=0, is given.
Fifty-one elements and 51 bases are used correspondingly. For a simply connected domain

like this case, it is preferred to use (2m+1) bases since we have to include Jm(kr) cos(m�)
and Jm(kr) sin(m�) at the same time. By using the Tikhonov’s regularization method and
generalized singular-value decomposition, eigenvalues are found successfully as shown in
Figure 2. In this �gure, the value in the bracket is the analytical solution. The mode shapes
for the �rst three modes are illustrated in Figures 3(a)–3(c).

Example 2
A circular domain with radius Ro = 1:0 and the Neumman boundary condition, t=0, is given.
In this example, we can see that our method is valid for all kinds of boundary conditions.

Again, �fty-one constant elements and 51 bases are used. By using the proposed method,
eigenvalues are successfully found and are very close to the analytical values, as shown in
Figure 4.
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Ro=1.0 (Nelm=51)
Dirichlet B.C. : u=0
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Figure 2. Eigenvalue searching for the Dirichlet boundary condition of a unit circle by using the
symmetric indirect Tre�tz method.

Example 3
A square membrane with edge length Lo = 1:0 is given, and the Neumann boundary condition,
t=0, is prescribed on the boundary.
In this example, a domain without radial symmetry is illustrated. Eighty-one constant

elements and 81 bases are used correspondingly. It can be found in Figure 5 that the numer-
ical results match the analytical solutions very well. At k=3:14, a double root can be found
by the current method as shown in Figures 6(a) and 6(b).

Example 4
An annular region with the outer radius Ro = 1:0 and inner radius Ri=0:2 is given, and a
Dirichlet boundary condition, u=0, is prescribed on the boundary.
The domain is a multiply connected domain, which shows the superiority of the current

approach over Kuo’s method in Reference [13]. Their method is proven to fail when a multiply
connected domain is treated. However, the indirect Tre�tz method can easily overcome this
problem by putting the origin inside the hole. In this example, we have to use the modi�ed
version as we have explained previously. The analytical values are obtained by using the
eigenequation:

[Jm(kRo)Ym(kRi)− Ym(kRo)Jm(kRi)]=0
We use 50 constant elements on the outer boundary and inner boundary. And we �rst choose
to 10th order Bessel functions, both the �rst kind and the second kind. It means we have
42 bases totally. As shown in Figure 7, we can �nd that no matter how we adjust the
regularization parameters in the Tikhonov’s regularization method, the results are not good
due to higher order mode contaminations. However, when we reduce bases from 10th order
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Figure 3. (a) The �rst mode shape of a circular membrane; (b) the second mode shape of a circular
membrane; and (c) the third mode shape of a circular membrane.
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Ro=1.0 (Nelm=51)
Neumann B.C. : t=0
(   ) : Analytical eigenvalue
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Figure 4. Eigenvalue searching for the Neumman boundary condition of a unit circle by using the
symmetric indirect Tre�tz method.

Lo=1.0 (Nelm=81)
Neumann B.C. : t=0
(   ) : Analytical eigenvalue
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Figure 5. Eigenvalue searching for the Neumman boundary condition of a square membrane
by using the symmetric indirect Tre�tz method.

Bessel functions to 5th order Bessel functions (totally 22 bases are used), the solution is
acceptable as shown in Figure 8. The �rst three mode shapes for this case are shown in
Figures 9(a)–9(c).
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Figure 6. A double root of a square membrane is found by using the symmetric indirect
Tre�tz method at wave number k =3:14.

Example 5
A multiply connected domain, in which the outer boundary is a square with edge length
Lo = 2:0 and the inner boundary is a circle with radius Ri=0:2, is considered. The origin of
the circular hole is the geometric centre of the whole domain. The boundary condition is the
Dirichlet condition, u=0.
In this example, no analytical solution is available. We compared our results with those

obtained from the complex-valued dual BEM. Numerical results obtained from the indirect
Tre�tz method are close to those obtained from the complex-valued dual BEM as shown in
Figure 10. Again we only choose the Bessel functions to the �fth order, it means that totally
22 bases are used.

Example 6
A circular domain with radius Ro = 1:0 is given and the Robin boundary condition, 2u+3t=0,
is prescribed on the boundary.
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Ro=1.0 (Nelm=25*2)
Ri=0.2
Dirichlet B.C. : u=0
( ) : Analytical eigenvalue
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Figure 7. Some numerical contaminations still exist no matter how to adjust the Tikhonov’s
regularization parameters for an annular region.

Ro=1.0 (Nelm=25*2)
Ri=0.2
Dirichlet B.C. : u=0
(   ) : Analytical eigenvalue
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Figure 8. Numerical contaminations are eliminated after reducing the bases functions in the
symmetric indirect Tre�tz method.

The analytical values for this case are obtained by using the true eigenequation as [13]
2Jm(kRo) + 3J ′m(kRo)=0. In this case, 51 elements and 51 bases are used correspondingly.
After the Tikhonov’s regularization method and generalized singular-value decomposition are
adopted, eigenvalues are found successfully and numerical results match analytical solutions
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Figure 9. (a) The �rst mode shape of an annular membrane; and (b) the second mode shape of an
annular membrane; and (c) the third mode shape of an annular membrane.
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Dual complex BEM

Figure 10. Eigenvalue searching for the Dirichlet boundary condition of a multiply connected domain
by using the symmetric indirect Tre�tz method.
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Figure 11. Eigenvalue searching for the Dirichlet boundary condition of a unit circle by using the
symmetric indirect Tre�tz method.

very well as shown in Figure 11. It should be noted that in this case, two regularization
parameters, �1 and �2, used in the Tikhonov’s regularization method for treating the ill-posed
problem are both 0.01.
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4. CONCLUSIONS

In this paper, a symmetric indirect Tre�tz method has been developed to solve the free
vibration problem of a 2D membrane. The spurious eigensolution exists in this formulation
and numerical instability is encountered. To overcome these di�culties, both the generalized
singular-value decomposition and Tikhonov’s regularization method are used to cope with.
By comparing with other regular BEM formulations, the current approach can easily treat a
multiply connected domain of genus 1 and it can represent the modal shape within its own
formulation. Numerical examples have shown the validity of the proposed approach.

ACKNOWLEDGEMENT

The �rst author would like to express his thanks to the National Science Council, Taiwan for its �nancial
support under contract number: NSC-90-2611-E-019-018.

REFERENCES

1. Stakgold I. Green’s Functions and Boundary Value Problems (2nd edn). Wiley: New York, 1998.
2. Kim YY, Kang JH. Free vibration analysis of membranes using wave-type base functions. Journal of the
Acoustical Society of America 1996; 99:2938–2946.

3. Kamiya N, Andoh E, Nogae K. A new complex-valued formulation and eigenvalue analysis of the Helmholtz
equation by boundary element method. Advances in Engineering Software 1996; 26:219–227.

4. Kang SW, Lee JM, Kang YJ. Vibration analysis of arbitrarily shaped membranes using non-dimensional dynamic
in�uence function. Journal of Sound and Vibration 1999; 221:117–132.

5. De Mey G. A simpli�ed integral equation method for the calculation of the eigenvalues of Helmholtz equation.
International Journal for Numerical Methods in Engineering 1977; 11:1340–1342.

6. Nowak AJ, Brebbia CA. The multiple reciprocity method—a new approach for transforming BEM domain
integral to the boundary. Engineering Analysis with Boundary Elements 1989; 6:164–167.

7. Yeih W, Chen JT, Chen KH, Wong FC. A study on the multiple reciprocity method and complex-valued
formulation for the Helmhotz equation. Advances in Engineering Software 1998; 29:1–6.

8. Chen JT, Wong FC. Analytical derivations for one-dimensional eigenproblems using dual BEM and MRM.
Engineering Analysis with Boundary Elements 1997; 20:25–33.

9. Yeih W, Chen JT, Chang CM. Applications of dual MRM for determining the natural frequencies and natural
modes of an Euler–Bernoulli beam using the singular value decomposition method. Engineering Analysis with
Boundary Elements 1999; 23:339–360.

10. Kang SW, Lee JM. Eigenmode analysis of arbitrarily shaped two-dimensional cavities by the method of point-
matching. Journal of the Acoustical Society of America 2000; 107:1153–1160.

11. Chen JT, Kuo SR, Chen KH, Cheng YC. Comments on vibration analysis of arbitrary shaped membranes using
non-dimensional dynamic in�uence function. Journal of Sound and Vibration 2000; 235:156–171.

12. Chen JT, Kuo SR, Chen KH. A nonsingular integral formulation for the Helmholtz eigenproblems of a circular
domain. Journal of the Chinese Institute of Engineers 1999; 22:729–739.

13. Kuo SR, Yeih W, Wu YC. Application of the generalized singular-value decomposition on the Eigenproblem
using the incomplete boundary element formulation. Journal of Sound and Vibration 2000; 235:813–845.

14. Jin WG, Cheung YK, Zienkiewicz OC. Applications of the Tre�tz method in plane elasticity problems.
International Journal for Numerical Methods in Engineering 1990; 30:1147–1161.

15. Jin WG, Cheung YK, Zienkiewicz OC. Tre�tz method for Kirchho� plate bending problems. International
Journal for Numerical Methods in Engineering 1993; 36:765–781.

16. Harari I, Barai P, Barai PE. Three-dimensional in�nite elements based on a Tre�tz formulation. Journal of
Computational Acoustics 2001; 9:381–394.

17. Jirousek J, Wr	oblewski A. T-elements: state of the art and future trends. Archives of Computational Methods
in Engineering 1996; 3:323–434.

18. Kamiya N, Wu ST. Generalized eigenvalue formulation of the Helmholtz equation by Tre�tz method.
Engineering Computations 1994; 11:177–186.

19. Tikhonov AN. Solution of incorrectly formulated problems and regularization method. Doklady Akademii Nauk
SSSR 1963; 151:501–504.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1175–1192


