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D
P
RBased on a previous publication (Savruk, 1981), a dislocation distribution layer method for the solution of

interior and exterior boundary value problem (BVP) is studied in more detail. Properties of an integral
operator in the resulting integral equation are studied. It is proved theoretically that the tractions applied
on the outer boundary should be in equilibrium. In addition, a dislocation distribution layer method for
the solution of exterior BVP is also suggested. In the exterior BVP, the tractions applied on the boundary
may not be in equilibrium. In the exterior BVP, one must consider the single-valued condition of displace-
ments. The formulation in the exterior BVP is not same as in the interior BVP. In the process of discret-
ization, a technique for balance of the numbers of resulting algebraic equations and unknowns is
suggested. Numerical examples prove that the suggested method can give sufficient accurate results.

� 2009 Published by Elsevier Ltd.
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1. Introduction

The boundary integral equation (abbreviated as BIE) was widely
used in elasticity, and the fundamental for BIE could be found from
Rizzo (1967), Cruse (1969), Brebbia et al. (1984) and Jaswon and
Symm (1997). The development of the boundary element method
has been summarized recently (Cheng and Cheng, 2005). In the BIE,
there are two kinds of formulation. One is the direct BIE method,
and other is the indirect BIE method (Cheng and Cheng, 2005). In
the direct BIE method, the unknown function is a function directly in-
volved in the governing equation. However, in the indirect BIE method
the unknown function is an intermediate function, which has a rela-
tion to the investigated function. Since both methods reflect the nat-
ure of the governing equation, for example, the Laplace equation, both
methods can be used to solve boundary value problem (BVP). For the
boundary value problem of the Laplace equation, the direct and indi-
rect BIE methods were summarized (Cheng and Cheng, 2005).

In earlier years, some indirect BIE methods for plane elasticity
were suggested (Muskhelishvili, 1953; Savruk, 1981). The BIE
based on the dislocation distribution was studied by Savruk
(1981), particularly, for the curved crack problem. A boundary
integral equation with logarithmic kernel for the notch problem
was formulated. In the formulation, the distributed dislocation
density is taken to be the unknown function and the resultant force
function to be the right hand term in the resulting integral equa-
tion (Chen and Cheung, 1994). A dislocation and point-force-based
approach was suggested, which is used to formulate the boundary
86

87

88
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X.Y. Solutions of the interior an
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element method (BEM) for plane elasticity in terms of Green’s
function that satisfy particular boundary conditions (Denda and
Kosaka, 1997). Recently, a patch repair problem was solved. In
the paper, one part of used complex potentials is based on the dis-
tributed dislocation layer in an infinite plate (Zemlyanova, 2007).

On the other hand, formulations of BIE may rely on the real or
complex variables. In many cases, it is straightforward to formulate
the BIE using the complex variable. The dual boundary element
method in the real domain was extended to the complex variable
dual boundary element domain (Chen and Chen, 2000). A review
was given of complex variable based numerical solutions for
Dirichlet potential problem in two and higher dimensions (Whitley
and Hromadka, 2006).

Based on a previous publication (Muskhelishvili, 1953; Savruk,
1981), this paper studies formulation and numerical solutions of
the interior and exterior boundary value problems in plane elastic-
ity by using dislocation distribution layer. The dislocation distribu-
tion layer is assumed along a closed contour, and the complex
potentials are defined on the whole complex plane. Behaviors of
the defined complex potentials are studied in details.

A dislocation distribution layer method for the solution of inte-
rior BVP is suggested. Properties of an integral operator in the
resulting integral equation are studied. It is proved theoretically
that the tractions applied on the outer boundary must be in equi-
librium. A discretization scheme is suggested to convert the inte-
gral equation into an algebraic equation. Properties of the
influence matrix are discussed. Numerical examples prove that
the suggested method can give sufficient accurate results.

In addition, a dislocation distribution layer method for the
solution of exterior BVP is studied. In the exterior BVP, the
d exterior boundary value problems in plane elasticity by using dislocation
8
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tractions applied on the boundary may not be in equilibrium.
When a moving point ‘‘z” moves in the exterior region, and a loop
for the logarithmic function will be encountered. In this case, one
must consider the single-valued condition of displacements. The
formulation in the exterior BVP is not same as in the interior
BVP. In the process of discretization, a technique for balance of
the numbers of resulting algebraic equations and unknowns is sug-
gested. Numerical examples prove that the suggested method can
give sufficient accurate results.
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2. General behaviors of complex potentials formulated on the
dislocation distribution layer in an infinite plate

The complex variable function method plays an important role
in plane elasticity. Fundamental of this method is introduced. In
the method, the stresses ðrx;ry;rxyÞ, the resultant forces (X,Y)
and the displacements (u,v) are expressed in terms of complex
potentials /ðzÞ and wðzÞ such that (Muskhelishvili, 1953)

rx þ ry ¼ 4ReUðzÞ;
ry � rx þ 2irxy ¼ 2½�zU0ðzÞ þWðzÞ� ð1Þ
f ¼ �Y þ iX ¼ /ðzÞ þ z/0ðzÞ þ wðzÞ ð2Þ
2Gðuþ ivÞ ¼ j/ðzÞ � z/0ðzÞ � wðzÞ ð3Þ

where UðzÞ ¼ /0ðzÞ; WðzÞ ¼ w0ðzÞ, a bar over a function denotes the
conjugated value for the function, G is the shear modulus of elastic-
ity, j ¼ ð3� mÞ=ð1þ mÞ in the plane stress problem, j ¼ 3� 4m in
the plane strain problem, and m is the Poisson’s ratio.

Except for the physical quantities mentioned above, from Eqs.
(2) and (3) two derivatives in specified direction (abbreviated as
DISD) are introduced as follows (Savruk, 1981; Chen and Lin,
2006; Chen, 2007):

J1ðzÞ ¼
d
dz
f�Y þ iXg ¼ UðzÞ þUðzÞ þ d�z

dz
zU0ðzÞ þWðzÞ
� �

¼ rN þ irNT ð4Þ

J2ðzÞ ¼ 2G
d
dz
fuþ ivg ¼ jUðzÞ �UðzÞ � d�z

dz
zU0ðzÞ þWðzÞ
� �

¼ ðjþ 1ÞUðzÞ � J1 ð5Þ

It is easy to verify that J1 ¼ rN þ irNT denotes the normal and shear
tractions along the segment z; zþ dz (Fig. 1(a)). Secondly, the
J1 and J2 values depend not only on the position of a point ‘‘z”,
but also on the direction of the segment ‘‘d�z=dz”.

In addition, the moment caused by the tractions applied along a
curve ‘‘AB” can be evaluated by Muskhelishvili (1953)

M ¼ Re vðzÞ � zwðzÞ � z�z/0ðzÞ½ �jBA; where vðzÞ ¼
Z

wðzÞdz ð6Þ

Particularly, if the complex potentials /ðzÞ and wðzÞ take the follow-
ing expression:

/ðzÞ ¼ A2 ln zþ a0 þ
X1
k¼1

ak

zk
; wðzÞ ¼ B2 ln zþ b0 þ

X1
k¼1

bk

zk
ð7Þ

where A2; ao; B2; bo and ak; bk ðk ¼ 1;2; . . .Þ are some constants.
The moment caused by tractions applied on a sufficient large circle
‘‘CR” will be

MCR ¼ �2pImb1 ð8Þ

In plane elasticity we generally meet the function in the form
f ðzÞgðzÞ, where f(z) and g(z) are two analytic functions, and the
bar denotes the conjugate to the relevant argument. A particular
derivative for the function f ðzÞgðzÞ is defined as
Please cite this article in press as: Chen, Y.Z., Lin, X.Y. Solutions of the interior an
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d
dz

f ðzÞgðzÞ
n o

¼¼ f 0ðzÞgðzÞ þ f ðzÞg0ðzÞd
�z

dz
ð9Þ

which is called the derivative of the function f ðzÞgðzÞ in a specified
direction (abbreviated as DISD) (Savruk, 1981; Chen and Lin, 2006;
Chen, 2007). To distinguish the DISD, the symbol {} is always used
for this kind of derivative. Particular feature of the DISD is that
the result of DISD depends not only on the argument ‘‘z” (the posi-
tion of a point in the complex plane) but also on the ‘‘d�z=dz” (the
direction of a segment). The concept of DISD is important in the
plane elasticity problem. In fact, the J1 and J2 shown by Eqs. (4)
and (5) are DISD.

In plane elasticity, the following integrals are useful (Muskhe-
lishvili, 1953; Savruk, 1981; Chen and Lin, 2006; Chen, 2007):

FðzÞ ¼ 1
2pi

Z
L

f ðtÞdt
t � z

ð10Þ

GðzÞ ¼ 1
2pi

Z
L

gðtÞd�t
t � z

ð11Þ

Hðz;�zÞ ¼ 1
2pi

Z
L

�t � �z

ðt � zÞ2
hðtÞdt ð12Þ

where L is a smooth curve or a closed contour. Also, we assume that
the function f(t), g(t) and h(t) satisfy the Hölder condition (Muskhe-
lishvili, 1953). Sometimes, the functions f(t), g(t) and h(t) are called
the density functions hereafter. Clearly, the two integrals defined by
Eqs. (10) and (11) are analytic functions, and one defined by Eq. (12)
is not. The integral (10) is precisely the well-known Cauchy integral.

Generally speaking, these integrals take different values when
z! tþ0 and z! t�0 , (t0 2 L, or t0 2 C in Fig. 1(b)), respectively. The
limit values of these functions from the upper and lower sides of
the curve L are found to be (Muskhelishvili, 1953; Savruk, 1981;
Chen and Lin, 2006; Chen, 2007)

F�ðtoÞ ¼ �
f ðtoÞ

2
þ 1

2pi

Z
L

f ðtÞdt
t � to

ð13Þ

G�ðtoÞ ¼ �
gðtoÞ

2
d�to

dto
þ 1

2pi

Z
L

gðtÞd�t
t � to

ð14Þ

H� to;�toð Þ ¼ �hðtoÞ
2

d�to

dto
þ 1

2pi

Z
L

�t � �to

ðt � toÞ2
hðtÞdt ð15Þ

In Eqs. (13)–(15), all the integrals should be understood in the sense
of principal value of the integral. Note that, the notations of f(t), g(t),
h(t), F(z), G(z) and Hðz;�zÞ used in Eqs. (10)–(15) have no relation
with those mentioned in other places.

If a point dislocation is placed at the point z = t as shown in
Fig. 1(a), the corresponding potentials take the form (Savruk,
1981; Chen and Lin, 2006; Chen, 2007)

/ðzÞ ¼ H logðz� tÞ; UðzÞ ¼ /0ðzÞ ¼ H
z� t

;

U0ðzÞ ¼ � H

ðz� tÞ2
ð16Þ

wðzÞ ¼ H logðz� tÞ � H�t
z� t

; WðzÞ ¼ w0ðzÞ ¼ H
z� t

þ H�t

ðz� tÞ2
ð17Þ

where H ¼ H1 þ iH2 denotes the point dislocation applied at the
point z = t (Fig. 1(a)).

In Eqs. (16) and (17), if H is replaced by �g0ðtÞdt=2p and one
performs integration, the complex potentials caused by a disloca-
tion distribution g0ðtÞ along the contour C are introduced
(Fig. 1(b)) (Savruk, 1981; Chen and Lin, 2006; Chen, 2007)
d exterior boundary value problems in plane elasticity by using dislocation
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Fig. 1. (a) A concentrated dislocation with the intensity H at the point z = t. (b) Dislocation distribution layer along the closed curve C. (c) The non-stressed finite region Sþ

after rotation, marked with the dash line.
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C/ðzÞ ¼ � 1

2p

Z
C

lnðz� tÞg0ðtÞdt; /0ðzÞ ¼ 1
2p

Z
C

g0ðtÞdt
t � z

;

/00ðzÞ ¼ 1
2p

Z
C

g0ðtÞdt

ðt � zÞ2
ð18Þ

wðzÞ ¼ � 1
2p

Z
C

lnðz� tÞg0ðtÞd�t � 1
2p

Z
C

�tg0ðtÞdt
t � z

;

w0ðzÞ ¼ 1
2p

Z
C

g0ðtÞd�t
t � z

� 1
2p

Z
C

�tg0ðtÞdt

ðt � zÞ2
ð19Þ

The complex potentials /ðzÞ and wðzÞmay be defined in the interior
region z 2 Sþ or in the exterior region z 2 S� (Fig. 1(b)).

After taking the following steps: (a) substituting Eqs. (18) and
(19) into Eq. (4), (b) letting z! tþo or z! t�o , and (c) using Eqs.
(13)–(15), in both cases ðz! tþo or z! t�o Þ we will find (Fig. 1(b))

ðrNðtoÞ þ irNTðtoÞÞþ ¼ ðrNðtoÞ þ irNTðtoÞÞ�

¼ 1
p

Z
C

g0ðtÞdt
t � to

þ 1
2p

Z
C

K1ðt; toÞg0ðtÞdt

þ 1
2p

Z
C

K2ðt; toÞg0ðtÞd�t; ðto 2 CÞ ð20Þ

where

K1ðt; toÞ ¼
d

dto
ln

t � to

�t � �to

� �
¼ � 1

t � to
þ 1

�t � �to

d�to

dto

K2ðt; toÞ ¼ �
d

dto

t � to

�t � �to

� �
¼ 1

�t � �to
� t � to

ð�t � �toÞ2
d�to

dto

ð21Þ

Eq. (20) reveals that the traction component ðrNðtoÞ þ irNTðtoÞÞ is
continuous when a point is moving across the boundary to 2 C
(Fig. 1(b)).
Please cite this article in press as: Chen, Y.Z., Lin, X.Y. Solutions of the interior an
distribution layer. Int. J. Solids Struct. (2009), doi:10.1016/j.ijsolstr.2009.09.03
In addition, after taking the following steps: (a) substituting
Eqs. (18) and (19) into Eq. (5), (b) letting z! tþo or z! t�o , and
(c) using Eqs. (13)–(15), we will find

g0ðtÞ ¼ � 2Gi
jþ 1

d½ðuþ ivÞþ � ðuþ ivÞ��
dt

; ðt 2 CÞ ð22Þ

Eq. (22) reveals that the displacement ðuþ ivÞ is discontinuous
when a point is moving across the boundary t 2 C.

In the first case for z 2 Sþ (Fig. 1(b)), the complex potentials
/ðzÞ and wðzÞ shown by Eqs. (18) and (19) represent a single-val-
ued analytic function. In this case, the interior region is applied
by the boundary tractions in equilibrium and the single-valued
condition of displacements is satisfied automatically.

A particular case is interesting. Substituting g0ðtÞ ¼ 1 into Eqs.
(18) and (19) yields

/0ðzÞ ¼ 1
2p

Z
C

dt
t � z

¼ i;

w0ðzÞ ¼ 1
2p

Z
C

d�t
t � z

� 1
2p

Z
C

�t dt

ðt � zÞ2
¼ 0; ðz 2 SþÞ ð23Þ

In the second case for z 2 S� (Fig. 1(b)), the complex potentials
/ðzÞ and wðzÞ are not a single-valued analytic function in the region
z 2 S�.

The contour increment for some functions plays an important
role in the following analysis. When a point ‘‘z” is going around a
large circle, or along the closed curve z1z2z3 (or C�) in Fig. 1(b) in
anti-clockwise direction, the increment of a function saying for
/ðzÞ, is denoted as f/ðzÞgin. From this definition and Eqs. (18) and
(19), we have
d exterior boundary value problems in plane elasticity by using dislocation
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fln zgin ¼ 2pi; f/ðzÞgin ¼ �i
Z

C
g0ðtÞdt; f/0ðzÞgin ¼ 0;

fwðzÞgin ¼ �i
Z

C
g0ðtÞd�t ð24Þ

In addition, using Eqs. (2) and (3) yields

ffgin ¼ f�Y þ iXgin ¼ 0 ð25Þ

f2Gðuþ ivÞgin ¼ �iðjþ 1Þ
Z

C
g0ðtÞdt ð26Þ

By using Eqs. (7) and (19), we find that b1 ¼ 1
2p

R
Cðtg0ðtÞd�tþ

�tg0ðtÞdtÞ and b1 takes a real value. Thus, from Eq. (8) we have

MCR ¼ �2pImb1 ¼ 0 ð27Þ

Eqs. (25) and (27) reveal that the tractions applied along the con-
tour C�, or along the closed curve z1z2z3, are in equilibrium
(Fig. 1(b)). However, from Eq. (26) we see that the displacements
in the exterior region may not satisfy the single-valued condition.

A particular case is interesting. Substituting g0ðtÞ ¼ 1 into Eqs.
(18) and (19) yields

/0ðzÞ ¼ 1
2p

Z
C

dt
t � z

¼ 0

w0ðzÞ ¼ 1
2p

Z
C

d�t
t � z

� 1
2p

Z
C

�t dt

ðt � zÞ2
¼ 1

2p

Z
C

d
�t

t � z

� �
¼ 0; ðz 2 S�Þ

ð28Þ

From Eqs. (1), (23) and (28) we see that, rij ¼ 0 for z 2 Sþ and z 2 S�

in the case of g0ðtÞ ¼ 1. This situation is easy to get explanation. It is
assumed that the infinite plate has not been stressed (Fig. 1(c)). One
can cut a finite portion from the infinite plate. In addition, let the
finite portion have a small rotation c, and the notched infinite plate
preserves in a fixed position (Fig. 1(c)). In this case, we have

uþ iv ¼ icz; ðz 2 SþÞ ð29Þ
uþ iv ¼ 0; ðz 2 S�Þ ð30Þ

Therefore, the dislocation distribution along the contour C can be
evaluated by

g0ðtÞ ¼ � 2Gi
jþ 1

d½ðuþ ivÞþ � ðuþ ivÞ��
dt

¼ 2Gc
jþ 1

ð31Þ

If one lets c ¼ ðjþ 1Þ=2G; g0ðtÞ ¼ 1 is obtained.

3. Dislocation distribution layer method for the solution of
interior boundary value problem (BVP)

3.1. Formulation of the integral equation for interior BVP

In the interior BVP, from Eq. (4) the boundary condition may be
written as (Fig. 2)

J1ðtoÞ ¼ rNðtoÞ þ irNTðtoÞ ¼ ~rNðtoÞ þ i~rNTðtoÞ; ðto 2 CÞ ð32Þ

where the boundary traction ~rNðtoÞ þ i~rNTðtoÞ is given beforehand,
which must be in equilibrium in general.

From Eq. (20), we will obtain the following integral equation:

K to; g0ðtÞ; t ! toð Þ ¼ ~rNðtoÞ þ i~rNTðtoÞ ð33Þ

where

K to; g0ðtÞ; t ! toð Þ ¼ 1
p

Z
C

g0ðtÞdt
t � to

þ 1
2p

Z
C

K1ðt; toÞg0ðtÞdt

þ 1
2p

Z
C

K2ðt; toÞg0ðtÞd�t;

ðKðto; g0ðtÞ; t ! toÞ abbreviated as
KðtoÞ for to 2 CÞ ð34Þ
Please cite this article in press as: Chen, Y.Z., Lin, X.Y. Solutions of the interior an
distribution layer. Int. J. Solids Struct. (2009), doi:10.1016/j.ijsolstr.2009.09.03
where the two integral kernels K1ðt; toÞ and K2ðt; toÞ have been de-
fined by Eq. (21) previously. For the sake of compactness, the inte-
gral operator Kðto; g0ðtÞ; t ! toÞ is written as KðtoÞ. The integral
equation shown by Eq. (33) was obtained previously, particularly,
for the curved crack problem (Savruk, 1981).
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3.2. Properties of the integral operator KðtoÞ

Several properties of the integral operator KðtoÞ are introduced
below. The first property of the integral operator KðtoÞ is intro-
duced as follows:

KðtoÞjg0 ðtÞ¼1 ¼ 0; ðto 2 CÞ ð35Þ

Clearly, in the case of g0ðtÞ ¼ 1;KðtoÞ can be rewritten as

KðtoÞjg0 ðtÞ¼1 ¼
1

2p
M1ðtoÞ þ

d�to

dto
M2ðtoÞ þM3ðtoÞð Þ

� �
; ðto 2 CÞ

ð36Þ

where

M1ðtoÞ ¼
Z

C

dt
t � to

þ
Z

C

1
�t � �to

d�t; ðto 2 CÞ ð37Þ

M2ðtÞ ¼
Z

C

1
�t � �to

dt; M3ðtoÞ ¼ �
Z

C

t � to

ð�t � �toÞ2
d�t; ðto 2 CÞ

ð38Þ

Since
R

C
dt

t�to
¼ pi, we have M1ðtoÞ ¼ 0. In addition, we have the fol-

lowing equality:

M3ðtoÞ ¼ �
Z

C

t � to

ð�t � �toÞ2
d�t ¼

Z
C

d
t � to

�t � �to

� �
�
Z

C

dt
�t � �to

¼ �M2ðtoÞ

ð39Þ

Finally, from Eqs. (36)–(39), the property KðtoÞjg0 ðtÞ¼1 ¼ 0 shown by
Eq. (35) is proved.

Eq. (35) reveals that the homogenous integral equation
KðtoÞ ¼ 0 may have a non-trivial solution g0ðtÞ ¼ 1. Alternatively
speaking, the integral equation KðtoÞ ¼ ~rNðtoÞ þ i~rNTðtoÞ

must have a non-unique solution for g0ðtÞ. This property should
be considered in the numerical computation.

The second property of the integral operator KðtoÞ is as follows:

I1 ¼
Z

C
KðtoÞdto ¼ 0 ð40Þ

In fact, from Eqs. (21) and (34), the left side of Eq. (40) can be
rewritten as

I1 ¼
1

2p
ðI11 þ I12Þ ð41Þ

where

I11 ¼
Z

C

Z
C

dto

t � to
þ
Z

C

d�to

�t � �to

� �
g0ðtÞdt;

I12 ¼ �
Z

C

Z
C

d
dto

t � to

�t � �to

� �
dto

� �
g0ðtÞd�t ð42Þ

Clearly,
R
C

dto
t�to
¼ �pi;

R
C

d�to
�t��to
¼ pi and

R
C

d
dto

t�to
�t��to

n o
dto ¼ 0, thus, the

equality (40) is proved.
Substituting Eq. (33) into Eq. (40) yieldsZ

C

~rNðtoÞ þ i~rNTðtoÞð Þdto ¼ 0 ð43Þ

Eq. (43) reveals that the applied traction ~rNðtoÞ þ i~rNTðtoÞ should be
equilibrated in resultant forces.
d exterior boundary value problems in plane elasticity by using dislocation
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Fig. 2. (a) A finite plate with boundary tractions rN þ irNT in equilibrium. (b) The real problem modeled by the dislocation distribution layer.
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The third property of the integral operator KðtoÞ is as follows:

I2 ¼ Re
Z

C

�toKðtoÞdto ¼ 0 ð44Þ

In fact, from Eqs. (21) and (34), the left side of Eq. (44) can be
rewritten as

I2 ¼
1

2p
ðI21 þ I22Þ ð45Þ

where

I21 ¼ Re
Z

C

Z
C

�to dto

t � to
þ
Z

C

�to d�to

�t � �to

� �
g0ðtÞdt

¼ Re
Z

C

Z
C

�to dto

t � to
þ
Z

C

�t d�to

�t � �to

� �
g0ðtÞdt ð46Þ

I22 ¼ Re
Z

C
�
Z

C

�to
d

dto

t � to

�t � �to

� �
dto

� �
g0ðtÞd�t

¼ Re
Z

C

Z
C

t � to

�t � �to
d�to

� �
g0ðtÞd�t

¼ Re
Z

C

Z
C

�t � �to

t � to
dto

� �
g0ðtÞdt ð47Þ

In Eq. (46), the equality
R
C dto ¼

R
C d�to ¼ 0 is used. Thus, we have
U
N

C

Fig. 3. Nodes assumed alon
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PI21 þ I22 ¼ Re
Z

C

Z
C

�t dto

t � to
þ
Z

C

�t d�to

�t � �to

� �
g0ðtÞdt

¼ Re
Z

C

Z
C

dto

t � to
þ
Z

C

d�to

�t � �to

� �
�tg0ðtÞdt ¼ 0 ð48Þ

Clearly, from the equalities
R

C
dto

t�to
¼ �pi;

R
C

d�to
�t��to
¼ pi, the equality

(44) is proved.
Substituting Eq. (33) into Eq. (44) yields

Re
Z

C

~rNðtoÞ þ i~rNTðtoÞð Þ�to dto ¼ 0 ð49Þ

Eq. (49) reveals that the applied traction ~rNðtoÞ þ i~rNTðtoÞ should be
equilibrated in moment.

3.3. Numerical solution for the interior BVP and numerical example

Generally, the integral equation shown by Eq. (33) is solved
numerically after discretization. The ellipse has two half-axes ‘‘a”
and ‘‘b” (Fig. 3). It is assumed that the stress fields are derived from
the following complex potentials:

UðzÞ ¼ Cp; WðzÞ ¼ Dp ðtaking C ¼ 1þ 0:5i;D ¼ 2þ 1:5iÞ ð50Þ

where ‘‘p” is a unit loading, and C and D are two constants. Clearly,
the tractions rN; rNT ; rT applied along the elliptic contour can eas-
ily evaluated from the assumed complex potentials. The evaluated
g the elliptic boundary.
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Table 2
Non-dimensional stress hðhÞðrT ðhÞ ¼ hðhÞpÞ at the boundary point tðhÞ ð0 6 h 6 2pÞ of
an elliptic plate for the case of assumed complex potentials UðzÞ ¼ ð1þ 0:5iÞpz=a;
WðzÞ ¼ ð2þ 1:5iÞpz=a (see Fig. 3 and Eq. (59)).

h (�) Exact First case Second case Third case Fourth case

30.0 �1.3843 �1.3846 �1.3858 �1.3846 �1.3826
60.0 �0.5557 �0.5556 �0.5565 �0.5558 �0.5545
90.0 0.0000 0.0002 �0.0006 0.0000 0.0011

120.0 0.2028 0.2031 0.2021 0.2028 0.2041
150.0 �0.7641 �0.7633 �0.7648 �0.7638 �0.7620
180.0 �5.0000 �4.9970 �4.9985 �4.9985 �4.9975
210.0 1.3843 1.3846 1.3855 1.3846 1.3831
240.0 0.5557 0.5556 0.5565 0.5558 0.5546
270.0 0.0000 �0.0002 0.0006 0.0000 �0.0011
300.0 �0.2028 �0.2031 �0.2020 �0.2028 �0.2043
330.0 0.7641 0.7633 0.7652 0.7639 0.7614
360.0 5.0000 4.9970 4.9947 4.9981 5.0026

Table 1
Non-dimensional stress hðhÞ ðrT ðhÞ ¼ hðhÞpÞ at the boundary point tðhÞ ð0 6 h 6 2pÞ
of an elliptic plate for the case of assumed complex potentials UðzÞ ¼ ð1þ 0:5iÞp;
WðzÞ ¼ ð2þ 1:5iÞp (see Fig. 3 and Eq. (59)).

h (�) Exact First case Second case Third case Fourth case

30.0 �0.4623 �0.4624 �0.4645 �0.4632 �0.4613
60.0 �0.3425 �0.3425 �0.3440 �0.3432 �0.3419
90.0 0.0000 �0.0002 �0.0014 �0.0007 0.0004

120.0 0.5058 0.5054 0.5040 0.5047 0.5060
150.0 1.7255 1.7244 1.7223 1.7233 1.7252
180.0 4.0000 3.9974 3.9951 3.9951 3.9962
210.0 �0.4623 �0.4624 �0.4611 �0.4620 �0.4635
240.0 �0.3425 �0.3425 �0.3414 �0.3421 �0.3432
270.0 0.0000 �0.0002 0.0011 0.0004 �0.0007
300.0 0.5058 0.5054 0.5071 0.5063 0.5049
330.0 1.7255 1.7244 1.7277 1.7263 1.7238
360.0 4.0000 3.9974 3.9906 3.9941 3.9985
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components rN and rNT become the right hand term in the integral
equation (33).

In the discretization for the integral equation, the following
quadrature rule is suggested (Zemlyanova, 2007):

Z 2p

0
f ðbÞsðb; hÞdb ¼ 2p

N

XN

j¼1

f ðbjÞsðbj; hÞ;

bj ¼
ð2j� 1Þp

N
þ d;

ðd� any positive value; j ¼ 1;2; . . . ;NÞ ð51Þ

In the first case, the kernel sðb; hÞ is regular and Eq. (51) can be used
to any h. In the second case, the kernel sðb; hÞ is singular, for exam-
ple, sðb; hÞ ¼ 1=ðb� hÞ. In this case, Eq. (51) is valid for the following
hk:

h ¼ hk ¼
2kp

N
þ d; ðk ¼ 1;2; . . . ;NÞ ð52Þ

Once the values for f ðbjÞ; j ¼ 1;2; . . . ;N are obtained, the function
f ðhÞ ð0 < h < 2pÞ can be obtained from the following interpolation
equation (Zemlyanova, 2007):

f ðhÞ ¼ 1
N

XN

j¼1

f ðbjÞ sin
Nðbj � hÞ

2
cot

bj � h

2
ð0 < h < 2pÞ ð53Þ

After using the quadrature rule shown by Eq. (51), the integral
equation (33) can be reduced to the following system of algebraic
equations:

Ax ¼ p ð54Þ

where A is a matrix with dimension 2N � 2N. In Eq. (54), two vec-
tors x and p are defined by

x ¼ Reg0ðt1ÞImg0ðt1Þ . . . Reg0ðtjÞImg0ðtjÞ . . . Reg0ðtNÞImg0ðtNÞ
� 	T

ð55Þ

p ¼ rNðto;1ÞrNTðto;1Þ . . .rNðto;jÞrNTðto;jÞ . . .rNðto;NÞrNTðto;NÞ . . .
� 	T

ð56Þ

From two conditions shown by Eqs. (43) and (49) we see that, the
right hand term of Eq. (33), or the boundary traction ~rNðtoÞþ
i~rNTðtoÞ should satisfy three equations (here, one complex variable
equation equal two in real variable). Alternatively speaking, the exis-
tence of solution for the integral equation (33) is conditional. Thus,
after discretization, three columns in the matrix must be a linear
combination of other 2N � 3 columns. Therefore, the rank of formu-
lated matrix is 2N � 3.

Therefore, we have detA = 0. However, since there are some
digital errors in computation, we have detA – 0 in a real computa-
tion even though there may be detA � 0. Therefore, we can pro-
pose the following four options to solve the algebraic equations:

(1) First case: The matrix A is not modified.
(2) Second case: Letting x1 ¼ 1; x2 ¼ 0; x3 ¼ 0 in Eq. (54), and

solving the algebraic equations.
(3) Third case: Letting x1 ¼ 0; x2 ¼ 1; x3 ¼ 0 in Eq. (54), and

solving the algebraic equations.
(4) Forth case: Letting x1 ¼ 0; x2 ¼ 0; x3 ¼ 1 in Eq. (54), and

solving the algebraic equations.

It is known that rx þ ry is an invariant, or rx þ ry ¼ rN þ rT .
Therefore, from Eq. (1) the stress component rT along contour
can be evaluated by

rTðtoÞ ¼ 4Re/0þðtoÞ � rNðtoÞ ð57Þ
Please cite this article in press as: Chen, Y.Z., Lin, X.Y. Solutions of the interior an
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where

/0þðtoÞ ¼
ig0ðtoÞ

2
þ 1

2p

Z
C

g0ðtÞdt
t � to

ð58Þ

After solving the algebraic equation (54), the stress component
rTðtoÞ can be evaluated from Eqs. (57) and (58).

Finally, the computed tangent stress is expressed as

rT ¼ hðhÞp; 0 6 ðhÞ 6 2p ð59Þ

In computation, we choose N = 72, a = 1, b/a = 0.5, j ¼ 1:8. The exact
results for hðhÞ and the computed results under four above-men-
tioned conditions are listed in Table 1. From tabulated results we
see that the deviations for stress rT between the exact solution
and numerical solutions are very small. Clearly, the input data for
rN and rNT , or the right hand term of Eq. (33) or (54), must be in
equilibrium for the resultant forces and moment. Therefore, the
solution for stresses rij must be unique in the region Sþ. However,
the obtained solutions for the intermediate function g0ðtÞ in four
cases may not be the same.

Similarly, for the following complex potentials:

UðzÞ ¼ Cp
z
a
; WðzÞ ¼ Dp

z
a
; ðtaking C ¼ 1þ 0:5i;D ¼ 2þ 1:5iÞ

ð60Þ

where ‘‘p” is a unit loading, and C and D are two constants. The exact
results for hðhÞ and the computed results under four above-men-
tioned conditions are listed in Table 2. From tabulated results we
see that the deviations for stress rT between the exact solution
and numerical solutions are also very small.
d exterior boundary value problems in plane elasticity by using dislocation
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4. Dislocation distribution layer method for the solution of
exterior boundary value problem (BVP)

4.1. Formulation of the integral equation for exterior BVP

From Eqs. (25) and (27), we see that the complex potentials
shown by Eqs. (18) and (19) can only be used to the exterior BVP
where the applied tractions are equilibrated in forces and moment.
However, in the exterior BVP, the applied boundary tractions may
be arbitrary. Therefore, the complex potentials shown by Eqs. (18)
and (19) cannot be directly used to the exterior BVP.

In the exterior BVP, from Eq. (4) the boundary condition may be
written as (Fig. 4)

rNðtoÞ þ irNTðtoÞ ¼ ~rNðtoÞ þ i~rNTðtoÞ ðto 2 CÞ ð61Þ

where the boundary traction ~rNðtoÞ þ i~rNTðtoÞ is given beforehand,
which may not be in equilibrium.

In this case, one may assume the complex potentials in the fol-
lowing form:

/ðzÞ ¼ /1ðzÞ þ /2ðzÞ þ /3ðzÞ;
wðzÞ ¼ w1ðzÞ þ w2ðzÞ þ w3ðzÞ; ðz 2 S�Þ ð62Þ

where

/1ðzÞ ¼ �
1

2p

Z
C

lnðz� tÞg0ðtÞdt

w1ðzÞ ¼ �
1

2p

Z
C

lnðz� tÞg0ðtÞd�t � 1
2p

Z
C

�tg0ðtÞdt
t � z

; ðz 2 S�Þ ð63Þ

/2ðzÞ ¼ F ln z; w2ðzÞ ¼ �jF ln zþ moi
2pz

; ðz 2 S�Þ ð64Þ

/3ðzÞ ¼
H

2p
ln z; w3ðzÞ ¼

H
2p

ln z ðz 2 S�Þ ð65Þ

H ¼ H1 þ iH2; F ¼ � Px þ iPy

2pðjþ 1Þ ð66Þ

In Eq. (62), the complex potentials /1ðzÞ; w1ðzÞ are used for model-
ing the dislocation distribution layer along the boundary C (Fig. 4).
The complex potentials /2ðzÞ; w2ðzÞ are used for modeling the con-
dition that there are some resultant forces ‘‘F” and moment ‘‘mo”
U
N

C
O

R

Fig. 4. (a) A notched infinite plate with boundary tractions ~rN þ i~rNT not in equilibri
dislocation (H) and the dislocation distribution layer.
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resulted by tractions applied on the boundary C (Fig. 4). The com-
plex potentials /3ðzÞ; w3ðzÞ represent a concentrated dislocation
with intensity H ðH ¼ H1 þ iH2Þ applied at the origin (Fig. 4). It will
be seen later that this term is necessary for the balance of the num-
bers of the algebraic equations and unknowns after discretization of
the integral equations.

After substituting Eqs. (62)–(65) into Eq. (4), using condition
(61), and letting z! t�o , the following integral equation is
obtained:

KðtoÞ þ RðtoÞ ¼ ~rNðtoÞ þ i~rNTðtoÞ � ~rNð2ÞðtoÞ þ i~rNTð2ÞðtoÞ

 �

; ðto 2 CÞ ð67Þ

where

KðtoÞ ¼
1
p

Z
C

g0ðtÞdt
t � to

þ 1
2p

Z
C

K1ðt; toÞg0ðtÞdt

þ 1
2p

Z
C

K2ðt; toÞg0ðtÞd�t; ðto 2 CÞ ð68Þ

RðtoÞ ¼
H

2p
1
to
þ 1

�to

d�to

dto

� �
þ H

2p
1
�to
� to

�t2
o

d�to

dto

� �
; ðto 2 CÞ ð69Þ

~rNð2ÞðtoÞ þ i~rNTð2ÞðtoÞ ¼ F
1
to
� j

1
�to

d�to

dto

� �
þ F

1
�to
� to

�t2
o

d�to

dto

� �

þ moi
2p�t2

o

d�to

dto
; ðto 2 CÞ ð70Þ

In Eq. (67), the term ~rNð2ÞðtoÞ þ i~rNTð2ÞðtoÞ is derived from the com-
plex potentials /2ðzÞ; w2ðzÞ and Eq. (4), which is known beforehand.
An integral equation similar to Eq. (67) was obtained previously
(Savruk, 1981).

It is seen from the structure of the complex potentials and Eq.
(3) that the displacement expression contains the logarithmic
function. Therefore, from the complex potentials shown by Eqs.
(62)–(65), we will find the singled-valued condition of displace-
ments as follows:Z

C
g0ðtÞdt � H ¼ 0 ð71Þ

Finally, in the exterior BVP, the governing equations are composed
of Eqs. (67) and (71).

After discretization, the integral equation will be reduced to a
system of linear algebraic equations. It is well known that the
um. (b) The real problem modeled by concentrated forces ðPx; PyÞ, moment ðmoÞ,
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Fig. 5. An exterior BVP with the elliptic boundary.
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balance of the numbers of equations and unknowns in the resul-
tant algebraic equation is important. If the balance is not satisfied,
the algebraic equation will have no solution, or non-unique
solution.

It is assumed that we do not introduce the complex potentials
/3ðzÞ; w3ðzÞ shown by Eqs. (65) or let H=0. In this case, we will ob-
tain 2N + 2 equations with 2N unknowns in the resultant algebraic
equation, if the quadrature rule (51) is used.

In the meantime, after introducing the complex potentials
shown by Eq. (65), or introduce the unknown H, we will obtain
2N + 2 equations with 2N + 2 unknowns in the resultant algebraic
equation, if the quadrature rule (51) is used. This is an advantage
for introducing the complex potentials /3ðzÞ; w3ðzÞ. Clearly, the
necessity of the assumed complex potentials /3ðzÞ; w3ðzÞ is only
from the technical consideration. For the solution of a branch crack
problem, a similar idea was proposed in Chen and Hasebe (1995).

The detailed steps in computation are introduced below. After
discretization by using the quadrature rule shown by Eqs. (51), from
Eq. (67) we will formulate 2N algebraic equations at N observation
points to;j at the angles hj ¼ 2jp=N ðj ¼ 1;2; . . . ;NÞ, and from Eq.
(71) we will formulate two algebraic equations. Therefore, the total
algebraic equations are 2N + 2. In addition, in Eqs. (67) and (71) after
discretization by using the quadrature rule shown by Eqs. (51), we
will find 2N unknowns Reg0ðtkÞ; Img0ðtkÞð Þ at N integration points tk

with the angles bk ¼ ð2k� 1Þp=N ðk ¼ 1;2; . . . ;NÞ, and H1; H2. Thus,
the total unknowns are also 2N + 2. Thus, the number of the algebraic
equations is equal to number of unknowns in the formulation.

4.2. Discussion for the integral equation for exterior BVP

In order to study the behaviors of the integral equation for exte-
rior BVP, we prefer to consider the case that: (1) the tractions ap-
plied on contour are in equilibrium in forces and moment, (2) the
portion of complex potentials /3ðzÞ; w3ðzÞ are deleted. In this case,
from Eqs. (67) and (71) we have the following system of the inte-
gral equations:

KðtoÞ ¼ ~rNðtoÞ þ i~rNTðtoÞ; ðto 2 CÞ ð72ÞZ
C

g0ðtÞdt ¼ 0 ð73Þ

Clearly, Eq. (72) is exactly same as its counterpart equation (33) in
the interior BVP.

It is necessary to consider the following two problems. The first
is about the conditions for existence of solution for Eq. (72). The
second one is if there is a solution from Eq. (72), which satisfies
Eq. (73).

Since the structure of Eq. (72) is same as Eq. (33), the conditions
for existence of solution for Eq. (72) are still expressed by Eqs. (43)
and (49). One may substitute all possible solutions from Eq. (72)
into Eq. (73), and find a solution as follows:

g0ðtÞ ¼ gpðtÞ þ c ðc � realÞ ð74Þ

where gpðtÞ represents a particular solution.
It was shown by Eqs. (23) and (28) that, the solution g0ðtÞ ¼ c

creates the following stress fields: (1) /0ðzÞ ¼ icz; w0ðzÞ ¼ 0 (with
no stresses anywhere for z 2 Sþ), and (2) /0ðzÞ ¼ 0;w0ðzÞ ¼ 0 (with
no stresses anywhere for z 2 S�). Moreover, the function g0ðtÞ ¼ c
also satisfies

R
C g0ðtÞdt ¼ 0 shown by Eq. (73). That is to say, the

portion of solution g0ðtÞ ¼ c has no real influence to the stress field.
For example, we can obtain the stress component rT (in the follow-
ing numerical example) along the contour.

If one makes discretization to Eqs. (72) and (73), the physical
situation of the problem has not been changed. In this case, we
can get the correct solution from algebraic equation. However,
the correct solution is not coming from the rank improvement in
Please cite this article in press as: Chen, Y.Z., Lin, X.Y. Solutions of the interior an
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the matrix. On contrary, the correct solution is coming from the
facts that, (1) the solution g0ðtÞ ¼ c satisfies the following two
equations: (1) KðtoÞjg0 ðtÞ¼c ¼ 0; ðto 2 CÞ, (2)

R
C g0ðtÞdt ¼ 0, and (2)

g0ðtÞ ¼ c has no influence for the stress field.

4.3. Numerical solution for the exterior BVP and numerical example

Generally, the integral equations shown by Eqs. (67) and (71)
are solved numerically after discretization. In the example, the el-
lipse has two half-axes ‘‘a” and ‘‘b”. It is assumed that the stress
fields are derived from the following complex potentials:

UðzÞ ¼ F
z� zg

; WðzÞ ¼ � jF
z� zg

� mgi

2pðz� zgÞ2
; ðz 2 S�Þ ð75Þ

where

F ¼ � Px þ iPy

2pðjþ 1Þ ð76Þ

In Eq. (75), zg (location of a point), F (or PxPy, resultant forces), mg

(moment) are given beforehand (Figs. 4 and 5).
Clearly, the tractions rN; rNT ; rT applied along the elliptic con-

tour can easily be evaluated from the assumed complex potentials.
The evaluated components rN and rNT become the term ~rNðtoÞþ
i~rNTðtoÞ in the right hand term of the integral Eq. (67).

It is seen that the resultant forces from boundary tractions on
the contour are Px and Py. In addition, from Eqs. (6)–(8), the rele-
vant moment from boundary tractions on the contour is as follows:

mo ¼ mg þ 2jpImðFzgÞ ð77Þ

Therefore, from the complex potentials shown by Eq. (64) and the
given values for Px; Py and mo, the term ~rNð2ÞðtoÞ þ i~rNTð2ÞðtoÞ in
the right hand term of the integral equation (75) can be evaluated
by using Eq. (70).

As in the previous example, the quadrature rule shown by Eq.
(51) is used in the discretization of the integral equations. In com-
putation, we assume N = 72, a = 2 and b/a = 0.5. In addition, three
loading cases are assumed as follows:

(1) First case: letting Px ¼ ap; Py ¼ 0; mg ¼ 0 in Eqs. (75) and
(76).

(2) Second case: letting Px ¼ 0; Py ¼ ap; mg ¼ 0 in Eqs. (75) and
(76).

(3) Third case: letting Px ¼ 0; Py ¼ 0; mg ¼ a2p in Eqs. (75) and
(76).
d exterior boundary value problems in plane elasticity by using dislocation
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Fig. 6. Non-dimensional stress hðhÞ ðrT ðhÞ ¼ hðhÞpÞ at the boundary point
tðhÞ ð0 6 h 6 2pÞ along an elliptic contour for the complex potentials UðzÞ ¼ F
=ðz� zgÞ; WðzÞ ¼ �jF=ðz� zgÞ �mgi= 2pðz� zgÞ2

� �
with b=a ¼ 0:5; F ¼ �ðPx þ iPyÞ=

ð2pðjþ 1ÞÞ; zg ¼ 0:5aþ ð0:5bÞi, for three cases: (1) Px ¼ ap; Py ¼ 0; mg ¼ 0, (2)
Px ¼ 0; Py ¼ ap; mg ¼ 0 (3) Px ¼ 0; Py ¼ 0; mg ¼ a2p (see Fig. 5).
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After solving the relevant algebraic equation, the stress compo-
nent rT can be evaluated by

rTðtoÞ ¼ 4ReU�ðtoÞ � rNðtoÞ ð78Þ

where

U�ðtoÞ ¼ �
ig0ðtoÞ

2
þ 1

2p

Z
C

g0ðtÞdt
t � to

þ F
to
þ H

2pto
ð79Þ

Finally, the computed tangent stress rT is expressed as

rT ¼ hðhÞp; ð0 6 h 6 2pÞ ð80Þ
U
N

C
O

R
R

E
C

Table 3
Non-dimensional stress hðhÞðrT ðhÞ ¼ hðhÞpÞ at the boundary point tðhÞ ð0 6 h 6 2pÞ
along an elliptic contour for the complex potentials UðzÞ ¼ F=ðz� zgÞ; WðzÞ ¼ �jF
=ðz� zgÞ �mg i= 2pðz� zgÞ2

� �
with b=a ¼ 0:5; F ¼ �ðPx þ iPyÞ=ð2pðjþ 1ÞÞ; zg ¼ 0:5a

þð0:5bÞi, for three cases: (1) Px ¼ ap; Py ¼ 0; mg ¼ 0, (2) Px ¼ 0; Py ¼ ap; mg ¼ 0,
and (3) Px ¼ 0; Py ¼ 0; mg ¼ a2p (see Fig. 5).

h (�) First case Second case Third case

Exact Numerical Exact Numerical Exact Numerical

15.0 �0.2833 �0.2872 �0.0761 �0.0685 1.0816 1.0532
30.0 0.5064 0.5211 �0.2854 �0.2923 3.1941 3.2464
45.0 0.2915 0.2803 0.6685 0.6587 �3.2398 �3.2426
60.0 0.2284 0.2319 �0.0154 �0.0081 �1.5013 �1.5110
75.0 0.2776 0.2761 �0.0801 �0.0850 �0.7054 �0.6970
90.0 0.2728 0.2738 �0.0637 �0.0602 �0.4074 �0.4137

105.0 0.2517 0.2512 �0.0396 �0.0422 �0.2650 �0.2599
120.0 0.2244 0.2248 �0.0165 �0.0145 �0.1840 �0.1879
135.0 0.1918 0.1915 0.0056 0.0041 �0.1332 �0.1302
150.0 0.1504 0.1506 0.0279 0.0290 �0.1016 �0.1038
165.0 0.0835 0.0833 0.0479 0.0470 �0.0831 �0.0815
180.0 �0.0159 �0.0157 0.0154 0.0160 �0.0223 �0.0233
195.0 0.0362 0.0360 �0.0260 �0.0263 0.0609 0.0613
210.0 0.0784 0.0786 �0.0161 �0.0160 0.0894 0.0896
225.0 0.0939 0.0937 �0.0066 �0.0064 0.1130 0.1123
240.0 0.0997 0.0999 �0.0016 �0.0020 0.1364 0.1378
255.0 0.1012 0.1010 �0.0005 0.0001 0.1591 0.1570
270.0 0.1006 0.1008 �0.0030 �0.0039 0.1808 0.1834
285.0 0.0992 0.0989 �0.0093 �0.0080 0.1998 0.1959
300.0 0.0983 0.0986 �0.0202 �0.0218 0.2101 0.2150
315.0 0.1013 0.1010 �0.0342 �0.0321 0.1947 0.1887
330.0 0.1113 0.1118 �0.0397 �0.0425 0.1249 0.1329
345.0 0.1326 0.1319 �0.0232 �0.0195 0.0710 0.0599
360.0 0.0909 0.0924 0.0273 0.0221 0.4074 0.4238
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The exact results for hðhÞ and the computed results for three above-
mentioned cases are plotted in Fig. 6 and listed in Table 3. In Fig. 6,
the exact results are plotted with the solid line and the numerical
exact results are plotted with the dashed line. Since two results
for the function hðhÞ are very close, the two curves are merged into
one. From Table 3 we see that at h ¼ 45� of third case, hðhÞ takes the
value: �3.2398 (from exact solution); �3.2426 (from numerical
solution). From the plotted and tabulated results we see that the
deviations for stress rT between the exact solution and numerical
solution are very small.

The second example is devoted to a rectangular contour with
the rounded corner under the remote tension r1x ¼ r1x ¼ p
(Fig. 7). The problem can be reduced to an exterior BVP with the
tractions on the contour only. The reduced problem can be solved
by using the suggested method.

In computation, we assume N = 120, a = 2, b/a = 0.5,0.6, . . .,1.0,
and c = 0.5b. Finally, the computed tangent stress rT is expressed
as

rT ¼ hðb=a; hÞp; ð0 6 h 6 p=2Þ ð81Þ

The computed results for hðb=a; hÞ are plotted in Fig. 8 and listed in
Table 4.

From tabulated results in Table 4, we see that a significant
stress concentration factor has been found. For example, we have
hðb=a; hÞmaxjb=a¼0:5;h¼24� ¼ 3:805, hðb=a; hÞmaxjb=a¼0:7;h¼33� ¼ 3:382,
Fig. 7. An exterior BVP for a rectangular contour with the rounded corner.

Fig. 8. Non-dimensional stresses hðb=a; hÞ ð¼ rT=pÞ at the boundary point
tðhÞ ð0 6 h 6 p=2Þ along a rounded rectangular contour (see Fig. 7).
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Table 4
Non-dimensional stresses hðb=a; hÞ ð¼ rT=pÞ at the boundary point tðhÞ ð0 6 h 6 p=2Þ
along a rounded rectangular contour (see Fig. 7).

h (�) b/a =

0.5 0.6 0.7 0.8 0.9 1.0

0 1.532 1.393 1.271 1.174 1.103 1.033
3 1.557 1.395 1.280 1.186 1.099 1.040
6 1.611 1.444 1.305 1.199 1.122 1.047
9 1.746 1.507 1.354 1.239 1.137 1.071

12 2.011 1.650 1.435 1.285 1.187 1.095
15 2.858 1.915 1.567 1.381 1.232 1.144
18 3.555 2.672 1.857 1.503 1.338 1.199
21 3.779 3.226 2.534 1.835 1.458 1.304
24 3.805 3.486 2.993 2.442 1.841 1.452
27 3.515 3.578 3.244 2.816 2.377 1.868
30 3.032 3.506 3.373 3.057 2.682 2.316
33 2.064 3.268 3.382 3.195 2.911 2.580
36 1.184 2.882 3.282 3.245 3.046 2.795
39 0.964 2.216 3.071 3.212 3.120 2.924
42 0.829 1.383 2.740 3.098 3.122 3.013
45 0.769 1.100 2.253 2.898 3.064 3.032
48 0.711 0.959 1.539 2.605 2.937 3.013
51 0.684 0.882 1.192 2.186 2.738 2.924
54 0.653 0.820 1.066 1.573 2.465 2.795
57 0.638 0.785 0.969 1.257 2.051 2.580
60 0.618 0.750 0.915 1.136 1.520 2.316
63 0.610 0.732 0.868 1.041 1.296 1.868
66 0.597 0.710 0.840 0.989 1.174 1.452
69 0.593 0.700 0.812 0.942 1.101 1.304
72 0.583 0.685 0.796 0.915 1.044 1.199
75 0.581 0.680 0.779 0.888 1.010 1.144
78 0.575 0.670 0.771 0.874 0.980 1.095
81 0.575 0.668 0.761 0.858 0.964 1.071
84 0.570 0.662 0.758 0.853 0.948 1.047
87 0.571 0.663 0.752 0.845 0.943 1.040
90 0.568 0.660 0.753 0.846 0.938 1.033
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and hðb=a; hÞmaxjb=a¼1:0;h¼45� ¼ 3:032. We know that for the circular
hole case, the stress concentration factor is 2 under the remote ten-
sion r1x ¼ r1x ¼ p.

5. Conclusions

Based on a previous publication (Savruk, 1981), this paper stud-
ies the formulation and numerical solutions of the interior and
exterior boundary value problems in plane elasticity, which is
based on the dislocation distribution layer in an infinite plate. In
addition, the formulation of dislocation distribution layer mainly
relies on the relevant complex potentials, or some complex vari-
able functions.

The complex variable plays an important role in the analysis.
For example, a complex potential in Eq. (17) was expressed by
/ðzÞ ¼ �ð1=2pÞ

R
C lnðz� tÞg0ðtÞdt. When a moving point ‘‘z” moves

along a closed loop in the region z 2 Sþ, the term lnðz� tÞ is a
U
N
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single-valued analytic function. Similar situation holds for the
complex potential wðzÞ shown by Eq. (18). Therefore, the single-
valued condition of displacements is satisfied automatically, if
the dislocation distribution method is used for the interior
problem.

However, for the same complex potential /ðzÞ ¼ �ð1=2pÞ
R

C

lnðz� tÞg0ðtÞdt, when a moving point ‘‘z” moves along a closed loop
in the region z 2 S�, the term lnðz� tÞ is a multiple-valued analytic
function. Similar situation holds for the complex potential wðzÞ
shown by Eq. (18). Therefore, the single-valued condition of dis-
placements must be imposed, if the dislocation distribution meth-
od is used for the exterior problem.

Physically, the applied tractions on the boundary must be in
equilibrium for the interior problem. However, this property is
not easy to prove in the direct BIE formulation, which is based
on the Somigliana identity (Brebbia et al., 1984). However, this
property has been proved successfully in the dislocation distribu-
tion method, which can be referred to Eqs. (40), (43), (44) and (49).

From the computed results, it is proved that the dislocation dis-
tribution method can provide sufficient accurate results.
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