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SUMMARY

In many cases, boundary integral equations contain a domain integral. This can be evaluated by dis-
cretization of the domain into domain elements. Historically, this was seen as going against the spirit
of boundary element methods, and several methods were developed to avoid this discretization, notably
dual and multiple reciprocity methods and particular solution methods. These involved the representation
of the interior function with a set of basis functions, generally of the radial type. In this study, meshless
methods (dual reciprocity and particular solution) are compared to the direct domain integration meth-
ods. The domain integrals are evaluated using traditional methods and also with multipole acceleration.
It is found that the direct integration always results in better accuracy, as well as smaller computation
times. In addition, the multipole method further improves on the computation times, in particular where
multiple evaluations of the integral are required, as when iterative solvers are used. The additional error
produced by the multipole acceleration is negligible. Copyright ? 2001 John Wiley & Sons, Ltd.

KEY WORDS: boundary element method; particular solution method; dual reciprocity method; multipole
method; domain integral; meshless method

1. INTRODUCTION

The boundary element method originally was developed to analyze homogeneous linear partial
di=erential equations for which a fundamental solution associated with the adjoint operator
could either be determined or approximated. In these cases, the dimensionality of the problem
could be reduced one order since the dependent variable could be represented solely by a
boundary integral. In subsequent development, the boundary element method was extended
to non-linear and non-homogeneous problems. However, for these problems, the boundary
integral representation had to be supplemented with a domain integral.
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The introduction of a domain integral in boundary element methods created additional
complexity and CPU costs. Typical approaches for evaluating the domain integral involved
discretizing the interior of the domain, approximating the non-homogeneous functions in the
interior of the domain using Lagrangian interpolants, and performing numerical quadrature.
Although this procedure was relatively robust, the additional discretization devalued one of
the main attractions of using a boundary element method, namely, that only the boundary of
the domain required a discretization.

Several methods for eliminating domain integrals associated with boundary element methods
have been developed over the years. Nardini and Brebbia [1] proposed a generalization of
the concept of particular integrals, which they interpreted as a localized particular solution
approach in order to eliminate the domain integral in a free vibration problem. The method,
which they called the dual reciprocity method (DRM), was extended to parabolic problems
by Wrobel and Brebbia [2; 3]. Partridge et al. [4] wrote a book on the DRM detailing the use
of the method for a wide variety of problems. The DRM has probably been the most popular
of the methods to deal with domain integrals in boundary element methods as evidenced by
the sheer mass of journal and conference papers written about the method.

Nowak and Brebbia [5; 6] developed a technique for analysis of transient heat transfer
problems in which the domain integral was replaced by an inInite series of boundary integrals
involving higher order fundamental solutions. They showed in their method which they called
the multiple reciprocity method (MRM), that this series of integrals converged quickly and
could be evaluated eJciently. Yeih et al. [7] used the MRM to study natural modes of an
Euler–Bernoulli beam and Kamiya and Andoh [8] used the MRM for the Helmholtz equation.
Power [9] extended the MRM to non-permanent Stokes Kow problems.

Ahmad and Banerjee [10] used a closed form representation of a particular solution, again to
eliminate a domain integral in a free vibration problem. Herry and Banerjee [11; 12] extended
this work to several problems in elasticity by developing a technique to determine approximate
particular solutions. Zheng et al. [13] solved a variety of non-homogeneous potential problems
again by developing an approximate particular solution. Ingber and Phan-Thien [14] used a
similar method to solve transient heat conduction problems.

Both the particular solution and the dual reciprocity methods require approximating a func-
tion in the interior of the domain with the use of radial basis functions. Further, a particular
solution is required of the non-homogeneous adjoint operator set equal to the radial basis
function. There has been much e=ort in recent years in developing the approximation theory
using radial basis functions [15; 16]. Nevertheless, for interior functional distributions with
steep gradients, it is often diJcult to obtain good interior approximations. Further, the solu-
tion may be sensitive to the location of the radial basis functions [17]. In other cases, the
particular solution may be ill-behaved causing further numerical problems [18].

Fast multipole methods have recently been applied to evaluate boundary integral equations.
Applications of fast multipole methods for boundary element analysis have been presented by
Korsmeyer [19] to study 3D potential problems, Allen [20] for 2D potential point-collocation
and Galerkin BEMs, GMomez and Power [21] for Stokes Kow problems, and Mammoli and
Ingber [22] for suspension problems. In all of these applications, the use of the multipole
methods were limited strictly to boundary integrals and not to any associated domain integrals.

In the current paper, four methods for evaluating domain integrals occurring in boundary
element methods are compared. These methods include domain integration using Gaussian
quadrature, domain integration using a fast multipole method, the dual reciprocity method,
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and the particular solution method. The methods are compared in terms of ease of use,
accuracy, robustness, and CPU requirements.

2. NUMERICAL FORMULATIONS

Two governing di=erential equations will be considered in this research, namely,

∇2u(x; y) = b(x; y) (1)

∇2u(x; y) = h(u; x; y) (2)

The particular form of the second di=erential equation (Equation (2)) is given by the non-
homogeneous Helmholtz equation. The right hand side of this equation could be written in
terms of only the independent variables x and y, and by using the fundamental solution
associated with the Helmholtz operator, the development would be almost identical to the
development for the Poisson equation (Equation (1)). The purpose here is to show that the
methodologies discussed in this research can be applied in more general cases where there is
no known fundamental solution.

2.1. Poisson equation

The boundary integral representation for the Poisson equation is given by:

c(	)u(	) +
∫
R
q?(	; �)u(�) dR +

∫
S
u?(	; �)b(�) dS=

∫
R
u?(	; �)q(�) dR (3)

where R is the boundary of the domain S. The benchmark problem considered for the Poisson
equation has as its exact solution

u(x; y)=y3 exp(x) (4)

and hence,

b(x; y)= (y3 + 6y)exp(x) (5)

The problem is solved on the rectangular domain S given by 06x62 and 06y61. Unless
otherwise stated, Dirichlet boundary conditions are speciIed on the side x=2 and Neumann
conditions are speciIed on the three remaining sides.

2.2. Non-homogeneous Helmholtz equation

A more complex problem is encountered in the case of the non-homogeneous Helmholtz
equation, where the boundary integral equation becomes:

c(	)u(	) +
∫
R
q?(	; �)u(�) dR +

∫
S
u?(	; �)h[�; u(�)] dS=

∫
R
u?(	; �)q(�) dR (6)

The exact solution of the test problem chosen here is

u=3x3y + 2x2y2 − xy3 (7)
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so that the right hand side of Equation (2) is given by

h(u; x; y)=4x2 + 4y2 + 12xy + 3x3y + 2x2y2 − xy3 − u (8)

For both the Poisson and non-homogeneous Helmholtz problems, the boundary integrals
are evaluated by subdividing the boundary into boundary elements and approximating the
source densities within the elements using linear Lagrangian interpolation functions. Since the
focus of this research is on the evaluation of the domain integrals, all boundary integrals are
evaluated analytically to remove quadrature error from those integrals. As discussed above,
four methods for either evaluating or eliminating the domain integral in Equations (3) and
(6) are considered in this research. A brief description of all four methods is given below.

2.3. Classical domain integration

The classical domain integration approach for the Poisson problem requires the direct evalu-
ation of the domain integral in Equation (3) by subdividing the interior of the domain into
quadrilateral Inite elements and approximating b(�) within the interior Inite elements using
isoparametric shape functions. Numerical quadrature is performed here using a 6× 6 Gauss
rule, which results in a suJcient level of accuracy. The weakly singular domain integrals
that result when � approaches 	 are regularized by transforming from Cartesian to polar co-
ordinates in the neighborhood of 	. In this case, the domain integral simply adds to the load
vector, and the system of equations that results from the discretization of Equation (3) applied
to all collocation points is of the form:

Ax= b+ f (9)

where A is a coeJcient matrix, b is the vector that results from known boundary values
of either u or q, and f is a vector that results from the domain integral. The solution of
the system only requires the inversion of A. There are two diJculties with this approach: it
requires a complete interior discretization, and the numerical evaluation of the domain integral.
The diJculty of the discretization is a function of the complexity of the geometry. Meshing
algorithms have progressed considerably in recent years, and most geometries can be meshed
quite eJciently using unstructured meshes. In this paper, the latter concern is addressed. Using
standard numerical quadrature, the operation count required to evaluate the vector f scales as
N × (M +N ), where N is the number of boundary collocation nodes and M is the number of
interior nodes. As the problem size increases, the operation count for the domain integration
begins to dominate.

In the case of the non-homogeneous Helmoltz equation, the values of u at the interior points
are unknown, and the additional load vector f cannot be evaluated. One can now proceed in
two directions:

1. By iteration: the vector f can be evaluated with an initial guess for u, allowing an ap-
proximate boundary solution to be found. Based on the approximate solution, new values
for u can be found, leading to an improved estimate of f . The iteration is repeated until
convergence. The advantage of this method is speed and versatility, because potentially
any function of u can be treated. The disadvantage is that convergence is not guaranteed.

2. By collocation: the values of u at the interior Inite element nodes are introduced as
additional unknowns. A linear system of equations are generated by collocating the BIE
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at both the boundary element nodes and the interior Inite element nodes:[
A C
B D

](
x
z

)
=
(
b
d

)
(10)

where the matrices A and C result from collocation points on the boundary and integra-
tion on the boundary and in the interior respectively, while the matrices B and D result
from collocation points in the interior and integration on the boundary and in the interior
respectively. The vectors x and z are the boundary unknowns and the domain values of
u, respectively. The solution of the system yields the boundary solution and the domain
values of u simultaneously. The advantage of this method over the iterative method is
that a solution can always be found. The disadvantages are that the linear system to be
solved is considerably larger, and that it is not simple to treat non-linear functions of u.

The second technique is investigated here, because the aim of this paper is to perform a fair
comparison of the di=erent approaches. The Irst method will be the subject of subsequent
research.

2.4. Multipole evaluation of the domain integral

The multipole evaluation of the domain integral is essentially equivalent to the classical do-
main integration. However, in the present approach using the Barnes–Hut algorithm [23] for
the evaluation of the domain integral, the operation count per collocation node is reduced
from O(M) for classical Gaussian quadrature to O(logM) for multipole evaluation. A conse-
quence of the multipole evaluation of the domain integral is that, in the case of the Helmholtz
equation, the matrices that result from the integration over the interior domain (C and D) are
not stored explicitly, that is, the individual coeJcients are not known. This precludes a direct
evaluation of the solution to the linear system, and in fact one is limited to using solvers
where only the forward matrix–vector product is available. Because of its robustness, a gener-
alized minimal residual (GMRES) algorithm [24] is used here. Note that the largest matrix in
the system, D, is diagonally dominant, leading to a well-conditioned linear system. Although
this is not implemented here, further improvements to the matrix condition number could be
obtained by left preconditioning with the matrix Pl, given by:

Pl=

[
A−1 0

0 I

]
(11)

where I is an identity matrix of size M ; this would lead to a fully diagonally dominant system.
The details of the Barnes–Hut multipole expansion have been explained in detail elsewhere,

and will not be repeated at length here. The application of the multipole methods to domain
integrals, as opposed to boundary integrals, is straightforward. However, a short explanation
is given in the interest of clarity. Using a Taylor series expansion, the fundamental solution
can be written as [21; 22]

u?(	; �) =
∞∑
q=0

@q

@	k1@	k2 : : : @	kq
u?(	; �0)rk1rk2 : : : rkq

=
n∑

q=0

@q

@	k1@	k2 : : : @	kq
u?(	; �0)rk1rk2 : : : rkq + En(	; �) (12)
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Figure 1. Subdomain Sl where the
Taylor expansion of the kernel func-

tion around �0 is integrated.

Figure 2. Schematic of moment tensor
shift from a number of subdomain points

�0 to a common point �1.

where En(	; �) is the error due to the truncation of the series to n terms, and ri is the ith
component of the distance between � and �0.

The integral over a subdomain Sl, as shown in Figure 1, can be approximated by∫
Sl

u?(	; �)h(�; u) dS ≈
n∑

q=0

@q

@	k1@	k2 : : : @	kq
u?(�; �0)Cl

k1k2 ::: kq (13)

where the coeJcients Ck1k2 ::: kq are moment tensors given by

Cl
k1k2 ::: kq =

∫
Sl

rk1rk2 : : : rkqh(�; u) dS (14)

The variation of h(�; u) is accounted for by appropriate interpolation functions, quadratic
isoparametric in this case.

It is important to note that the moment tensors are solely a function of the local geometry,
and not of the location of 	, and that the shape of Sl is completely arbitrary. The integral over
Sl can be evaluated by multiplying the moment tensor for the subdomain with the appropriate
derivatives, evaluated for the pair of points (	; �0).

The power of the multipole method comes from being able to economically calculate mo-
ment tensors about a point �1 by modifying the moment tensors about point �0, without the
need to re-evaluate the integrals. By ‘shifting’ the moment tensors from the local point �0
for each subdomain to a common point �1, the integral from a number of subdomains can
now be evaluated with a single tensor=derivative multiplication, as shown in Figure 2. The
point �1 is now the common point for a cluster of subdomains. The same procedure can be
used to shift this point to an even higher level point, representing a cluster of clusters, and
so on. The size of such clusters is limited by the size of the truncation error En, which is a
function of the separation of the cluster from the collocation point 	. Far away from 	, larger
clusters can be constructed. The formulae used to shift coeJcients from one point to another
are given in the recent work by Mammoli and Ingber [22] and GMomez and Power [21].
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Figure 3. Clustering for the domain integral for the node highlighted by the dot. Notice that the number
of clusters (light grey) is far smaller than the number of far-Ield elements that they replace (dark grey).

Matrix entries are stored only for the near-Ield elements (white).

The domain integral is evaluated in two parts, a near Ield and a far Ield. In the near Ield,
the classical domain integration is performed. In the far Ield, multipole expansions are used.
The overall integration strategy can be summarized by

∫
S
u?(	; �)h(�; u) dRy =

∑
i∈nf

∫
S
u?(	; �)h(�; u) dR +

∑
j∈=

n∑
q=0
Cj
k1k2 ::: kq

@q

@	k1@	k2 : : : @	kq
u?(	; �j)

(15)

Each collocation node is associated with a list of near-Ield elements (nf) and a list of far-Ield
(=) clusters. The number of near-Ield elements in the list remains approximately constant as
the problem size increases, while the number of far-Ield clusters grows as logM , resulting
in an O(logM) scaling overall. The procedure for the generation of clusters and cluster lists
is well known and will not be repeated here. However, it is important to note that care must
be taken in order to make the generation and storage of near-Ield and far-Ield element and
cluster lists economical. The advantage of the multipole expansion can be severely curtailed
if lists are generated and stored ineJciently. An example of a near-Ield element list and a
far-Ield cluster list is shown in Figure 3.

2.5. Dual reciprocity method

The formulation implemented in this research for the dual reciprocity method is essentially the
same as given by Partrtidge et al. [4] for the Poisson problem, but di=ers slightly for the case
where the non-homogeneous term (h(x; y; u) in Equation (2) is a function of the dependent
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variable u. The formulation for the non-homogeneous Helmholtz equation is presented here
with some comments on the simpliIcations a=orded by the Poisson equation.

First, the non-homogeneous function h(x; y; u) is approximated using radial basis functions.
That is,

h(x; y; u) ≈
N∑
i=1
�ifi (16)

where N is the number of radial basis functions and the �i’s are coeJcients to be determined
and the particular radial basis functions chosen here are given by

fi(x; y)=1 + ri (17)

where ri is the distance between the point (x; y) and the centre of the radial basis function
(xi; yi). Although other radial basis functions could have been chosen, the present choice is
rather common and of general applicability.

Particular solutions ûi are available so that

∇2ûi =fi (18)

In particular, for the radial basis functions given above

ûi = r2i =4 + r3i =9 (19)

Now, using a second reciprocity on the domain integral in Equation (3), the boundary integral
equation can be rewritten as

c(	)u(	) =
∫
R
[q?(	; �)u(�)− u?(	; �)q(�)] dR(�) +

l∑
i=1
�i

{
�(	)ûi(	)

+
∫
R
[q?(	; �)ûi(�)− u?(	; �)q̂i(�)] dR(�)

}
(20)

where q̂i = @ûi=@n.
For the Poisson problem, the left hand side of Equation (16) is known, and hence, the

�is can be determined in a variety of ways. In the present work, the �is are determined by
collocating Equation (16) at each radial basis function center (xi; yi), and then solving the
dense system of equations. For the 2× 1 domain considered, the (xi; yi)’s are chosen on a
regular set of grid points which include all the boundary element nodes.

For the more general case where h is a function of the dependent variable u, the �is must
be determined as part of the overall solution algorithm. Partridge et al. [4] eliminate the �is
by essentially inverting the coeJcient matrix associated with Equation (16) obtained through
point collocation. In the present implementation, rather than eliminating the �is, they are
solved for along with the boundary unknowns. However, in order to do this, the centers of
the radial basis functions can no longer coincide with boundary element nodes. That is, the
(xi; yi)s are all chosen in the interior of the domain. After discretization, Equation (20) is
collocated at each boundary element node and each radial basis function center to determine
the linear equation set to solve for the �is and the unknown boundary data.
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2.6. Particular solution method

The particular solution method starts similarly to the dual reciprocity method by approximating
the non-homogeneous terms in the governing equation using radial basis functions as given in
Equation (16). The solution u is divided into a general solution, ug, and a particular solution,
up. That is,

u= ug + up (21)

An approximate particular solution is given by

up ≈
n∑
i=1
�iûi (22)

Now, rather than using an additional reciprocity to eliminate the domain term in
Equations (3) or (6), the particular solution is used to determine the appropriate bound-
ary conditions for the homogeneous solution ug. Further, since the governing equation for the
general solution is simply the Laplace equation, the boundary integral representation for the
general solution does not contain a domain integral. In particular, the boundary conditions for
the general solution ug are given by

ug(x; y)= u(x; y)− up(x; y) for (x; y)∈R1 (23)

qg(x; y)= q(x; y)− qp(x; y) for (x; y)∈R2 (24)

where R1 is the portion of the boundary where Dirichlet conditions are speciIed, R2 is the
portion of the boundary where Neumann conditions are speciIed, and qp is determined by
taking the normal derivative of Equation (22). In a similar fashion, Robin conditions can also
be accommodated but, for simplicity, are not considered here.

Collocating the boundary integral equation for ug at each boundary element node yields a
linear system which can be written in matrix form as

[Aij]{ugj }=[Bij]{qgj } (25)

Inserting Equations (23) and (24) into Equation (25) yields

[Aij]{uj} − [Aij]["jk]{�k}=[Bij]{qj} − [Bij]["′
jk]{�k} (26)

where "jk and "′
jk represent the value of ûk and @ûk=@n, respectively, at the centre of the jth

radial basis function.
For the Poisson problem, the �is can be determined in the same manner as discussed for

the dual reciprocity method, and Equation (26) can be solved for the boundary unknowns.
For the case where the non-homogeneous term is a function of the dependent variable u, the
�is must again be determined as part of the overall problem solution. In these cases, if there
are N boundary element nodes and M radial basis functions, then Equation (26) represents
N equations in N +M unknowns. To close the algebraic system, the BIE (Equation (25)) is
also collocated at the centres of the N radial basis functions yielding in matrix form

{�iuoi − �iu
op
i }+ [Cij]{uj} − [Cij]["jk]{�k}=[Dij]{qj} − [Dij]["′

jk]{�k} (27)

where uoi and uopi represent the values of u and up at the centre of the ith radial basis function.
These values of u and up can be written in terms of the �is using the radial basis functions
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fi and the associated particular solutions ûi. Hence, Equations (26) and (27) represent the
system of linear equations to solve for the unknown boundary data and the unknown �is.

3. NUMERICAL RESULTS

3.1. Poisson equation

In the case of the Poisson equation, the value of the function b in Equation (3) is known. As
a result, the domain integral is only evaluated once. The number of degrees of freedom for
the classical domain integration method is given by the number of boundary nodes. On the
other hand, in the case of the dual reciprocity solution formulations, the �i coeJcients are
evaluated by collocation at all radial basis function centres, requiring the solution of a large
dense linear system, prior to evaluation of the boundary solution.

The results of interest in this section are the total time required to obtain the boundary
solution, and the L2 norm error, deIned as

L2 =
[∫

S
(u− uexact)2 dS

]0:5

(28)

The solution times are shown in Figure 4. The solution times with the classical domain
integration method (standard and multipole accelerated) is comparable to the solution times
for the dual reciprocity method and the particular solution method for small problem sizes.
At larger problem sizes, the inversion of the large matrix produced by collocation at the
internal points dominates the solution time for the dual reciprocity and particular solution
methods. On a Compaq Alpha workstation with 640MB of RAM, the largest problems solved
with classical domain integration could not be solved using the dual reciprocity and particular
solution methods because of the amount of memory required to store the coeJcient matrix
used to determine the �i’s.

In the case of the direct domain integration, the multipole accelerated solution times are
signiIcantly smaller than with classical element by element integration, except for very small
problems. Crossover occurs at approximately 100 boundary degrees of freedom. The times
shown here are the total times required to arrive at a solution. However, the operations
performed to arrive at a solution are di=erent. In the case of the standard domain integration
method, the majority of the time is spent in evaluating the domain integral. In the case of
multipole acceleration, approximately half the time is spent evaluating the domain integral.
The remainder of the time is spent in recursive domain subdivision and far-Ield and near-Ield
list generation.

The L2-norm error for the four domain integration methods is shown in Figure 5. The
smallest errors are given by the domain integration methods. The multipole approximation
does not introduce noticeable additional error in the results. Indeed, for largest problem size
considered here, the multipole method results in superior accuracy compared to the direct
domain integration technique. This counterintuitive result can be explained by the fact that
some loss of accuracy results from a combination of single precision arithmetic and the very
large number of calculations performed with the classical direct integration method. With the
multipole method, the integral for large numbers of clustered elements is combined analyt-
ically, reducing roundo= error. For small problem sizes, the dual reciprocity and particular
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Figure 4. Boundary solution time as a func-
tion of problem size, for the dual reciprocity
method (♦), the particular solution method
(�), the regular domain integration method
( ) and the domain integration method with

multipole acceleration (©).

Figure 5. Error as a function of problem
size, for the dual reciprocity method (♦), the
dual reciprocity method with double precision
arithmetic (.), the particular solution method
(�), the regular domain integration method
( ) and the domain integration method with

multipole acceleration (©).

solution methods produce a similar error, between 2 and 3 times larger than with classical
domain integration. For larger problem sizes, both the dual reciprocity method and the par-
ticular solution method produce large error when single precision arithmetic is used. In the
case of the dual reciprocity method, the error for 244 boundary nodes is larger than for 64
nodes. This is due to the large condition number of the matrix used to determine the �i’s.
When double precision arithmetic is used with the dual reciprocity method, the trend in the
error vs DOF plot is the same as with the classical domain integration.

3.2. Non-homogeneous Helmholtz equation

As in the case of the Poisson equation, two issues are of importance, namely speed and accu-
racy. For both the particular solution method and the dual reciprocity method, fully populated
linear systems of size (M + N )×(M + N ) are generated. Potentially, these can be solved
directly or iteratively. Unfortunately, the condition number of the matrices precludes e=ective
iterative solution, and direct solution was used to solve the systems. It must be noted that
the operation count is then proportional to the third power of the size of the system, and that
very large systems cannot be solved eJciently.

For the case of regular direct integration, coeJcient matrices can be formed, and the lin-
ear systems can be solved directly. The diagonal dominance of the matrix results in a small
condition number, and the system is amenable to iterative solution. When multipole accel-
eration is used, individual matrix coeJcients are not known, and certain types of iterative
solution must be used. In order to directly compare the standard and multipole acceler-
ated direct integral evaluation techniques, this class of problems was solved iteratively, using
GMRES.
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Figure 6. Error as a function of problem size,
for the dual reciprocity method (♦), the particu-
lar solution method (�), the regular domain in-
tegration method ( ) and the domain integration

method with multipole acceleration (©).

Figure 7. Assembly time as a function of problem
size, for the dual reciprocity method (♦), the par-
ticular solution method (�), the regular domain in-
tegration method ( ) and the domain integration
method with multipole acceleration (©). The codes

were run on a Compaq Alpha XP1000.

The accuracy of the method is described by an L2-norm, deIned in Equation (28). The
L2-norm error for systems with degrees of freedom spanning more than a decade are shown
in Figure 6. The dual reciprocity and particular solution methods display similar levels of
accuracy, with the former being slightly more accurate, while the direct integration methods
(regular and multipole accelerated) are almost two orders of magnitude more accurate. The
fact that errors resulting from regular integration and multipole accelerated integration are
virtually identical indicates that the multipole approximation is an extremely accurate one.

The assembly time for the di=erent methods is shown in Figure 7. Assembly time is
highest for the dual reciprocity method. The assembly time for the particular solution method
is approximately a factor of 4 smaller compared to the dual reciprocity method, for all problem
sizes. The regular direct integration assembly time is smaller and increases more slowly than
for the previous methods. As could be expected, the assembly time with multipole acceleration
is the smallest, more than two orders of magnitude lower than with the dual reciprocity
method. The theoretical O(N ) scaling is not visible in this plot because these times include
not only the near-Ield integration, but also recursive subdivision times and cluster list times.

Finally, the solution times are compared in Figure 8. The dual reciprocity and particular
solution methods are solved in equal times. This is as expected, because a direct solution
method is used to solve linear systems of equal size. The slope of the curve shows the
O(N 3) scaling characteristic of direct solution methods. The solution time for the regular direct
integration method is larger in all cases because of the iterative solution method. Extrapolation
of the curve indicates that it would become advantageous at approximately 10 000 degrees of
freedom. Of course, since in this case all the matrix coeJcients are stored, the linear system
could be solved directly for smaller problems. Because the matrix size is the same as with
the dual reciprocity and particular solution methods, the solution times would be identical.
For the multipole accelerated direct domain integration, the break-even point with the dual
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Figure 8. Solution time as a function of problem
size, for the dual reciprocity method (♦), the par-
ticular solution method (�), the regular domain
integration method ( ) and the domain integra-
tion method with multipole acceleration (©).

Figure 9. Breakdown of assembly time as a func-
tion of problem size for the multipole accelerated
direct integration method: element moment gener-
ation (♦), recursive domain subdivision (�), list
compilation ( ) and near-Ield assembly (©).

reciprocity=particular solution methods occurs at approximately 2000 degrees of freedom. The
increasing slope of the curve is a result of the increasing number of GMRES iterations
required to meet the convergence criterion. In this case, iterative solvers must be used with
the multipole method for all problem sizes because the matrix coeJcients are not known
explicitly.

The assembly time with the multipole accelerated direct integration method reported in
Figure 7 includes a number of di=erent operations, namely the calculation of moment tensors
for all domain elements, the recursive subdivision of the domain, the time taken to compile
far-Ield cluster lists and the regular assembly time for the near-Ield elements. In a sense, part
of the assembly actually takes place during the matrix multiplication time, when the moment
tensors are multiplied by the trial solution vector and the results are shifted from the leaves
of the binary tree to the root. Because it is not trivial to distinguish this process from the
rest of the matrix multiplication time, this distinction will not be made here. Because the
various steps involved in the assembly process in a multipole accelerated computation have
the potential to become time-consuming, their relative importance is shown in Figure 9.

The generation time for element moments remains small compared to the other operations,
until large problems are treated. This time scales as O(P), where P is the number of Inite
elements. The calculation of the near-Ield coeJcients is always the most time-consuming
operation, although the recursive domain subdivision and list compilation processes become
increasingly important. The list compilation and recursive domain splitting procedures appear
to become more eJcient with increasing problem size.

Another potential problem that may be encountered when using iterative solvers is that the
condition number of the matrix may increase signiIcantly with problem size, or the number
of iterations required for convergence may increase too rapidly, resulting in poor scaling.
To illustrate the e=ects of matrix condition number, the calculation was performed using
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Figure 10. Solution time as a function of problem size for the multipole accelerated direct integration
method: Dirichlet conditions on side y=0 (♦), Dirichlet conditions on side x=2 (©).

boundary conditions which result in matrices with di=erent condition numbers. Inspection of
Equation (6) shows that Dirichlet boundary conditions result in a Irst-kind integral equation,
while Neumann conditions produce second-kind integral equations. The latter result in better
conditioning of the A sub-matrix of Equation (10). In the case of mixed conditions, a larger
proportion of Neumann conditions will result in better condition numbers. Solution times for
the multipole accelerated direct integral method are compared in Figure 10 for the cases where
Dirichlet conditions are imposed on the side x=2 only (of length 1) versus the case where
Dirichlet conditions are imposed on the side y=0 only (of length 2) of the same computa-
tional domain used previously. The latter boundary conditions result in worse conditioning of
the sub-matrix A.

There is a factor of two di=erence in the iteration time, due to the di=erent number of
iterations required for convergence. This illustrates the e=ect of the condition number of sub-
matrix A on the iterative solution of the entire matrix. Preconditioning with the preconditioner
described by Equation (11) should have the e=ect of reducing the number of iterations to
convergence (which ideally would remain independent of the matrix size) and of removing
the dependence of the number of iterations on the type of boundary conditions assigned.

4. CONCLUSIONS

Four methods for evaluating domain integrals associated with boundary element methods are
compared in terms of accuracy and computational cost. The four methods include classical
domain integration, domain integration by multipole expansions, the dual reciprocity method,
and the particular solution method.

The dual reciprocity and particular solution methods were essentially the same in terms of
both CPU requirements and accuracy for both the Poisson equation and non-homogeneous
Helmholtz equation example problems. In fact, both of these methods are essentially equiv-
alent. It is interesting to note that relatively little has been written in the literature for the
particular solution method even though, in some respects, it is conceptually simpler and easier
to implement than the dual reciprocity method.
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The classical domain integration and domain integration by multipole expansion methods
were essentially equivalent in terms of accuracy for both example problems. This simply shows
that the multipole evaluation of the integrals was accurate. The classical domain integration
method was typically much faster than the dual reciprocity and particular solution methods,
especially as the number of radial basis functions became large. The domain integration by
multipole expansions method had some overhead in terms of producing box lists and element
moments which made it slower in terms of CPU for smaller problems. However, because of
the logN scaling of the domain integral for a given collocation node, it became the most
CPU eJcient for large problems.

The interesting comparison of the four methods is in terms of their CPU costs and relative
accuracy. The two domain integration methods were uniformly more accurate while typically
requiring less CPU time compared to the dual reciprocity method and the particular solution
method. In fact, for the two problems considered, the L2-norm errors were anywhere from
one to two orders of magnitude smaller for the domain integral methods.

Although not discussed in the results, the domain integration techniques are also superior
in terms of memory requirements. In particular, for the Poisson problem, the matrices needed
to evaluate the �i’s in the case of the dual reciprocity and particular solution methods limit
the size of problems that can be treated. The direct domain integral evaluation methods do
not require the storage of similarly sized matrices, and much larger problems can be treated.
Further, in the case of the non-homogeneous Helmholtz equation problem, it can be shown
that, for the multipole direct evaluation method, the required storage size scales as O(M), as
opposed to O(M 2) for the classical direct integration method, rendering multipole integration
methods even more eJcient.

The main conclusions of this study are that the domain integration methods are superior
in terms of CPU cost, memory requirements, and accuracy compared to the two meshless
methods, namely, the dual reciprocity method and particular solution method. Further, this
research has demonstrated the eJcacy of evaluating domain integrals in boundary element
methods using multipole acceleration. Multipole acceleration further reduces the CPU cost and
memory requirements without impairing the accuracy compared with the traditional domain
integration technique. In light of these conclusions, it is somewhat puzzling that the dual
reciprocity method has enjoyed such popularity. The only advantage of the method is that it
does not require a complete domain discretization. However, with the advanced preprocessors
that are available today, this may not be that much of an advantage.
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