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ABSTRACT

In this study, we develop a novel estimation technique
to obtain the optimal number of elements in the boundary
element method (BEM) without having analytical solution. By
using the complete Trefftz set as the analytical solution,
namely quasi-analytical solution, the new error estimator is
presented in the paper. The error curve versus different
number of elements can be derived in the proposed techniques
by comparing numerical solution with the quasi-analytical
solution. By observing the error curve, we can obtain the
optimal number of elements in BEM. One numerical example
is taken to demonstrate the accuracy and efficiency of the
proposed estimation technique.
Keywords: Trefftz complete set, boundary element method,

estimation technique, quasi-analytical solution.

1. INTRODUCTION

Discretization of the boundary integral equation is an
important stage of the Boundary Element Method (BEM) in
solving engineering problems [1, 2, 4, 6, 7, 8, 11, 12], the
discretization process, which transforms a continuous system
into a discrete system with finite number of degrees of
freedom, results in errors. Because of the fact that the
reliability of the boundary element approximation is directly
related to the discrete boundary element model, in which a
proper mesh should be used to represent accurately the
original problem both in its geometry and condition. In

general, the discretization error is generated from the

difference between the exact solution and the numerical result
of the governing equation, but the exact solution of
engineering problems is difficult to find from mathematical
formulation. Furthermore, in the boundary element analysis,
number of degrees of freedom depends solely on an analyst’s
experience and his/her intuition. Sometime we can get the
accurate numerical solution, and sometimes we can get the
poor results without having exact solution when we choose the
different number of elements. Obviously, the choice of
number of elements is a very objective and time-consuming
process, and there is no guarantee that the final solution is
sufficiently accurate. Obtaining a reliable error estimator is
very important in order to guarantee a certain level of accuracy
of the numerical result, and is a important ingredient of the
stability analysis in numerical methods. Thus, estimation of
the discretization error in the Boundary Element Method
(BEM) is worthy of study.

Different integral equations can be used to find the
residual of discretization [1, 4]. A large number of studies
applied the hypersingular equation to find the residual as error
estimator [1, 4]. Both the singular integral equation UT and
hypersingular integral equation LM in the dual BEM can
independently determine the unknown boundary data for the
problems without a degenerate boundary [1]. The residuals
obtained from these two equations can be used as indexes of
error estimation. This provides a guide for remeshing without
the problem of mismatch of the collocation points on the

boundary in the sample point error method. However, it
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cannot be compared in the total error quantity in different
number of mesh since it is pointwise error which depends on
the number of elements. In this paper, we want to find a way
of objective criterion to compare the error quantities in
different number of mesh.

Therefore, we develop the novel error estimator to
obtain the optimal number of elements of the BEM without
having analytical solution. The convergent numerical solutions
of the BEM can be obtained after adopting the optimal
number of elements in unavailable analytic solution condition.
This study has presented a way of calculating the total error
quantity as an asymptotically exact error estimator by
implementing the new estimator in BEM based on complete
Trefftz set [3, 5, 8, 9, 10, 13] in solving potential problem. A
quasi-analytical solution is simulated to substitute for real
analytical solution by employing the aid of the Trefftz set. The
convergence analysis of BEM versus different number of
elements can be derived in the proposed techniques by
comparing with the quasi-analytical solution. By observing the
error curve versus different number of mesh, we can obtain the
optimal number of elements in BEM. We develop a
systematic error estimation scheme to search for the optimal

number of elements.

2. PROBLEM STATEMENT AND METHOD
OF SOLUTION

2.1 Problem statement
We consider the behavior of the medium
governed by the Laplace equation with the

mixed-type boundary conditions as:

V2 u(x)=0,xe D (1)
u(x)=u(x),xe B, 2)
1(x) =280 a“(x) =7(x),xe B, 3)

X

where V is the operator with problem, u(x) is the

potential, D is the computational domain of the

problem, B =B, UB, =0D denotes the whole
boundary of the domain D, in which of B, is the essential
boundary (Dirichlet boundary) in which the potential is
prescribed, B, is the natural boundary (Neumann
boundary) where the normal derivative of the potential in

the n direction is specified.

2.2 BEM formulation
The boundary integral equation for the domain point
can be derived from Green's second identity as:

27u(x) = jT(s, x)u(s)dB(s)

4)
- j U (s, x)t(s)dB(s), x€ D

where U(s,x) is the fundamental solution which
satisfies:

V2U(s,x) = 0(x—s) &)
in which U(s,x)=Inr and d(x—s) is the Dirac-delta
function, and 7' (x, §) is defined by

oU(s,x)
> ©)

s

T(s,x)=

in whichn_is the out-normal direction at the boundary
point s . Discretizing the boundary B into N boundary
elements in Eq.(4) as follows:

u(x) = CPVLT(s, x)u(s)dB(s) -

—RPV [ U(s,)1(s)dB(s), xe B
where CPV is the Cauchy principal value and RPV is the
Riemann principal value. The boundary integral equation is
discretized by using N number of constant boundary elements,
then the resulting algebraic system (UT method: conventional
BEM of singular integral formulation) can be obtained as:

[UT{r} =[T]{u}. ®)
For the problem with mixed-type boundary conditions, Eq.(8)

can be decomposed into

[UL:Uk]en {t }le =T, Tx ]yn {ﬁ}m- )

u

By collecting the given and unknown sets, we rearrange the

influence matrices into
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. t . u
[UL:—TR]NXN{M} =[TL:—UR]NXN{?} (10)

Eq.(8) can be simplified to

[Alyun vt = by (11)
in which

[A]=[UL5—TR],ac={L} (12)

. u

ZZ:[TL:_UR]NXN [ 13)
We can derive the unknown vector, X, by utilizing the
linear algebra solver. Next, we can collocate the points in
the interested domain and calculate the potential by using

the Eq.(8).

3. Novel error estimation technique

The derivation in formulating the analytical solution in
the realistic engineering problem is not obtained easily. To
overcome the drawback, an alternative problem is defined to
be solved by implementing BEM. The domain shape and
boundary condition type in the new problem are the same with
the original problem. Furthermore, the alternative analytical
solution in the new problem is similar with the real analytical
solution in the original problem, namely quasi-analytical
solution. After solving the new problem by BEM and
comparing with the quasi-analytical solution, we develop a
novel error estimation technique in this study. The derivation

in the novel error estimation technique is presented as:
3.1 Definition of new problem

1. Quasi-analytical solution

In this study, a new boundary-value problem are
derived based on the Trefftz concept, this geometry
contour and boundary condition type in the new problem
is the same with original problem, and also satisfies the
same differential

equation (DE) operator. The

potential, #(X) , in the new problem at arbitrary point % in
the domain is the known by function, the linear

combination of the T-complete set functions as follows:
M
u'(x)=2v,,(x),xe D (14)
j=1

@(x) can be chose by the T-complete set functions which

satisfies the governing Eq.(1), M is the total number of

the T-complete functions and V j denotes the undetermined

coefficient. Each of the functions of T-complete set
functions satisfies the governing Laplace equation in

Eq.(1) as:

v [¢(1)(x)]: 0,V2 [¢(2)(x)]: 0,---

15
’V2[¢(M—l)('x)]=O’V2[¢(M)('x)]:O (1)

Because of the linear property of differential equation
operator in G.E., the potential, #? (x), satisfies the G.E.
as:

V[t ()] = v V2[g,, 0]+, V2 [8, (1) ]+
ety VB 0]+, VP, (0] =0

By collocating M number of collocation points to match

(16)

original B.C. in original problem, the undetermined

coefficient, Vj, can be determined. Therefore, the

quasi-analytical solution is similar to real analytical
solution. The two problems have the same boundary
contour and boundary condition type, and the boundary

conditions of the new problem are given as:

_ M

i(x)=Y v,4;(x),xe B, (17)
j=l

and its derivative in the normal direction (flux) as follows:

_ 0 (x) =f‘,vj 99, (x)

F) on on,

x Jj=1

.\ (18)
= ZVja)j (x),xe B,
j=1

where # (x) and t:(x) are the known potential and its
derivative in the normal direction (flux). The error
analysis between the new defined problem and the

original problem are formulated on the next section as:
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2. Error analysis between the new defined problem and
the original problem
The relationship between the real analytical solution

and quassi-analytical solution is shown as:

u®(x)=u’(x)+R,(x) (19)
where R (x) = Zvi¢j (x)
=M+

The remainder function R, (x) satisfies the G. E. and it is
exponential convergence as

[Ry )] =0G"),0<r<1

Therefore, the difference in the two solver of space is derived

as:

u (x)—u? () =Ry 0] <€),

where C is bounded constant.

3. R.ML.S comparing with quasi-analytical solution

The error quantity of numerical solution adopts the root mean
squared (r.m.s) error by solving the new problem and
comparing with quasi-analytical solution, which is defined as
follows:

= iNr i —u)’ iN’u2
rel—\/N Z( )/\/NZ (20)

¢t i=1 t i=1

where N, is the number of field points, i (X) is the
numerical solution of the new problem by the BEM.
The flowchart of the formulation in implementing

the novel errormator is shown in Fig.1.

4. NUMERICAL EXAMPLE

To show the performance of the error estimation
scheme, we consider a rather standard problem, subjected to
the mixed-type boundary condition as shown in Fig.2 (a)
which have been solved by CHEN etc [5]. Our error
estimation scheme can be applied to more general case with
loss of generality through the case. The analytical solution of
the radial temperature distribution is given by
u(r)=u(R)) +u,In(r/R)) (21)

in which

u, =[u(R,)—u(R)/In(R/R,) (22
where R, and R, denote the inner and outer radii,
respectively. The nodes distribution is plotted in Fig.2 (b),
the field solution in Eq. (21) is depicted in Fig.3 (a). The
RMS results with different number of terms of Trefftz
complete set function comparing with quasi analytical
solution and real analytical solution, respectively, are
shown in Fig.4. By observing the error curves, the
optimal number of elements is 400. The potential is
plotted by using the 400 number of elements (optimal
elements) in Fig.3 (b) and 80 elements (less optimal
elements) in Fig.3 (c), respectively. The field solution
along the radius r=2.43 by using the different elements
are show in Fig.5, and the potential at the point u(x=0.248,
y=0.391) by using the different elements are shown in

Fig.6.

S. CONCLUSION

In this paper, a new estimation technique is developed
to obtain the optimal number of elements for the BEM, we
successfully applied the systematic error estimation scheme to
solve 2-D potential problems without having analytical
solution. The numerical examination verifies the validity of
the error estimator technique. The technique plays a role in
determining the optimal number of elements which can be
seen as a objective way to obtain the relative errors in different
number of elements without having analytical solution, and
we can obtain the numerical solution -efficiently. The
perplexing number of elements in the BEM can get. The
convergent result is found from the convergent study in the
case. Numerical results agreed very well with the analytical

solutions.
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’ Obtain new problem, shape, boundary condition type ‘

l

’ Create quasi-analytical solution of new problem by Trefftz concept ‘

|

’ Create B.C. of new problem by quasi-analytical solution ‘

l

’ Solving the new problem by BEM ‘

!

’ Estimate R.M.S error comparing with quasi-analytical solution‘

l

Obtain optimal number of elements by
error curve versus different number of elements

l

Solving the original potential problem by BEM

Fig. 1. Flowchart of the systematic error estimation scheme.

R>=4
(a). problem sketch

(b). element mesh

Fig. 2.(a) problem sketch, (b) element mesh..
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(a). analytical solution

(c). 80 elements

Fig. 3. Field solutions (a) analytical solution,

(b) 400 elements (optimal), (c) 80 elements.
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77777 Compared with analytical solution

—©O——— Compared with similar analytical solution(M=30)
——<——— Compared with similar analytical solution(M=35)
—FF—— Compared with similar analytical solution(M=39)
% Compared with similar analytical solution(M=45)

400 800 1200

Number of elements

1600

Fig. 4. The error analysis for the field solution with the different terms of Trefftz basis.
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68.26
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Analytical solve
Elements=80
Elements=120
Elements=400
Elements=800
Elements=1600
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0
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Fig. 5. The error analysis for the field solution along the radius r=2.43 with the different

elements.
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u(0.248,0.391)

68.28
***** Analytical solution
—©O—— Original problem
| ——7/\—— new problem (M=30)
—F+—— new problem (M=35)
+ new problem (M=45)
68.24 —
68.2 —

0 200 400 600 800
Number of elements

Fig. 6.1 (0.248, 0.391) versus number of elements and with the different terms of Trefftz

basis.



