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ABSTRACT 

In this study, we develop a novel estimation technique 

to obtain the optimal number of elements in the boundary 

element method (BEM) without having analytical solution. By 

using the complete Trefftz set as the analytical solution, 

namely quasi-analytical solution, the new error estimator is 

presented in the paper. The error curve versus different 

number of elements can be derived in the proposed techniques 

by comparing numerical solution with the quasi-analytical 

solution. By observing the error curve, we can obtain the 

optimal number of elements in BEM. One numerical example 

is taken to demonstrate the accuracy and efficiency of the 

proposed estimation technique. 

Keywords: Trefftz complete set, boundary element method, 

estimation technique, quasi-analytical solution. 

 

1. INTRODUCTION 

Discretization of the boundary integral equation is an 

important stage of the Boundary Element Method (BEM) in 

solving engineering problems [1, 2, 4, 6, 7, 8, 11, 12], the 

discretization process, which transforms a continuous system 

into a discrete system with finite number of degrees of 

freedom, results in errors. Because of the fact that the 

reliability of the boundary element approximation is directly 

related to the discrete boundary element model, in which a 

proper mesh should be used to represent accurately the 

original problem both in its geometry and condition. In 

general, the discretization error is generated from the 

difference between the exact solution and the numerical result 

of the governing equation, but the exact solution of 

engineering problems is difficult to find from mathematical 

formulation. Furthermore, in the boundary element analysis, 

number of degrees of freedom depends solely on an analyst’s 

experience and his/her intuition. Sometime we can get the 

accurate numerical solution, and sometimes we can get the 

poor results without having exact solution when we choose the 

different number of elements. Obviously, the choice of 

number of elements is a very objective and time-consuming 

process, and there is no guarantee that the final solution is 

sufficiently accurate. Obtaining a reliable error estimator is 

very important in order to guarantee a certain level of accuracy 

of the numerical result, and is a important ingredient of the 

stability analysis in numerical methods. Thus, estimation of 

the discretization error in the Boundary Element Method 

(BEM) is worthy of study. 

Different integral equations can be used to find the 

residual of discretization [1, 4]. A large number of studies 

applied the hypersingular equation to find the residual as error 

estimator [1, 4]. Both the singular integral equation UT and 

hypersingular integral equation LM in the dual BEM can 

independently determine the unknown boundary data for the 

problems without a degenerate boundary [1]. The residuals 

obtained from these two equations can be used as indexes of 

error estimation. This provides a guide for remeshing without 

the problem of mismatch of the collocation points on the 

boundary in the sample point error method. However, it 
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cannot be compared in the total error quantity in different 

number of mesh since it is pointwise error which depends on 

the number of elements. In this paper, we want to find a way 

of objective criterion to compare the error quantities in 

different number of mesh.    

Therefore, we develop the novel error estimator to 

obtain the optimal number of elements of the BEM without 

having analytical solution. The convergent numerical solutions 

of the BEM can be obtained after adopting the optimal 

number of elements in unavailable analytic solution condition. 

This study has presented a way of calculating the total error 

quantity as an asymptotically exact error estimator by 

implementing the new estimator in BEM based on complete 

Trefftz set [3, 5, 8, 9, 10, 13] in solving potential problem. A 

quasi-analytical solution is simulated to substitute for real 

analytical solution by employing the aid of the Trefftz set. The 

convergence analysis of BEM versus different number of 

elements can be derived in the proposed techniques by 

comparing with the quasi-analytical solution. By observing the 

error curve versus different number of mesh, we can obtain the 

optimal number of elements in BEM. We develop a 

systematic error estimation scheme to search for the optimal 

number of elements.  

 

2. PROBLEM STATEMENT AND METHOD 

OF SOLUTION 

 

2.1 Problem statement 

We consider the behavior of the medium 

governed by the Laplace equation with the 

mixed-type boundary conditions as: 
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where
2∇ is the operator with problem, )(xu is the 

potential, D is the computational domain of the 

problem, DBBB ∂=∪= 21 denotes the whole 

boundary of the domain D, in which of
1B is the essential 

boundary (Dirichlet boundary) in which the potential is 

prescribed,
2B is the natural boundary (Neumann 

boundary) where the normal derivative of the potential in 

the xn direction is specified. 

 

2.2 BEM formulation 

The boundary integral equation for the domain point 

can be derived from Green's second identity as: 
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where ),( xsU is the fundamental solution which 

satisfies:
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in which rxsU ln),( = and )( sx −δ is the Dirac-delta 

function, and ),( sxT is defined by
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in which sn is the out-normal direction at the boundary 

point s . Discretizing the boundary B into N boundary 

elements in Eq.(4) as follows:
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where CPV is the Cauchy principal value and RPV is the 

Riemann principal value. The boundary integral equation is 

discretized by using N number of constant boundary elements, 

then the resulting algebraic system (UT method: conventional 

BEM of singular integral formulation) can be obtained as: 

 
[ ]{ } [ ]{ }.U t T u=

 
(8) 

For the problem with mixed-type boundary conditions, Eq.(8) 

can be decomposed into  
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By collecting the given and unknown sets, we rearrange the 

influence matrices into 
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Eq.(8) can be simplified to  
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We can derive the unknown vector, ,x by utilizing the 

linear algebra solver. Next, we can collocate the points in 

the interested domain and calculate the potential by using 

the Eq.(8). 

 

3. Novel error estimation technique 

The derivation in formulating the analytical solution in 

the realistic engineering problem is not obtained easily. To 

overcome the drawback, an alternative problem is defined to 

be solved by implementing BEM. The domain shape and 

boundary condition type in the new problem are the same with 

the original problem. Furthermore, the alternative analytical 

solution in the new problem is similar with the real analytical 

solution in the original problem, namely quasi-analytical 

solution. After solving the new problem by BEM and 

comparing with the quasi-analytical solution, we develop a 

novel error estimation technique in this study. The derivation 

in the novel error estimation technique is presented as: 

 

3.1 Definition of new problem 

 

1. Quasi-analytical solution 

In this study, a new boundary-value problem are 

derived based on the Trefftz concept, this geometry 

contour and boundary condition type in the new problem 

is the same with original problem, and also satisfies the 

same differential equation (DE) operator. The 

potential, )(xu , in the new problem at arbitrary point x in 

the domain is the known by function, the linear 

combination of the T-complete set functions as follows:
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)(xφ can be chose by the T-complete set functions which 

satisfies the governing Eq.(1), M is the total number of 

the T-complete functions and jν denotes the undetermined 

coefficient. Each of the functions of T-complete set 

functions satisfies the governing Laplace equation in 

Eq.(1) as:
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Because of the linear property of differential equation 

operator in G.E., the potential, )(xu q
, satisfies the G.E. 

as:
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By collocating M number of collocation points to match 

original B.C. in original problem, the undetermined 

coefficient, jν , can be determined. Therefore, the 

quasi-analytical solution is similar to real analytical 

solution. The two problems have the same boundary 

contour and boundary condition type, and the boundary 

conditions of the new problem are given as:
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and its derivative in the normal direction (flux) as follows: 
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where )(xu and )(xt are the known potential and its 

derivative in the normal direction (flux). The error 

analysis between the new defined problem and the 

original problem are formulated on the next section as:  
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2. Error analysis between the new defined problem and 

the original problem 

The relationship between the real analytical solution 

and quassi-analytical solution is shown as:  
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Therefore, the difference in the two solver of space is derived 

as: 
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where C is bounded constant.  

 

3. R.M.S comparing with quasi-analytical solution 

The error quantity of numerical solution adopts the root mean 

squared (r.m.s) error by solving the new problem and 

comparing with quasi-analytical solution, which is defined as 

follows: 
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where tN is the number of field points, )(~ xu is the 

numerical solution of the new problem by the BEM. 

The flowchart of the formulation in implementing 

the novel errormator is shown in Fig.1. 

 

4. NUMERICAL EXAMPLE 

To show the performance of the error estimation 

scheme, we consider a rather standard problem, subjected to 

the mixed-type boundary condition as shown in Fig.2 (a) 

which have been solved by CHEN etc [5]. Our error 

estimation scheme can be applied to more general case with 

loss of generality through the case. The analytical solution of 

the radial temperature distribution is given by 

)/ln()()( 101 RruRuru +=
 

(21) 

in which 
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where 1R and 2R denote the inner and outer radii, 

respectively. The nodes distribution is plotted in Fig.2 (b), 

the field solution in Eq. (21) is depicted in Fig.3 (a). The 

RMS results with different number of terms of Trefftz 

complete set function comparing with quasi analytical 

solution and real analytical solution, respectively, are 

shown in Fig.4. By observing the error curves, the 

optimal number of elements is 400. The potential is 

plotted by using the 400 number of elements (optimal 

elements) in Fig.3 (b) and 80 elements (less optimal 

elements) in Fig.3 (c), respectively. The field solution 

along the radius r=2.43 by using the different elements 

are show in Fig.5, and the potential at the point u(x=0.248, 

y=0.391) by using the different elements are shown in 

Fig.6. 

 

5. CONCLUSION 

In this paper, a new estimation technique is developed 

to obtain the optimal number of elements for the BEM, we 

successfully applied the systematic error estimation scheme to 

solve 2-D potential problems without having analytical 

solution. The numerical examination verifies the validity of 

the error estimator technique. The technique plays a role in 

determining the optimal number of elements which can be 

seen as a objective way to obtain the relative errors in different 

number of elements without having analytical solution, and 

we can obtain the numerical solution efficiently. The 

perplexing number of elements in the BEM can get. The 

convergent result is found from the convergent study in the 

case. Numerical results agreed very well with the analytical 

solutions. 
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應用在邊界元素法的新誤差評估技術應用在邊界元素法的新誤差評估技術應用在邊界元素法的新誤差評估技術應用在邊界元素法的新誤差評估技術    
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摘要摘要摘要摘要    本研究發展出新的誤差評估方法，在不參照解析解的情況下，獲得邊界元素法的最佳元素數目。藉由使用
Trefftz 完全集合函數來創造新的解析解，並比較此新的解析解，我們可以得到邊界元素法在不同元素下的收斂行為分析。我們發展一套系統化的誤差評估技術來搜尋邊界元素法的最佳元素數目，最後提供數值案例證明在無需解析解的情況下，所提出的系統化誤差評估技術的有效性和準確性。 關鍵詞關鍵詞關鍵詞關鍵詞：元素離散，Trefftz 完全集合函數，收斂行為分析，系統化的誤差評估技術。       
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Fig. 2.(a) problem sketch, (b) element mesh.. 

Obtain new problem, shape, boundary condition type

Create quasi-analytical solution of new problem by Trefftz concept

Solving the new problem by BEM

Create B.C. of new problem by quasi-analytical solution

Estimate R.M.S error comparing with quasi-analytical solution

Obtain optimal number of elements by

error curve versus different number of elements

Start

Solving the original potential problem by BEM

End

Obtain new problem, shape, boundary condition type

Create quasi-analytical solution of new problem by Trefftz concept

Solving the new problem by BEM

Create B.C. of new problem by quasi-analytical solution

Estimate R.M.S error comparing with quasi-analytical solution

Obtain optimal number of elements by

error curve versus different number of elements

Start

Solving the original potential problem by BEM

End
 

Fig. 1. Flowchart of the systematic error estimation scheme. 
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Fig. 3. Field solutions (a) analytical solution, 

(b) 400 elements (optimal), (c) 80 elements. 
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Fig. 4. The error analysis for the field solution with the different terms of Trefftz basis. 
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Fig. 5. The error analysis for the field solution along the radius r=2.43 with the different 

elements. 
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Fig. 6. u (0.248, 0.391) versus number of elements and with the different terms of Trefftz 

basis.     


