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SUMMARY

Large isoparametric macroelements with closed-form cardinal global shape functions under the label
‘Coons-patch macroelements’ (CPM) have been previously proposed and used in conjunction with the finite
element method and the boundary element method. This paper continues the research on the performance
of CPM in conjunction with the collocation method. In contrast to the previous CPM that was based
on a Galerkin/Ritz formulation, no domain integration is now required, a fact that justifies the name
‘integration-free Coons macroelements’. Therefore, in addition to avoiding mesh generation, and saving
human effort, the proposed technique has the additional advantage of further reducing the computer effort.
The theory is supported by five test cases concerning Poisson and Laplace problems within 2D smooth
quadrilateral domains. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of boundary-value problems (BVP) has been an open issue for over a
century. The global approximation character of the early Rayleigh/Ritz methods [1] was later
replaced by several finite element schemes applicable to arbitrary domains thanks to their local
approximation ability [2]. Despite that, the latter advantage created the need for a high manual
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effort for data preparation, an issue strongly related to the mesh generation. Therefore, many efforts
aimed at reducing the mesh generation activities by using large elements have appeared. Among
them could be mentioned the rational/polygonal finite element methods [3, 4], boundary element
methods [5], Trefftz and other boundary methods [6, 7], meshfree and meshless techniques [8, 9],
as well as CAD-oriented techniques using NURBS [10–12].

In the context of the abovementioned CAD-oriented techniques, the author has contributed by
applying the Coons–Gordon transfinite mapping in conjunction with the finite element method [13]
and the boundary element method [14, 15]. It is to be noted that Coons–Gordon interpolation is the
precursor of the well-known Bézier and NURBS computer-aided design surfaces [16]. Although
the analysis of 3D structures is of major engineering interest [13, 17, 18], for reasons of simplicity
the investigation on the performance of the Coons’ method initiated from 2D domains [19]. In
more detail, large isoparametric macroelements with closed-form cardinal global shape functions
were developed under the label ‘Coons-patch macroelements’ (CPM). It was found that for some
particular problems the boundary-only Coons’ interpolation (Appendix A) could approximate the
solution with adequate accuracy [19–22] while internal nodes in general had to be added in order
to achieve convergence [23]. Furthermore, it was found that the internal nodes could be located
at different positions from those dictated by the boundary ones, while the most complex domains
in which the CPM was successfully applied so far were of a �-like shape [24–26]. Another
interesting finding was that, in the particular case of using Lagrange interpolation along each of
the four sides of the patch, the boundary-only Coons macroelement coincides with the well-known
Serendipity type, while in the case of internal nodes being at the same location with the boundary
nodes it coincides with the well-known Lagrangian type finite element [24–26]. Apart from the
aforementioned Lagrange polynomials, a CPM could be also formulated in conjunction with cubic
B-splines [19], piecewise-linear [20, 21], as well as other types of interpolation such as Bézier
(Bernstein polynomials), higher order B-splines, and NURBS [10] along each of the four sides of
the patch.

In spite of the above advantages, the treatment of the entire domain as one large regular CPM—
when possible—is reduced by the fact that the global nature of the shape functions (particularly
in the case of Lagrange and Bernstein polynomials) generally leads to fully populated matrices.
As a result, when the number of boundary nodes increases, the computer time consumed for the
domain integration of the stiffness and mass matrices may become higher than that required in the
conventional FEM, obviously if the number of boundary nodes is the same [13, 22]. Therefore,
it becomes obvious that there is still a need for further improvement of the CPM method. For
this purpose, this paper investigates the possibility of replacing the Galerkin/Ritz formulation by
a global collocation scheme.

The collocation method is one of the most competitive numerical methods for solving differential
equations. Basically, a collocation method involves the determination of an appropriate solution in a
suitable set of functions, sometimes called trial functions, by requiring the approximate solution to
satisfy the boundary conditions and the differential equation at certain points, called the collocation
points [27]. It has been found that using spline curves, or piecewise polynomials, is more effective
in representing the solution to the differential equation than pure polynomials [28, p. 22]. The
volume of Ascher et al. [29] provides a treatise on spline bases, collocation theory, and spline
collocation for application to the numerical solution of BVP for ordinary differential equations.
Fairweather and Meade [27] give an extensive review (273 papers covering the period 1934–
1989) of collocation methods and various implementations that have been used. They describe
the most common forms of collocation, including nodal, orthogonal, and collocation/Galerkin.
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Spline collocation methods are said to be more efficient than collocation/Galerkin methods and
Galerkin methods. There are a number of choices to be made when applying spline collocation
to approximate solutions of differential equations. These include the particular spline basis to use
(Hermite, B-spline, etc.), the order of the spline function to use, the regularity of the spline curve
to employ, and the locations of the collocation points. The relevant investigation continues until
today, for example [30–33].

Concerning nonrectangular domains, Van Blerk and Botha [34] showed that the approximation
of derivatives (�u/�x,�u/�y), and particularly the cross-derivative term (�2u/�x�y), could be
improved by transforming the full domain rather than the individual elements; for this purpose
they applied the transfinite interpolation [35, 36]. However, it should be strongly emphasized that
in [34] both the domain and the partial differential equation (PDE) were transformed while the
solution was approximated through the tensor product of Hermitian interpolation polynomials,
thus requiring four degrees of freedom (DOFs) per node. In addition, within the last decade
some advanced meshfree/meshless collocation methods using radial basis functions have appeared
[37–42].

It is worth mentioning that if the basis functions are particular solutions of the differen-
tial equation then only the boundary conditions need to be satisfied. This is called the collo-
cation Trefftz method (CTM) [6], which is also referred to as the indirect Trefftz method in
[43], or the boundary solution procedure in [44]. The latest review paper is probably due to Li
et al. [7].

Within this context, as already mentioned, this paper proposes a new approach of the previous
CPM method in conjunction with the collocation method. Since the equation matrices do not
require any domain integration effort, the proposed approach is called ‘integration-free Coons
macroelement’ or, equivalently, ‘Coons-patch collocation’ (CPC) method. The main novel feature of
the CPC method is the replacement of the Galerkin/Ritz formulation with a collocation formulation
while preserving the same high order cardinal global shape functions with the CPM method.
Concerning potential problems, a second characteristic is the use of only one DOF per node,
instead of four DOFs, as commonly used in several schemes that are based on global Hermitian
interpolation in the entire domain or only near the boundary. It is also clarified that the CPC method,
when compared to the CPM method, preserves the capability of coupling adjacent macroelements
using compatibility and equilibrium conditions. The performance of this method is studied in 2D
Poisson and Laplace test cases.

2. THE PROPOSED GLOBAL COLLOCATION METHOD

2.1. General

The proposed methodology is discussed using the Poisson PDE:

∇2u= f in � (1)

where u=u(x, y) denotes the unknown function (potential), ∇ is the operator del, and f = f (x, y)
is a known forcing function in Cartesian coordinates x and y.
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We shall seek an approximate solution to (1) that is a linear combination of the shape functions
{�i (x, y)}, i=1,2, . . . ,N :

ũ(x, y)=
N∑
i=1

ui�i (x, y) (2)

where the unknown nodal potentials u j are to be determined.
Generally, the shape functions possess the rigid body property and allow for an isoparametric

mapping:

N∑
i=1

�i (x, y)=1,
N∑
i=1

xi�i (x, y)= x and
N∑
i=1

yi�i (x, y)= y (3)

Among several alternatives, this paper proposes the use of global and cardinal shape functions
�i (x, y), which are based on Coons (boundary-only) or Coons–Gordon transfinite interpolation
[35, 36]. According to previous reports [19–26], �i (x, y) are produced by considering a unit
square A′B′C′D′ (with normalized coordinates, 0��,��1), that is mapped into the curvilinear
quadrilateral domain ABCD≡� (with Cartesian coordinates xy). In case of a regular geometry,
Equation (2) is obtained for the entire problem domain �. In contrast, the domain is subdivided
into a small number of regular subdomains. In general, the interpolation of the potential within
every subdomain is of the form:

ũ(�,�)= A� (u)+A� (u)−A�� (u) (4)

where A�, A�, and A�� are projections (lofting operators) previously described in [23]. For the
completeness of the text, a summary is given in Appendix A.

The expression (4) is quite general and includes two broad categories of shape functions. The
first category is the ‘boundary-only Coons interpolation’, in which the three projections A�, A�,
and A�� refer to boundary nodes only; this interpolation is successfully applicable to only a few
number of problems. The second category is the ‘transfinite Coons–Gordon interpolation’, in which
internal nodes are considered as well. In both categories, each of the single-variable functions
along the boundary, i.e. u(�,0),u(1,�),u(�,1), and u(0,�) is approximated in a standard way, for
example in terms of piecewise-linear (hat functions), cubic B-splines, or Lagrange polynomials.
Therefore, closed-form cardinal global shape functions �i (x, y) are automatically derived. Details
can be found in [22–24].

2.2. Boundary conditions and discretization

In the general case, there are three types of boundary conditions: Dirichlet (essential), Neumann
(natural), and Robin (mixed). For the sake of brevity, the third case is not considered in this paper.
Therefore, the boundary �=�1+�2 consists of the following:

(a) essential conditions, such as u= ū on �1;
(b) natural conditions of the type �u/�n= q̄ on �2.

In the sequence, let us assume that the boundary consists of N� =ND+NN boundary nodes;
essential (Dirichlet) and natural (Neumann) boundary conditions are assigned to ND and NN nodes,
respectively. In the general case, NI internal nodes also exist.
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Following previous experience [27, 29], the proposed CPC methodology consists of two steps.
The first concerns the collocation of the boundary conditions while the second concerns the
collocation (fulfilment) of the PDE.

2.3. Collocation for the boundary conditions

Taking the normal derivative of (2), the general expression for the flux is obtained:

q= �ũ
�n

=
N∑
j=1

[
� j (x, y)

�n

]
u j (5)

where N =N�+NI is the total number of nodes.
The application of (5) at all NN Neumann nodes leads to

q̄N=ANDūD+ANNuN+ANIuI (6)

where the subscripts ‘N’ and ‘D’ correspond to the Neumann and the Dirichlet parts of the
boundary, respectively, while ‘I’ corresponds to the internal nodes. The matrices AND(NN×ND),
ANN(NN×NN), and ANI(NN×NI) consist of the normal derivatives, i.e. the elements [A]i j =
�� j (xi , yi )/�n. Arranging (6) so that all prescribed boundary conditions are included on the
right-hand side, one obtains:

[ANN ANI]·
[
uN

uI

]
= q̄N−ANDūD (7)

2.4. Collocation for the PDE

Collocation of (1) at all NI internal nodes (or at an equal number of internal points) leads to

[AD
2 AN

2 AI
2]·

⎡
⎢⎣
ūD

uN

uI

⎤
⎥⎦=[f] (8)

where the matrices AD
2 (NI×ND), AN

2 (NI×NN), and AI
2 (NI×NI) consist of elements given as

[A2]i j =∇2� j (xi , yi )=
�2� j (xi , yi )

�x2
+ �2� j (xi , yi )

�y2
(9)

and the vector f consists of the known values f (xi , yi ). In (8,9), the subscript ‘2’ in A2 stands
for the second derivatives involved in the Laplacian; for an arbitrary curvilinear patch these are
given by

�2� j

�x2
=

(
��

�x

)2 �2� j

��2
+2

��
�x

��

�x

�2� j

����
+

(
��

�x

)2 �2� j

��2
+ �2�

�x2
�� j

��
+ �2�

�x2
�� j

��

�2� j

�y2
=

(
��

�y

)2 �2� j

��2
+2

��
�y

��

�y

�2� j

����
+

(
��

�y

)2 �2� j

��2
+ �2�

�y2
�� j

��
+ �2�

�y2
�� j

��

(10)
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where the quantities related to the inverse of Jacobian matrix, such as ��/�x , etc., are calculated
as usual [2, p. 190].

Furthermore, by combining (7) and (8) one obtains the final algebraic system:[
ANN ANI

AN
2 AI

2

]
·
[
uN

uI

]
=

[
q̄N−AND ·ūD

−AD
2 ·ūD

]
(11)

which consists of (NN+NI) equations with (NN+NI) unknowns.

2.5. Coupling of adjacent macroelements

In domains of complicated shape, a safe approach is to split them into regular convex macroelements
(subregions). Then, for each macroelement the matrix appearing on the left side of Equation (11)
is written. The assembly of these matrices is performed by imposing compatibility and equilibrium
conditions at the interface nodes, similar to the conventional FEM procedure. Thus, the unknown
flux along the interface is temporarily eliminated, and is calculated after the unknown potentials
of every macroelement have been determined.

3. NUMERICAL EXAMPLES

The proposed CPC methodology is demonstrated through five examples in which the numerical
solutions are compared to the previous CPM method [22–24], the conventional finite element
(FEM) solution, and closed-form analytical expressions. Numerical results were obtained using a
PC with Intel Pentium III processor-450MHz and 256MB of RAM.

When referring to comparisons with the FEM, we mean bilinear (four-node) finite elements [2]
with a mesh that is characterized by the same number and location of nodes used in both the CPC
and CPM solutions. For a reliable estimation of the solution quality, two error norms of normalized
energy type are introduced as follows:

Lu =
√∫

�(ucalculated−uexact)2 d�√∫
�(uexact)2 d�

(12a)

Lq =
√∫

�(qcalculated−qexact)T(qcalculated−qexact)d�√∫
�(qexact)T(qexact)d�

(12b)

where ucalculated and uexact are the approximate and exact values of the potential at point x, while
qcalculated and qexact are the approximate and exact values of the flux vector (q=[�u/�x �u/�y]T)

at point x.
The abovementioned error norms are measures for the overall accuracy of the numerical solution.

It is clarified that all subsequent figures relevant to the error norm Lu are illustrated in doubly
logarithmic graphs and strictly refer to (12a). On the contrary, the subsequent tables include both
error norms in a per cent (%) format.

For the sake of brevity, in all examples the potential along each of the four sides of each Coons
patch has been interpolated using only Lagrange polynomials.
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Example 1: Steady-state conduction in a cylindrical wall. This example was taken from the
collocation literature [45]; it also served for the evaluation of the CPM approach [24]. It refers to
the potential problem (Laplace equation) with a ‘steep’ temperature distribution, appearing along
the radius of a thick, long, hollow cylinder. The latter is subjected to a given uniform inner surface
temperature (T1=1000◦C) and a given uniform outer surface temperature (T2=0◦C) while the
inner and outer radii are R1=1 and R2=32, respectively. The analytical temperature distribution
depends on the radial direction only, and is given by [46]:

T (r)=T1+ (T2−T1)

ln(R2/R1)
ln(r/R1) (13)

Due to the radial symmetry of the problem, we deal only with an annular circular part of 45◦ as
shown in Figure 1(a). Each one of the two circumferential arcs (BC and DA) is uniformly divided
into m=4 segments. Each one of the radial sides (AB and CD) is uniformly divided into a variable
number of n=4 up to n=18 segments; the case n=10 is shown in Figure 1(a). Moreover, the
remaining three radii passing through the nodes along the sides AD and BC are discretized in a
similar way. Clearly, all models (CPC, CPM, and FEM) share the same mesh shown in Figure 1(b).

The first step in implementing Equation (11), as described by (7), is to apply the Neumann
boundary conditions at the Nr =2(n−1) nodes along sides AB and CD shown in Figure 1(a). For
the second step of implementing Equation (11), as described by (8), the choices tested concerning
the location of the collocation points are outlined below.

First, the PDE was fulfilled at all the NI=(m−1)(n−1) internal nodes (nodal collocation).
Figure 2(a) depicts that the corresponding CPC solution (CPC-node) leads to a better overall
solution than FEM but worse than CPM.

In the sequel, the PDE was fulfilled at the mid-points of the radial segments along AB and CD
(N ′

I =mn=4n points in total). Figure 2(a) shows that the error of the CPC solution (CPC-mid)
significantly decreases and is comparable to the quality of the CPM solution. Only in this particular

Figure 1. Example 1: annular segment of a cross-section in a thick-walled cylinder
(R1=1, R2=32) of infinite length using: (a) collocation at the Neumann nodes denoted

within the two dotted frames and (b) FEM model.
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Figure 2. Example 1: annular segment: (a) Lu error norm versus radial element size (h), using the
proposed Coons-patch collocation (CPC) method for several locations of the collocation points (CPC-node:
nodal, CPC-mid: midpoint, CPC-leg: Legendre roots, and CPC-cheb: Chebyshev roots), the Coons-patch
macroelement (CPM) method and the conventional FEM solution and (b) required CPU-time (s) as a

function of increasing number of radial subdivisions (n).

case, a least-squares procedure is required because the number of equations becomes larger than
the number nodes with unknown temperature.

In addition, the PDE was fulfilled at the roots of Legendre polynomials (Gaussian points,
orthogonal collocation). The error norm (CPC-leg) was found to be between the two obtained
using nodal (CPC-node) and mid-point collocation (CPC-mid). Figure 2(a) shows that the overall
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best CPC solution is rather the one based on the roots of Chebyshev polynomials of the second
kind (CPC-cheb).

Finally, with respect to the CPU-time required, Figure 2(b) shows that the proposed CPC
technique is always more efficient than the previously established CPM method. In more detail, for
small values of radial subdivisions, such as n=4, the proposed CPC is faster than its preceding CPM
method by a factor of 2.8 while for higher ones, such as n=16, this factor monotonically decreases
to 1.7. In addition, for n=4 radial subdivisions, the proposed CPC method is 2.6 times faster than
the conventional FEM and this advantage monotonically decreases to equal CPU-times (breakeven
point) around n=14. For values higher than n=14, CPC becomes more time-consuming than the
FEM; however, an essential convergence has been earlier achieved as shown in Figure 2(a).

Example 2: Rectangular plate. This example refers to a fully 2D potential problem concerning
a rectangular plate of dimensions L×b=2×1, with Dirichlet boundary conditions: u=
Um cos(�x/L) at the top side and u=0 elsewhere (Figure 3(a)). Due to the symmetry with respect
to the y-axis, only the half right (hatched) part is discretized so that the domain becomes a unit
square. The exact solution is given by [46]

u(x, y)=Um[sinh(�y/L)/sinh(�b/L)]cos(�x/L) (14)

Each side of the unit square is uniformly divided into n segments thus including (n−1) Neumann
nodes along the boundary.

In the framework of the CPM method, it was found that, for this problem, convergence was
achieved only when internal nodes were used [24]. Therefore, a uniform mesh of NI=(n−1)×
(n−1) internal nodes was initially used to test the limits of the proposed CPC method. These nodes
control the global shape functions and are also the collocation points where the PDE is fulfilled
(nodal collocation); as an alternative, the roots of either Legendre or Chebyshev polynomials can

Figure 3. Example 2: rectangular plate analysed within the hatched square domain using:
(a) Coons collocation method with boundary nodes (black-filled circles) and internal nodes

(white-filled circles), as well as and (b) FEM model.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:536–557
DOI: 10.1002/nme



INTEGRATION-FREE COONS MACROELEMENTS 545

Figure 4. Example 2: rectangular plate: (a) Lu error norm versus element size (h); (b) CPU-time versus
discretization; and (c) Lu error norm versus CPU-time, using the proposed Coons-patch collocation (CPC)
method, Coons-patch macroelement (CPM) method, and the conventional finite element (FEM) model.
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546 C. G. PROVATIDIS

be chosen (orthogonal collocation). Note that in Figure 4(a) both the CPC and CPM formulations
converge very fast even for a small number of boundary nodes and become superior to the low-
degree (four-node) conventional finite elements. It should be clarified that, as in [24], for this
particular case of uniform mesh, the CPM formulation coincides with the traditional Lagrange-type
finite element.

With respect to the required CPU-time, Figure 4(b) shows that the computational cost for the
CPM method is higher than that of the conventional FEM, while for a certain level of the L2 error
norm, the proposed CPC is the most computationally efficient technique tested in this paper, as
depicted in Figure 4(c).

Finally, it was found that for a given boundary discretization (n subdivisions per side), in order to
apply the proposed Coons-patch methods (either CPM or CPC) it is not necessary to use the same
mesh density and the same locations for the internal nodes (as required in traditional Lagrange-
type finite elements). It is clearly given in Table I that only one node in the centre of the domain
significantly decreases the Lu error norm (from 18.1 to 3.7%) when the proposed CPC method is
applied. Furthermore, by increasing the number of internal nodes to 4 (in a uniform equidistant
2×2 arrangement), the Lu error norm converges to a value near 1.4%, and progressively decreases
to negligible errors. To each row of a certain n-value in Table I, the corresponding error norm
denoted in bold (within shadowed cells) corresponds to such an arrangement of the internal nodes
so that they correspond to the conventional Lagrange-type finite element; it may be noted that no
essential error reduction is achieved when exceeding this critical number of internal nodes.

Example 3: Nonrectangular quadrilateral under Dirichlet boundary conditions. This example
was taken from collocation literature [34], and illustrates the behaviour of the proposed collocation
method in an adequately distorted nonrectangular quadrilateral ABCD as shown in Figure 5(a).
The forcing function f (x, y) (cf. Equation (1)) was chosen as f (x, y)=−(x2+ y2)+3xy−50x−
350y+15000. Choosing homogeneous Dirichlet boundary conditions [34]:

u(x,0) = 0 (0�x�100), u(x,75−x/2)=0 (50�x�100)

u(x, y= x) = 0 (0�y�50), u(100, y)=0 (0�y�25)

the exact solution is given by

u(x, y)= y(x−100)(y−x)(y+x/2−75) (15)

Each side of the quadrilateral was uniformly divided into n=2, 3, 4, and 5 segments, while a
uniform mesh of NI=(n−1)×(n−1) internal nodes was used to investigate the convergence of
the method. The solution quality is shown in Figure 5(b), where it can be noted that even for n=4
(the discretization shown in Figure 5(a)) the CPC solution coincides with the analytical values.
In comparison with the Hermitian-based collocation method of Reference [34], the proposed CPC
method is far superior because it presents a zero error over the entire domain even for n=4
subdivisions, which is the most coarse available mesh in [34]; the same superiority appears in the
fluxes, as well.

Example 4: Torsion of a bar with an elliptic cross-section. This example serves to show the
applicability of the CPC method in fully curvilinear domains where no straight line segment
appears. The typical equation of torsion of a prismatic bar is given by

∇2�=−2G�̃ (16)
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Figure 5. Example 3: nonrectangular quadrilateral under Dirichlet boundary conditions:
(a) geometry and discretization and (b) Lu error norm versus number of subdivisions
per side (n), using the proposed Coons-patch collocation (CPC) method in several varia-
tions (CPC-node: nodal, CPC-leg: Legendre roots, and CPC-cheb: Chebyshev roots), the

Coons-patch macroelement (CPM) method, and the conventional FEM solution.

where �=�(x, y) is the stress function, G the shear modulus, and �̃ the rate of twist, with the
boundary condition �=0 along the entire boundary.

For an elliptic cross-section the distribution of the stress function is given as

�(x, y)=− G�̃

2(a−2+b−2)

(
1− x2

a2
− y2

b2

)
(17)

where a and b are the semiaxes of the ellipse. Choosing the value of the constant G�̃=1 and the
semiaxes a=2 and b=1, the problem to be solved is ∇2�=−2 with �=0 on �.

The boundary of the ellipse was discretized using N� =16 and 32 boundary segments and
NI=(N�/4−1)×(N�/4−1) internal nodes. Obviously, this situation corresponds to a single large
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isoparametric finite element of Lagrangian type. The results are presented in Table II where one
may note that (i) convergence is achieved, and (ii) the nodal collocation is of adequate accuracy
but orthogonal collocation (Gaussian and particularly Chebyshev points) is superior. One can also
note that for both error norms, Lu and Lq , the difference between the Chebyshev-based CPC
solution and the CPM solution is minor.

Example 5: Potential flow past a cylinder. The aim of this example is to depict that the proposed
methodology is applicable to 2D domains that substantially differ from the reference square. It
refers to the prediction of the potential infinite flow around a cylinder of unit radius (a=1).

In this case, the exact solution is analytically known and given by [47]

�=
(
1− a2

r2

)
Ur sin� (18)

where � denotes the stream function, U the flow velocity at infinity, and (r,�) are the polar
coordinates.

The solution domain is shown in Figure 6(a) and restricts to a strip of length L=5m and width
H =2m, while the infinite velocity was taken as U =1m/s. The boundary conditions consist of
the exact stream function � along the entire boundary apart from the portion BC along which the
radial velocity vanishes thus creating a Neumann type condition (��/�x |BC=0).

First, the external boundary of the domain was discretized using 26 nodes (Figure 6(a)). One can
further notice that the side CD consists of two straight segments, i.e. CF and FD, respectively, a
fact that significantly differentiates the current example from the four previous ones. Unfortunately,
due to the abrupt edge at point F, it was not possible to interpolate the xy-coordinates of the
side CD through a unique expression of a Lagrange polynomial of ninth degree. Thus, it was
decided to subdivide the domain into two convex quadrilateral areas by drawing the internal line
segment FE with three extra nodes along it, as shown in Figure 6(a). Therefore, the (AEFD) and
the (EBCF) macroelements in Figure 6(a) consist of 16 and 18 nodes, respectively. In addition to
the aforementioned boundary nodes, internal nodes were introduced to each macroelement, i.e. 9
and 12 nodes, of uniform arrangement (3×3) and (4×3), respectively (denoted by white circles

Table II. Example 4 (Lu and Lq error norms, in %, of the calculated potential and flux using the proposed
CPC method, the previous CPM method, and the conventional FEM).

Lu and Lq error norms (in %)

Proposed CPC method where the PDE is fulfilled at:

Number of
boundary subdi-
visions (N�)

Error
norm

Internal
nodes∗

Roots of Legendre
polynomial†

Roots of Chebyshev
polynomial of second

kind† CPM FEM

16 Lu → 1.081 0.830 0.520 0.506 11.046
Lq → 2.691 2.174 1.923 1.882 28.469

32 Lu → 0.325 0.055 0.036 0.035 2.859
Lq → 1.490 0.416 0.388 0.380 14.224

∗Nodal collocation.†Orthogonal collocation.
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Figure 6. Example 5: potential flow past a cylinder using: (a) two Coons macroelements (50 nodes) and
(b) 36 bilinear finite elements (50 nodes).

Table III. Example 5 (Lu and Lq error norms, in %, of the calculated potential and flux using the proposed
CPC method, the previous CPM method, and the conventional FEM).

Lu and Lq error norms (in %)

Proposed CPC method where the PDE is fulfilled at:

Error
norm

Internal
nodes∗

Roots of Legendre
polynomial†

Roots of Chebyshev polynomial
of second kind† CPM FEM

Lu → 0.007 0.013 0.003 0.325 1.102
Lq → 2.191 1.703 1.838 13.959 16.923

∗Nodal collocation.†Orthogonal collocation.

in Figure 6(a)). Table III represents that the Lu error norm was in favour of the proposed CPC
method (0.003–0.013%), while for the CPM and the conventional FEM (36 bilinear elements, 50
nodes) this norm was found to be equal to 0.32 and 1.10%, respectively.
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4. DISCUSSION

4.1. General

The proposed CPC methodology is a higher order global collocation technique that has not only
similarities but also differences from previous collocation techniques. In brief, neither the differential
equation nor the boundary conditions are satisfied by the shape functions; therefore, according to the
categorization by Finlayson [48, p. 11], the CPC approach should be classified as amixedmethod.

The proposed CPC method is based on the same functions as those used previously in the
transfinite CPM (Galerkin/Ritz) method. Since only Lagrange polynomials are used, the cardinal
global shape functions are automatically constructed in terms of the position of the boundary
and the internal nodes, only. Concerning the position of the collocation points, it was shown that
CPC can be successfully implemented in either nodal or orthogonal form. In both cases, adequate
accuracy was achieved taking the number of collocation points equal to the number of internal
nodes. It should become clear that in case of orthogonal collocation, the aforementioned collocation
points were implemented in a global manner within the entire domain. Concerning the fulfilment
of the boundary conditions, in the case of boundary geometries that are not simple, if one uses
the collocation method at the boundary in the same way as it is performed in the interior of the
domain, demanding the residual to be equal to zero at certain points, the polynomial degree must
be very large. An equally large degree of the trial function is demanded when the solution is not
very smooth, for example, in the case of a crack or a boundary layer. While the aforementioned
drawback characterizes all collocation methods, the proposed approach has the major advantage
of using only one DOF, i.e. using only the potential u j assigned to each node ‘ j’, in opposition to

previous Hermite spline methods which require the derivatives �u j/�x , �u j/�y, and �2u j/�x�y
as well [34, 45]. In this way, the presence of only one-fourth of the previously required DOFs is
now necessary. A precursor of the latter idea was recently introduced and successfully applied to
1D problems [49, 50].

Apart from the abovementioned Lagrange polynomials, a thorough investigation on the perfor-
mance of the proposed CPC method should include all other interpolations previously used in
the CPM, i.e. piecewise-linear and cubic B-splines, as well as others such as Bézier, higher order
B-splines, and NURBS. It is remarkable that for all these interpolations there exists a compact
support that leads to banded matrices, the Bézier interpolation being an exception. However, due
to limited available space, the discussion restricts to the first two cases only. In brief, it was found
that the piecewise-linear approximation has such a poor performance that it is not practically appli-
cable. In addition, the natural cubic B-splines approximation (zero curvature at the ends of each
side, as was author’s choice in his previous CPM method [19, 24]) leads to better results but are
significantly worse than those obtained using Lagrange polynomials. With respect to Example 1,
it was found that it is not only the consideration of the curvatures (associated with additional DOF
at the corners A, B, C, and D of the patch) but mainly the polynomial degree of B-spline that
improves the quality of the results. However, the use of the abovementioned integration points,
implemented in a global manner within the entire domain, in combination with cubic B-splines
is not recommended because it is possible to have a lower number of integration points (Gauss,
Chebyshev) within some knot intervals than required. Interestingly enough, this finding is consis-
tent with analogous results obtained in [24, p. 334], where it was shown that a scheme of 2×2
Gauss points per integration cell was superior rather than implementing global Gaussian integration
in the entire domain.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:536–557
DOI: 10.1002/nme



552 C. G. PROVATIDIS

4.2. Boundary-only approximation

Undoubtedly, there is only a reduced class of problems of which the numerical solution can be
accurately approximated by the boundary-only Coons interpolation. For instance, since Example 1
is characterized by a radial symmetry, it could be alternatively solved using the boundary-only
approximation and, consequently, using only the boundary nodes shown in Figure 1(a). Then,
after the Neumann boundary conditions are considered (Equation (7)), the only modification in
the standard transfinite formulation (Equation (11)) would be to reduce the collocation points
along one arbitrary radius within the domain; of course, the boundaries AB or CD could be
preferred. Therefore, since the fulfilment of the PDE creates additional equations that outnumber
the Neumann boundary nodes, a least-squares procedure should be performed.

4.3. Transfinite approximation

In contrast to Section 4.2, the general BVP requires the use of the transfinite Coons–Gordon
interpolation (Equation (A4)). In general, it is suggested to distribute the internal nodes uniformly
within the domain, something that can be easily implemented in an automatic way. Without loss
of generality, the standard procedure suggests that the PDE be fulfilled at the NI internal nodes
(nodal collocation) or at an equal number of internal points (orthogonal collocation: usually at
the roots of the Legendre or the Chebyshev polynomial of the second kind), thus directly leading
to a square matrix (left-hand-side matrix in Equation (11)). A more conservative approach could
include the fulfilment of the PDE at more internal points, thus increasing the difference between
the number of equations and the number of unknowns and requiring a least-squares solution.

4.4. Remarks on the examples

Further explanations and comments offering a better insight into the performance of the global
basis functions, involved in both the proposed CPC and the previous CPM methods, are provided
below.

Concerning Example 2, Table I presents that for polynomials up to the ninth degree the Lu
error norm monotonically decreases, while it begins to increase for higher degrees, for which the
full matrices are suspected to be ill-conditioned.

Concerning Example 3, it can be verified that the analytical solution (Equation (15)) in Cartesian
coordinates includes the monomials {xy, y2, xy2, x2y, y3, x3y, x2y2, xy3}, of which x2y2 does not
belong to the functional space of a Serendipity element. Moreover, considering the entire patch
ABCD as a four-node bilinear element, it can be easily found that the relationship between the
Cartesian and the normalized coordinates are: x(�,�)=50(2�+�−��) and y(�,�)=25(2�−��).
As a result, the term �4�4 is the binomial of the highest degree that appears into the analytical
solution. Therefore, a Lagrange polynomial at least of fourth degree would be sufficient to represent
accurately the analytical solution, as occurred in the particular example.

Concerning Example 4, if the number of nodes is low then the transfinite interpolation is
incapable of representing the exact solution accurately, although the latter includes only the terms
x2, y2 and the constant. For example, when using N� =8 boundary nodes plus one at the centre
of the ellipse (NI=1), the functional space consists of all those monomials involved in the nine-
node isoparametric finite element of Lagrangian type, thus also involving the terms �2, �2 and
the constant. Obviously, the nonrectangular nature of the domain induces a non-linear relationship
between the Cartesian (x, y) and the normalized (�,�) coordinates; thus reproducing the terms x2
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and y2 is not possible. In contrast, it is worth mentioning that Trefftz method in combination with
the functional set (x+ iy)n , with i2=−1, provides the exact solution to this problem [44].

4.5. A technical issue concerning CPU-time

The efficient calculation of the first and second derivatives (�� j/��,�2� j/��2, etc.) involved in
the Laplacian terms (Equation (10)) could be alternatively performed in a more efficient way using
divided differences (e.g. [28, pp. 1–8]). This fact would further improve the CPU-time performance
of the proposed CPC method and would influence the results shown in Figures 2(b) and 4(b,c).

5. CONCLUSIONS

‘Coons-PatchMacroelements’ (CPM) have been previously proposed for the solution of engineering
problems within quadrilateral domains; so far, they have been used mainly in conjunction with
the finite element method. The novel feature of this work is that the Galerkin/Ritz formulation
introduced initially in CPM was substituted by a global collocation method, retaining the same
global shape functions, thus the term ‘integration-free’ Coons-patch macroelements is justified.
From a limited number of examples, it is concluded that—probably due to the higher order
approximation involved—the accuracy of the proposed technique was superior to the conventional
FEM (for the same mesh density) and generally required lower computational cost for similar
levels of accuracy (Lu and Lq error norms). However, it should be mentioned that, in complex
geometries, the proposed method requires the subdivision of the domain into a small number of
large, preferably convex, macroelements. In addition, domain decomposition is required when a
singularity arises. As a rule-of-thumb, a number of no more than eight subdivisions per side of
a Coons patch is suggested. It should be mentioned that in the five examples reported in this
paper and in a variety of other examples under on-going investigation, no indication of numerical
instability of the proposed method was noticed unless the degree of the approximating polynomial
was higher than 9. So far the results are most encouraging and suggest that the proposed procedure
can be successfully applied to a variety of engineering problems, such as wave propagation and
elasto-dynamic problems, while the extension of the proposed method to 3D problems may become
a most promising tool in engineering analysis.

APPENDIX A: TRANSFINITE COONS–GORDON INTERPOLATION FORMULAS

A.1. Boundary-only Coons interpolation

Let us assume that a 2D function u(x, y) in a square�=(ABCD), with � and � denoting normalized
coordinates (0��,��1), is known along the four sides of the boundary (�=0,1;�=0,1). In other
words, the univariate functions u(�,0),u(1,�),u(�,1), and u(0,�) along the sides AB, BC, CD,
and DA are known. Let us also consider the blending functions:

E0(�) = 1−�, E1(�)=�

E0(�) = 1−�, E1(�)=�
(A1)
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In this case, Coons interpolation formula is given in terms of three projections ( Ā�, Ā�, Ā��) by

u(�,�)=E0(�)u(0,�)+E1(�)u(1,�)︸ ︷︷ ︸
Ā�

+E0(�)u(�,0)+E1(�)u(�,1)︸ ︷︷ ︸
Ā�

− Ā��(�,�) (A2)

where

Ā��(�,�) = E0(�)E0(�)u(0,0)+E1(�)E0(�)u(1,0)

+E0(�)E1(�)u(0,1)+E1(�)E1(�)u(1,1) (A3)

A.2. Transfinite Coons–Gordon interpolation

The transfinite Coons–Gordon interpolation is an enhancement of the Coons interpolation formula
mentioned in Equations (A2), (A3); it includes both boundary and internal nodes, and it is given
by a quite similar formula:

u(�,�)= A�(u)+A�(u)−A��(u) (A4)

where A�, A�, and A�� are projections (lofting operators). In more details, we assume that the func-
tion u(x, y) in a square �=(ABCD) is known at lines �=constant and �=constant (Figure A1).
These lines are (n�+1) �-lines vertical to the �-axis at the points: [n]=[�0,�1, . . . ,�n�

], and
(n�+1) �-lines vertical to the �-axis at the points: [g]=[�0,�1, . . . ,�n�

].
Then, both the boundary and all the following functions are assumed to be known:

u(�i ,�), i=0,1, . . . ,n�

u(�,� j ), j =0,1, . . . ,n�
(A5)

Let us further update the cardinal blending functions Ei (�) for i=0,1, . . . ,n� (�im =Kronecker
delta):

Ei (�m)=�im (A6)

where �i and �m being elements of [n]. By analogy, we define cardinal blending functions E j (�)

for j =0,1, . . . ,n�.
Based on (A5) and (A6), the abovementioned unidirectional operators A�(u) and A�(u) are

constructed as follows:

A�(u) =
n�∑
i=1

u(�i ,�) ·Ei (�)

A�(u) =
n�∑
j=1

u(�,� j ) ·E j (�)

(A7)

In the sequence, a 2D operator A��(u), given by

A��(u)= A�A�(u)=
n�∑
i=1

n�∑
j=1

u(�i ,� j ) ·Ei (�) ·E j (�) (A8)

can be constructed with the aid of the two unidirectional operators A�(u) and A�(u).
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Figure A1. Transfinite reference patch (ABCD) composed of four curvilinear sides
along the boundary (�=0,1; �=0,1), accompanied with several intermediate lines

(inter-boundaries) of �=constant and �=constant.

A.3. Construction of global shape functions

Assuming the continuous functions existing in (A5), these are further interpolated using single-
variable interpolants such as piecewise-linear, piecewise-quadratic, cubic B-splines, NURBS,
Bernstein (Bézier), Lagrange polynomials, etc. Finally, when substituted in (A4), the global shape
functions, � j (x, y), are derived. The interested reader may find in References [13–15, 19–22]
closed-form expressions and illustrative graphs for the global shape functions obtained from this
procedure. For example, for the intermediate node at �=�1 along the side AB (Figure A1), the

associated shape function is given by �(�,�)= L
(n�)

1 (�)E0(�), where L
(n�)

1 (�) is the Lagrange

polynomial of n�-th degree, i.e. passing through (n�+1) points, �0,�1, . . . ,�n�
, with L

(n�)

1 (�1)=1.

A.4. Functional spaces

With respect to the ��-coordinate system, the boundary-only Coons interpolation creates a func-
tional space that consists of the monomials {1,�,�2, . . . ,�n�} and {1,�,�2, . . . ,�n�}, as well as the
binomials {1,�,�2, . . . ,�n�}·� and �·{1,�,�2, . . . ,�n�}. Obviously, in case of a rectangular domain
the normalized coordinates (�,�) may be replaced by the Cartesian (x, y) ones, while in distorted
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domains the corresponding relationship generally becomes non-linear. Moreover, when the exact
solution includes more terms than the aforementioned monomials and binomials, the transfinite
interpolation becomes necessary.
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