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Generalized finite differences using fundamental solutions
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SUMMARY

It is well known that solutions for linear partial differential equations may be given in terms of fundamental
solutions. The fundamental solutions solve the homogeneous equation exactly and are obtained from the
solution of the inhomogeneous equation where the inhomogeneous term is described by a Dirac delta
distribution. Fundamental solutions are the building blocks of the boundary element method and of the
method of fundamental solutions and are traditionally used to build boundary-only global approximations
in the domain of interest. In this work the same characteristic of the fundamental solutions, that of solving
the homogeneous equation exactly, is used but not to build a global approximation. On the contrary, local
approximations are built in such a manner that it is possible to construct finite difference operators that
are free from any form of structured grid. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Approximate solutions for problems governed by systems of partial differential equations (PDEs)
may be obtained by a variety of methods. Some of these methods, such as the boundary element
method (BEM) (e.g. [1]), other boundary integral methods and the method of fundamental solutions
(e.g. [2]) on one side, and the Trefftz method (be it the collocation, e.g. [3, 4], or the Galerkin
approaches, e.g. [5–7]) on the other side, rely on the use of specific knowledge about the solution
of the PDE being analysed. The Trefftz concept [8], as it is known, is the general framework
when the extra information available is the actual solution of the homogeneous equation. The
main characteristic of these methods that take advantage of this extra information is that only the
boundary of the problem needs to be discretized. That is why they are usually referred to as being
boundary-only solution methods. This is true at least for homogeneous problems and techniques
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are available that even for some inhomogeneous problems the domain needs not discretization.
Another characteristic shared by these methods is the fact that global approximations are used,
that is, the approximation is single valued at every point as the support of each function (be it the
fundamental solution or not) contributing to the approximation is global.

The more popular numerical methods, such as the finite element method (FEM) and the finite
difference method (FDM), follow different paths [9]: the domain is discretized into elements or
grids, whereby local approximations using functions exhibiting only basic properties of continuity
and differentiability are used in an explicit, as in the FEM, or an implicit manner, as in the FDM.
These methods may be commonly referred to as being domain methods.

Every method has its own merits. The local character of the domain methods approximations is
quite convenient: local effects may be captured in an efficient manner and undesirable characteristics
(eventually leading to ill-conditioned matrices) are not numerically propagated to the whole domain.
It also adds to the advantages of, in particular, the FEM that complex geometries may be accurately
modelled and that complex characteristics of the governing equations themselves (geometrical and
physical non-linearities, for example) are also properly simulated.

Some of the aspects referred above are, in fact, known disadvantages of the boundary solution
methods: the difficulty to deal with non-linear problems (at least without resorting to domain
discretization as well); and the possibility of ill-conditioning when the number of unknowns
increases.

As for the FDM, the main disadvantage of the standard approach is the need to define a structured
grid of points in order to define the difference operator. To overcome the need for a structured grid,
some non-standard approaches have been proposed, which attempt to generalize the distribution
of points by relaxing the grid requirements, thus allowing for difference operators to be obtained
on non-structured distribution of points.

A possible way to achieve that is to rewrite the operators by using a convenient basis of functions.
This is the approach followed in [10, 11] where radial basis functions (RBF) are used to construct
local interpolations on localized sets of points. The interpolations are subsequently used to find the
difference operators which are then used in a similar way to traditional finite differences (FDs).
The same approach would also be possible with polynomials, but RBFs provide better rates of
convergence and higher accuracy for unstructured grids.

One of the more successful of the non-standard approaches is the Generalized Finite Differ-
ence Method (GFDM) [12]. In this method a moving least-squares scheme is used to obtain the
coefficients of the unknown function being approximated. The least-squares scheme minimizes
the squares of the differences between the function and its approximation. However, it is a rela-
tively complex procedure that requires, for a given set of neighbouring points, the definition of a
polynomial basis, the definition of a weight function and the inversion of a matrix involving these
functions for that particular neighbourhood.

In this work another approach is followed to build the difference operator. It is linked to
the work of Mickens [13] on non-standard finite differences (NSFD), whereby the approximated
difference operator takes into account properties of interest of the problem being modelled. If all
the relevant properties are considered then, in this limiting case, the result is an exact difference
scheme thus reducing the difficulties related to consistency, stability and convergence. But this is
very difficult to achieve and there are not many applications of NSFD for problems other than the
one-dimensional case.

This idea was further developed by Tsukerman [14], who proposed to resort to the Trefftz
concept, that is, to use actual solutions of the homogeneous equation and to define the coefficients
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by taking advantage of that property. The NSFD schemes may be seen to share some of the
properties of Tsukerman’s class of difference schemes and may be considered to be particular
cases of that broader class.

The novelty in the work now being proposed is that fundamental solutions are used instead
of the sets of regular Trefftz functions used by Tsukerman. As referred above, the fundamental
characteristic of the Trefftz functions and of the fundamental solutions is that they satisfy the
underlying differential equation. As the Trefftz functions are more general (in the sense that
these functions are valid on a given domain and also at its boundary, whereas the fundamental
solutions are valid at the domain but not at the boundary where the sources are located), then
there are reasons to consider fundamental solutions as a particular case of Trefftz functions.
Historically, however, researchers (depending on their origin and in particular for those dealing
with boundary integral equations) have tended to emphasize the distinguishing aspects as these lead
to different numerical methods. At this point it is convenient to cite Zielinski [15] ‘It is not easy to
introduce a distinct border separating the modern Trefftz method from the other similar boundary
methods of mathematical modelling. The most popular definition consists of the application of
analytically derived trial functions, sometimes called T-functions, identically fulfilling certain
governing differential equations inside a considered area � (including its boundary �). This
definition would eliminate all singular boundary integral equation methods (e.g. various versions of
the singular BEM), which apply functions fulfilling the differential equations everywhere except �’.

When it comes to implementation, and in a general framework of application of the methods to
PDEs not in the framework of local approximations, fundamental solutions have some slight advan-
tages over regular Trefftz functions (regular as opposed to the singular character of fundamental
solutions):

• for a given problem a unique fundamental solution is used, whereas the complete series of
regular Trefftz functions has an infinite number of terms. Of course, the series is truncated but
there are more functions to code than with a unique generic expression for the fundamental
solution;

• the passage from two-dimensional to three-dimensional applications is much facilitated when
fundamental solutions are used as these solutions do not vary greatly as compared with the
different Trefftz functions required.

The first item above is just a minor one at least for the simplest cases: for the Laplace two-
dimensional problem, for example, the elements of the Trefftz series, after the linear term, are
defined in a unique manner depending only on the degree of that particular term being calculated.
Going from two to three dimensions and for other types of problems there are more visible differ-
ences. Take, for example, the elasticity problem. While the fundamental solution is still represented
by a single function, [16], the elements of the Trefftz series obtained from the Papkovitch–Neuber
potentials by using, for example, Legendre and/or Chebyshev polynomials have to be derived in
advance (meaning, prior to coding) as linear dependencies have to be removed and completeness,
up to that degree, has to be guaranteed [17]. Of course, once these terms of the series are coded
there are no more difficulties (than with fundamental solutions) except if one decides to increase
the number of terms in the series.

Generally speaking, the main disadvantage of the fundamental solutions is the need to define
the location of the sources on a fictitious boundary as this fictitious boundary cannot coincide
with the actual boundary of the problem. This can pose some difficulties for standard applications
of the method of fundamental solutions (in particular for complex geometries and high number
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of unknowns), but it hardly causes any problems in the approach proposed here. As it will be
made clear later, the geometry of the local regions (where the approximations are defined) is very
simple and the number of unknowns is very low; the combination of these two factors precludes
the occurrence of numerical problems related to ill-conditioning or loss of accuracy that may
normally be associated with a non-optimal definition of the fictitious boundary. A disadvantage of
the Trefftz method (which, in a certain way, is equivalent to that of the fictitious boundary when
fundamental solutions are used) is the need to conveniently choose the origin of the system of
coordinates where to place the Trefftz functions and this includes choosing the proper axes and
also normalizing the distances between the points of interest. Again, in the context of the local
approximations that are of interest in Tsukerman’s as well as in this work, the geometry of the local
regions is so simple and the number of unknowns is so low that there are no reasons for concern
in the choice of the origin and the direction of the axes and there is no need for normalizing the
distances.

In this paper a new technique to define generalized difference operators for completely irregular
distribution of points by means of fundamental solutions is proposed. The potential of this technique
is, to say the least, appreciable. Points can be added to a given distribution without any special care
except that the two points cannot be coincident. It is possible to think of adding patches of points
in any shape or size or density on a given geometry if needed and still obtain a local difference
operator of very high quality.

Applications of this technique to two-dimensional potential problems are considered here.
Comparison to other results available in the literature show that the method is accurate, reliable
and may be considered to be an alternative to other numerical methods. As for applications to
other types of problems it is expected that generalized FD operators constructed in the form here
described will work as efficiently as for the potential case. As long as fundamental solutions or
regular Trefftz series solution exist for a given differential equation there is no reason why gener-
alized FD schemes of the type described here cannot be obtained. In Tsukerman’s work, [14, 18],
flexible local schemes with regular Trefftz functions have been successfully applied to a variety of
problems such as the Schrödinger equation, time-domain scalar wave equation, wave propagation,
scattering from a dielectric cylinder among other electromagnetic applications. The same is to be
expected by using fundamental solutions.

2. FUNDAMENTAL SOLUTIONS

Consider the boundary problem

L�u(x) = 0∈�

L�u(x) = g(x)∈�=��
(1)

where L� stands for an elliptic differential operator valid in the domain of the problem and
the boundary condition on � is given by the boundary operator L�. For simplicity only the
homogeneous setting is considered here, extension to various classes of inhomogeneous problems
is straightforward as will be seen later.

The fundamental solution � for the L� operator is such that its solution, when operated by
L�, is the Dirac delta distribution

L��(x,z)=�(x,z) ∀z∈�d , z �=x (2)
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where x is any given point in the domain of the problem, also known as the field point, and z is
the point where the Dirac distribution is centered, also known as the source point. At this point it
should be mentioned that fundamental solutions may be seen (and are, in some fields, known in that
way) as Greens functions for the inhomogeneous problem. Alternatively, Green’s function may be
seen as a fundamental solution of a linear differential equation satisfying homogeneous boundary
conditions. Mathematicians tend to distinguish Green’s functions from fundamental solutions in
the sense that Green’s functions are restricted to the space of solutions that satisfy at least part of
the boundary conditions, whereas the space of fundamental solutions is not required to satisfy any
of the boundary conditions [16].

For the particular case of the Laplace operator in a two-dimensional space

L�u(x1, x2)= �2u(x1, x2)

�x21
+ �2u(x1, x2)

�x22
(3)

the fundamental solution is

�(x,z)=− 1

2�
log(r(x,z)) (4)

where r(x,z) is the distance between the field and the source points. As can be easily seen
this function exactly solves the Laplace equation at all points except the exact place where the
fundamental solution is located.

The fundamental solution may be interpreted as an influence function that represents at every
field point the effect of a single unit Dirac-like distribution source:

u(x)=�(x,z), x �=z (5)

Unit sources are considered in the definition of the fundamental solution only to ensure that the
field function may be reproduced in the following form:

u(x)=
∫

L��(x,z)u(z)dz ∀z �=x (6)

To keep the formulation as general as possible it is convenient to introduce a scaling factor that
amplifies the effect of each source by an unknown quantity � and it is also convenient to allow
for multiple sources instead of just a single one. The superposition of all these effects results in
the following approximation:

u(x)=∑
i

�(x,zi )�i ∀zi �=x (7)

This is the basis of the methods that rely on the use of fundamental solutions, namely the
BEM and the method of fundamental solutions. The main difference between these methods is
that the method of fundamental solutions, in its basic form as given in (7), uses discrete sources
on a fictitious boundary (zi �=x) and the BEM uses distributed sources on the actual boundary of
the problem after going through a limiting process that allows the sources to be placed on the
boundary.

The method of fundamental solutions is no more than the simultaneous application of (7) on a
set of suitably chosen boundary points and by considering a set of sources of unknown magnitudes.
Notice that as the fundamental solution exactly satisfies the field equation at all domain points, all
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that remains to match are the boundary conditions. Notice also that Equation (7) is the condition
that one needs to verify in the case of a pure Dirichlet problem, that is, when the boundary
conditions are given in terms of the actual primary variable. When the conditions are also given
in terms of the variable derivatives then it is necessary to find the corresponding approximation,
for example:

�
�x1

u(x)=∑
i

�
�x1

�(x,zi )�i ∀zi �=x (8)

The solution of the system is the set of actual scaling factors that affect each source. Once those
are known it is straightforward to calculate the field variable (or any of its derivatives) anywhere
in the domain of the problem by superposition.

3. T-COMPLETE SERIES

Fundamental solutions are not the only strategy for solving exactly the homogeneous field equation.
Solutions exist, e.g. [19, 20], in the form of infinite and complete series where each term of
the series is a non-singular function (as opposed to the singular fundamental solution). For the
two-dimensional Laplace problem the T-complete (T- as in Trefftz) series is as follows (in polar
coordinates, for convenience):

∞∑
n=0

(anr
n
i cos n�i +bnr

n
i sin n�i ) (9)

where an and bn are the unknowns to be found after matching the boundary conditions as seen
for the method of fundamental solutions. This approach is known as the collocation approach. It
should be mentioned that Galerkin-based approaches exist that use the T-complete series to build
high-order macro finite elements, e.g. [5, 6].

4. LOCAL APPROXIMATIONS

The approximation that is obtained in the form described above is a global approximation, i.e. it
is valid in the whole domain and it resulted from the superposition of the whole set of sources.
Although it is possible to partition the domain of interest and build different approximations that
are then made to match at the interfaces, the truth is that global approximations are still being built
for each of the subdomains in which the original domain was decomposed. Global approximations
are, by nature, single-valued functions and this is what is obtained with the method of fundamental
solutions and other methods.

The main problem with global approximations is that they are inherently prone to
ill-conditioning, the higher the number of unknowns (be it the number of sources or the number
of terms taken in the T-series) the worse the numerical conditioning. It is a fact that the very high
quality of the solutions allows for accurately solving many problems with a much lower number
of unknowns than with the traditional local approximation methods such as FEM and FDM, but
it is also true that the range of problems that can be solved with global approximations is not as
complete as with the FEM and the FDM. For example, if the geometry is too complex then the
number of unknowns grows fast and with that the potential for ill-conditioning.
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Local approximations based on fundamental solutions could naturally circumvent the ill-
conditioning problems (as the number of unknowns is kept small) but only if they do not require
a fixed domain decomposition, that is, if no interface matching is necessary. And this leads us to
local approximations in overlapping regions without interfaces.

This seems a difficult task as even the FEM approximations are built on non-overlapping domain
decompositions, the elements. An alternative way to build local approximations on overlapping
domains could be one of the meshless methods based on the moving least-squares concept. This is an
interesting approach that has, recently, been the subject of the attention of a number of researchers,
e.g. [21]. These methods will not be addressed here as our focus is the use of fundamental
solutions which do not seem to have a place in the framework of the moving least-square-based
methods.

Looking now at FDs it is possible to see that multiple values are expected for a given point
depending on how the approximated differential operator is constructed or, by using an alternative
argument, the value at a given field point (which is not one of the grid points) depends on the
neighbouring grid points and on any basis of functions used to reconstruct the approximation and
this, of course, may vary.

5. STANDARD FD APPROXIMATION OF THE DIFFERENTIAL OPERATOR

The approach followed by the FDM is not that of building an approximation for the variable itself
but rather for the differential operator that operates on the variables. And this is what allows for
that overlapping local approximations. For the sake of clarity of the remainder of the work, a brief
description of the FD concept will now be given.

Let us consider the Laplace equation and the primary variable u(x), which is assumed to be
known at a set of points distributed on a regularly spaced grid. It is well known that by writing
Taylor expansions for points around the central point in each direction the following expression is
obtained:(

�2u(x)

�x21
+ �2u(x)

�x22

)
xi1,x

j
2

= ui+1, j −2ui, j +ui−1, j

h2
+ ui, j+1−2ui, j +ui, j−1

h2
(10)

where h is the spacing between the points. This expression accurately (second-order accurate)
represents the Laplace operator at the central point of a set of five symmetrically distributed points.
The main problem with this scheme is that a fixed grid is necessary as the Taylor expansion is
defined for fixed distances between points.

6. GENERALIZED FD APPROXIMATION

Generalized FD schemes (generalized in the sense of allowing for irregular distribution of points)
have been obtained by resorting to the least-squares concept, [12]. Basically what the method does
is to construct an overdetermined system of linear equations where each of them corresponds to
the Taylor expansion at a given point but written relative to each of the points of a given local set.
The system is solved by a least-squares algorithm in which each of the equations is weighted in a
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way which is inversely proportional to the distance between the given point and the point where
the Taylor expansion is being written. It is not an easy procedure, but the end result is that FD
operators are obtained for irregularly distributed points.

7. GENERALIZED LOCAL APPROXIMATION WITH FUNDAMENTAL SOLUTIONS

The method to build local approximations by means of the fundamental solutions, which is now
being proposed is the fundamental solutions counterpart to the method proposed by Tsukerman [14]
using Trefftz functions, a method that Tsukerman includes in a ‘new class of flexible local approx-
imation methods (FLAME)’. This also includes non-Trefftz (non-collocation, meaning variational)
schemes that are not going to be considered in the sequence. Further details of the Trefftz and
the non-Trefftz FLAME schemes may be found in the cited work [14]. In the following, attention
will be focused on the application of fundamental solutions to the FLAME methodology for the
Laplace equation in two dimensions (1).

Let us consider a set of n points distributed in the domain �. Assume also that the domain is
decomposed into a set of n overlapping subdomains �(i) that completely cover �:

�=⋃�(i), i=1,2, . . . ,n (11)

Each subdomain is centered on a particular point and includes a given number of other points.
These subdomains are the supports of local approximations involving all the points within the
support (see Figure 1). As the supports overlap there is no single value for u(x), the value the
function takes at a particular location x depends on which local approximation is being considered.

By using fundamental solutions the following approximation for u(x) in � is obtained:

u(i)
h (x)=

m(i)∑
j=1

�(i)(x,z(i)
j )�(i)

j ∀z(i)
j �=x (12)

(k)

(i)

(j)

Figure 1. Distribution of points in � and local supports (i), ( j) and (k).
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Figure 2. Generic local support, distribution of discrete points • and location of the
fundamental solution sources ∗.

where �(i)(x,z(i)
j ) is given by (4) and the �(i)

j coefficients represent the scaling factors of the
fundamental solution. Extending the approximation to all points within the subdomain the following
matrix form may be written as:

u(i)
h =U(i)a(i) (13)

Owing to the singular behaviour of the fundamental solution the location of the sources cannot
coincide with that of the discrete points within each subdomain. Figure 2 shows a schematic
representation of the sources for a generic subdomain.

Notice now that (12) is written in terms of the �(i)
j and not in terms of the actual values of u(x) at

the discrete points as needed in any FD scheme. Another difference is that if we were dealing with
a standard application of the method of fundamental solutions, Equation (12) would be written for
the boundary points only as the fundamental solution exactly satisfies the Laplace equation in the
domain.

The FD approach requires the application of the field equations in the domain and at the
boundary. For each point and each governing equation it is necessary to write an FD scheme at
that point that only involves the function values at the neighbouring points. For example, for the
central difference and the Laplace operator one has

0=−4ui, j +ui+1, j +ui−1, j +ui, j+1+ui, j−1 (14)

where unit spacing is considered for simplicity.
Therefore, the enforcement of each domain (or boundary) equation is, in the FD approach,

written in the form

s(i)Tu(i) =0 (15)

where s(i) is the vector of coefficients of the difference equation involving the u(i) values.
Recalling (13) one may write:

s(i)TU(i)a(i) =0 (16)

This condition has to be satisfied for all a(i) and this is only possible if s(i) is orthogonal to U(i)

U(i)Ts(i) =0 (17)
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This may also be interpreted as s(i) being in the null space of U(i)T:

s(i) ∈Null(U(i)T) (18)

This expression is the central one in Trefftz FLAME’s approach and leads to the following
result: if the null space of the approximating matrix is of dimension one (if it is a vector), then s(i)

defines the sought FD scheme.
As fundamental solutions are being used, not only the differential equation is satisfied (for the

chosen linear combination of fundamental solutions) but also the approximated difference equation
defined by s(i). The use of solutions of the actual governing equation, be it Trefftz functions or
fundamental solutions as in this work, maximizes the possibilities of obtaining the best set of
difference coefficients for a given local neighbourhood of points.

Consistency and convergence are important aspects of any formulation. In the framework of
Trefftz flexible local approximation schemes it was shown, in [14], that the consistency error
is bounded by the approximation error. As the Trefftz bases exhibit very good approximation
properties the end result is that consistency and convergence are guaranteed. And the same may
be expected when fundamental solutions are used instead of Trefftz functions. As a matter of
fact Trefftz series and fundamental solutions are, despite its differences, intimately linked at the
mathematical level, [22], and this allows to apply the same reasoning when addressing convergence
and consistency issues.

8. IMPLEMENTATION ISSUES

Once the coefficients affecting all the grid points within each neighbourhood are known, it is
necessary to construct the system of equations representing all the conditions to be enforced. This
is done in a classical FD manner. For a Dirichlet boundary point this is quite trivial: a unit value is
allocated to the diagonal term of the global matrix, all the other matrix terms in that row are zero
and the right-hand side vector takes the corresponding value of the prescribed boundary condition.

Enforcing Neumann boundary conditions requires the approximation of normal derivatives along
the boundary. This is not a trivial issue in traditional FD schemes. A number of techniques have
been proposed, see [23, 24] among many others, which usually rely on, basically, two techniques:
by using fictitious or ghost points; by using some elaborate Taylor schemes involving a number
of interior points.

The generalized approach proposed in this work may use any of the existing FD schemes
but other alternatives are possible. One of the more interesting approaches (by its generality and
flexibility) is to define a local approximation for the normal derivative by using a set of RBFs
based on each of the local grid points in the neighbourhood of a Neumann boundary point. The
same technique, local approximation by RBFs, is used to obtain the necessary values for creating
the plots of the variables of interest in a given neighbourhood. Details on the use of RBFs for
building approximations may be found in, e.g. [25].

The equations representing the domain governing equation are also very simple to define. In the
homogeneous case it is simply necessary to allocate the coefficients in the corresponding columns
of the row being written in the system matrix and to allocate the zero value to the right-hand
side vector.

For the inhomogeneous case, when there is a non-null right-hand side b(x),

L�u
(i)(x)=b(i)(x) (19)
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the general solution is decomposed into the homogeneous and a particular solution:

u(i)(x)=u(i)
0 (x)+u(i)

p (x), x∈�(i) (20)

Two options are now possible: one may consider a transformation of variables such that the
homogeneous equation is solved for transformed boundary conditions, or one may use the particular
solution to construct the right-hand side term by taking into account the actual difference coefficients
for the neighbourhood of interest. The first option requires that, after obtaining the solution for
the homogeneous problem, the particular solution is added to find the general solution.

The second approach is the result of the straightforward application of (15) to the decomposition:

s(i)Tu(i) = b(i)

s(i)T(u0(i)+up(i)) = b(i)

b(i) = s(i)Tup(i)

(21)

The right-hand side term b(i) now includes the effect of the particular solution over all the grid
points within local support �(i).

9. APPLICATION TO POTENTIAL PROBLEMS

The proposed approach is now applied to a set of two-dimensional potential problems. The first
application refers to the Laplace equation (no right-hand side term in the governing equation) under
Dirichlet boundary conditions on a unit square region. It is a heat conduction problem for which
there is an analytic solution in the form of an infinite series. Regular and irregular distribution of
points are analysed.

The second application is that of a Poisson equation. The right-hand side term is a simple
product of sin functions. It is a very simple case for which there is an exact solution.

The remaining applications concern torsion analysis of prismatic bars (again, Poisson). The first
of these applications is on a rectangular region (the prismatic bar has a rectangular cross-section) of
which only a quarter is modelled by taking advantage of symmetry. Neumann boundary conditions
are enforced on the symmetry axes and Dirichlet are imposed on the other two sides.

Then, to emphasize the ease in the creation of distributions of points, a prismatic bar with an
elliptical cross-section is analysed.

In all cases tested, and with reference to Figure 1, the fictitious sources are placed on a
circumference centered at the point of interest (i). The radius of the circumference is 100 times
the maximum distance between the points in the local neighbourhood.

For comparison purposes the Trefftz FLAME methodology was also coded. Comparison of the
results obtained with fundamental solutions and harmonic polynomials is presented for the first
two problems. As expected, and due to the above referred equivalence of fundamental solutions
and harmonic polynomials for Laplace and biharmonic equations [22], there are virtually no
differences.
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9.1. Laplace equation

Consider the case of a potential function, u(x, y), on a unit square region. The potential has to
satisfy the Laplace equation

�2u(x, y)

�x2
+ �2u(x, y)

�y2
=0

and the following Dirichlet boundary conditions:

u|x,y=1 = 1

u|x,y=0 = 0

u|x=0,y = 0

u|x=1,y = 0

The analytic solution, [26], for a rectangular region a×b in the form of a convergent series is

uN (x, y)= 2

�

N∑
n=1

(−1)n+1+1

n
sin
(n�x

a

) sinh(n�y/a)

sinh(n�b/a)

where, for the case being analysed, a=b=1.
The comparison of the results obtained with the proposed method was carried out by calculating

a very good analytic solution where a total of 220 terms of the series were used (N =220). This is
about the numerical precision limit of the programming environment used, Matlab. In this example
regular and irregular grids were considered. Irregular grids are obtained from the regular ones by
adding or subtracting a random quantity to each point both in the x and y coordinates. An example
of a regular and an irregular grid with a total of 225 points is shown in Figure 3.

A number of different grid distributions, with a total number of grid points varying between 25
and 2500, were considered.
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Figure 3. Example of regular and irregular grids.
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Figure 4. Difference to the series solution for a range of regular and irregular grids.

Comparison is made in terms of the difference to the analytic solution with 220 terms (L2 norm
or, more precisely, a normalized root mean square) as follows:

e220=
√∫

�(uh−u220)2 dy∫
�(u220)2 dy

where � is the middle section of the square region. Results are shown in Figure 4.
The curve denoted by (5×5) means that the local neighbourhood includes 5 points, whereas

the (9×8) curves indicate that a total of 9 local neighbours are considered. The second number,
5 and 8, respectively, indicates the number of fundamental solutions used to construct the local
approximation.

The (5×5) scheme leads, on a regular grid, to the central difference scheme. Each assembled
equation is of the form given in (14), the resulting matrix is just a typical FD matrix, sparse and
banded. The (9×8) scheme is the typical fourth-order scheme, other schemes are possible. The
irregular grids are still banded and sparse, the only change is that the coefficients of the matrix
vary from point to point depending on the distance between the point where the equation is being
written to each of its neighbours.

This case was also tested with harmonic polynomials (the Trefftz approach). As the plots are
virtually undistinguishable, the results (the e220 differences to the series solution) are shown in
tabular form instead, see Table I. Only results for regular distributions are shown, but the same
behaviour is observed for irregular distributions as well. The first column indicates the total number
of grid points for each case tested. The remaining columns are, respectively, the difference to the
series solution when fundamental solutions are used and when harmonic polynomials are used.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:564–583
DOI: 10.1002/nme



FINITE DIFFERENCES USING FUNDAMENTAL SOLUTIONS 577

Table I. Differences to the series solution.

n points Fundamental solutions Harmonic polynomials

25 0.03216941 0.03216941
100 0.00453156 0.00453158
225 0.00204721 0.00204724
1225 0.00035496 0.00035502
2500 0.00017155 0.00017164

Figure 5. Root mean square error for a range of regular and irregular grids.

9.2. Poisson equation

Consider the case of a potential function, u(x, y), on a unit square region. The potential has to
satisfy the Poisson equation

�2u(x, y)

�x2
+ �2u(x, y)

�y2
=−2�2 sin�x sin�y

and homogeneous Dirichlet boundary conditions on all sides. The exact solution is:

uex(x, y)=sin�x sin�y

This case has been analysed in [10] by using RBFs in a ‘FD mode’.
Results, in terms of the norm defined below, are shown in Figure 5.

ε=
√∫

�(uh−uex)2 dy∫
�(uex)2 dy

This case was also tested with harmonic polynomials. Results, again virtually the same, are
shown in Table II.
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Table II. Root mean square error.

n points Fundamental solutions Harmonic polynomials

25 7.24874E−3 7.24874E−3
100 5.00538E−4 5.00538E−4
225 6.126201E−5 6.12621E−5
1225 1.181149E−6 1.181149E−6
2500 2.762146E−7 2.762147E−7

9.3. Torsion of prismatic bars

The Saint–Venant-type torsion of prismatic bars when written in terms of Prandtl’s stress function
may be reduced for solving the Poisson equation, see [27],

∇2�=−2G� in � subjected to �=0 on all the boundary � (22)

where � is Prandtl’s stress function, G is the shear modulus and � is the rate of twist (the torsion
angle per unit length).

9.3.1. Elliptic cross-section. For an elliptic cross-section, defined by the equation

x2

a2
+ y2

b2
=1

the exact stress function is [27],

�= a2b2(−2G�)

2(a2+b2)

(
x2

a2
+ y2

b2
−1

)
(23)

and the stress components are

�xz = ��

�y
and �yz =−��

�x
(24)

The exact solution, for the case a=2, b=1 and assuming that both the shear modulus and �
are taken as unity for simplicity, is, after Equations (25) and (24), given by:

� = −0.8

(
x2

4
+ y2−1

)

�xz = −1.6y

and

�yz =0.4x

The comparison of the results obtained with the proposed formulation and the exact ones is
shown in Figure 6. Two types of irregular grids, one more irregular (A) than the other (B), were
considered.
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Figure 6. Torsion of an elliptical cross-section, root mean square error for a range of irregular grids.
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Figure 7. Domain grid.

This example clearly shows the potential of this generalized local approximation technique for
dealing with more complex geometries and irregular distribution of points. The mesh of points
was initially defined on a regular mesh in a domain that fully enclosed the ellipse. An irregular
mesh was built by simply adding to each coordinate a random quantity. Then a simple test was
carried out to reject all the points that did not belong to the ellipse, see Figure 7. The remaining
points were then added to the boundary points previously defined (Figure 8). The irregular grid
thus created, Figure 9, was then used to build the difference operators without any difficulty.

In the theoretical setup the distributions of points may be as irregular as needed. As long as
the points are not coincident (or distributed along a line), good or, at least, reasonable solutions
are obtained. The way in which the irregularities are created in this work, by perturbing a regular
grid, is simply the easiest way to create an irregular grid. Other distributions may be used (and
were used during the course of this work), the quasi-random Halton sequence, for example, or
the Distmesh mesh generator (http://www-math.mit.edu/ persson/mesh/) [28], which is based on
the Delaunay triangulation. This last method finds out a distribution that tends to cover uniformly
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Figure 8. Boundary grid.
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Figure 9. Combined boundary and domain grids.

(at least in parts of the domain) a given region and (although having been developed for finite
element type meshes) is particularly suited for generalized FD schemes.

9.3.2. Rectangular cross-section. The stress function for a rectangular cross-section, −a�x�a,
−b�y�b, exists only in the form of an infinite series. This analytic solution for the case a=2,
b=1, and assuming that both the shear modulus and � are taken as unity for simplicity, is given
by [29]

�=(a2−x2)+
∞∑
i=1

Ci cos((2i−1)�x/2a)cosh((2i−1)�y/2a) (25)

where

Ci = 32(−1)i a2

�3(2i−1)3
1

cosh((2i−1)�b/2a)

The comparison of the results obtained with the proposed formulation and the analytic ones
(considering 200 terms) is shown in Figure 10. Only a quarter of the rectangular cross-section was
considered, thus requiring the enforcement of Neumann-type boundary conditions. In all of the
previously shown cases only Dirichlet-type boundary conditions have been considered.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:564–583
DOI: 10.1002/nme



FINITE DIFFERENCES USING FUNDAMENTAL SOLUTIONS 581

Figure 10. Torsion of a rectangular cross-section, root mean square difference for a range of regular grids.

As mentioned earlier, and besides the local approximation with RBFs proposed here, there are
basically two traditional possibilities for enforcing Neumann conditions: ghost points or Taylor
schemes based on interior points. For this particular case, as the normal vector is n(−1,0) when
x=0 and n(0,−1) when y=0, the ghost point method would have been very simple to apply. For
other geometries though, this scheme would not be appropriate and other more evolved schemes
would have to been used. The local approximation with RBFs is completely general and is,
therefore, the approach of choice.

10. CONCLUSIONS

The main disadvantage of traditional FDs is the need to use a structured grid in order to define the
approximated difference operator. By removing this limitation the scope of applications that may
be analysed by FDs (and the ease in which that analysis may be done) is significantly increased.
If this generalization of the grids may be done without any noticeable loss of accuracy then it is
even better.

In this paper a new technique to define generalized difference operators for completely irregular
distribution of points by means of fundamental solutions is proposed. This work is based on that of
Tsukerman [14] on Trefftz functions. The use of fundamental solutions (or sets of Trefftz functions
as these are also solutions of the governing differential equation), as a basis to obtain the set of
difference coefficients for a given grid, guarantees that there are no better sets of coefficients for
that given grid.

Applications of this technique to two-dimensional potential problems (both Laplace and Poisson)
are considered. Comparison with other results available in the literature shows that the method is
accurate, reliable and may be considered to be an alternative to other numerical methods.

The use of fundamental solutions in the framework of FDMs guarantees accuracy while simul-
taneously eliminating (or strongly reducing) potential problems due to numerical ill-conditioning
that are normally present in boundary-only solution methods.

The generalization of the grids allows for changing the grid in a quite effective manner: adding
patches of grid points in any shape or size or density on different domains is now very easy.
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This is a strong indication of the capabilities of the method for dealing with complex geometries
especially when coupled with domain decomposition techniques. Further work is being carried out
in this respect.
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11. Šarler B, Vertnik R. Mesh-free local radial basis function collocation method for diffusion problems. Computers

and Mathematics with Applications 2006; 51:1269–1282.
12. Liszka T, Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied

mechanics. Computers and Structures 1980; 11:83–95.
13. Mickens RE. Nonstandard Finite Difference Models of Differential Equations. World Scientific: Singapore, 1994.
14. Tsukerman I. A class of difference schemes with flexible local approximation. Journal of Computational Physics

2006; 211:659–699.
15. Zielinski AP. On trial functions applied in the generalized Trefftz method. Advances in Engineering Software

1995; 24:147–155.
16. Hartmann F. Introduction to Boundary Elements. Springer: Berlin, 1989.
17. Freitas JAT, Bussamra FLS. Three-dimensional hybrid—Trefftz stress elements. International Journal for

Numerical Methods in Engineering 2000; 47:927–950.
18. Tsukerman I. Electromagnetic applications of a new finite difference calculus. IEEE Transactions on Magnetics

2005; 41(7):2206–2225.
19. Herrera I. Trefftz method. In Topics in Boundary Element Research—Basic Principles and Applications,

Brebbia CA (ed.). Springer: New York, 1984.
20. Piltner R. On the representation of three-dimensional elasticity solutions with the aid of complex valued functions.

Journal of Elasticity 1989; 22:45–55.
21. Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in

Engineering 1994; 37:229–256.
22. Chen JT, Wu CS, Lee YT, Chen KH. On the equivalence of the Trefftz method and method of fundamental solutions

for Laplace and biharmonic equations. Computers and Mathematics with Applications 2007; 53(6):851–879.
23. Hunt B. Finite difference approximation of boundary conditions along irregular boundaries. International Journal

for Numerical Methods in Engineering 1978; 12:229–235.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:564–583
DOI: 10.1002/nme



FINITE DIFFERENCES USING FUNDAMENTAL SOLUTIONS 583

24. Johnston H, Liu JG. Finite difference schemes for incompressible flow based on local pressure boundary
conditions. Journal of Computational Physics 2002; 180:120–154.

25. Leitão VMA. A meshless method for Kirchhoff plate bending problems. International Journal for Numerical
Methods in Engineering 2001; 52:1107–1130.

26. Incropera FP, De Witt DP. Introduction to Heat Transfer. Wiley: New York, 1985.
27. Timoshenko SP, Goodier JN. Theory of Elasticity (3rd edn). McGraw-Hill: New York, 1982.
28. Persson PO, Strang G. A simple mesh generator in MATLAB. SIAM Review 2004; 46(2):329–345.
29. Barber JR. Elasticity (2nd edn). Kluwer Academic Publishers: Dordrecht, 2004.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:564–583
DOI: 10.1002/nme


