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Abstract  The FM-BEM and its research progress in rolling engineering are systematically introduced. At 
first, the principle and mathematical theory of the FM-BEM is demonstrated. Secondly, numerical 
computations for the FM-BEM are analyzed. Some fundamental functions and formulae are constructed for 
the boundary surface. An optimization mathematical model is established for the elastic and elasto-plastic 
frictional contact system. Practical and efficient solution strategies and algorithm are presented. Thirdly, 
some applications of FM-BEM in large-scale rolling engineering are presented, which includes the 
simulations of roll shape, stand stress, assembly process of the oil film bearing tapered sleeve and roll neck, 
reliability of the 3500mm mill pressure screw-pairs, and cold-rolling process of 2030mm four-high mill. 
Finally, the development trend and some problems to solve are discussed. 
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1 INTRODUCTION  
 

In the fields of aeronautics and astronautics, mechanics and civil engineering, many frictional contact 
problems involve multiple bodies and nonlinear factors, for which the numerical solution is very 
difficult[1-2]. For example, the four-high mill strip rolling process, the numerical analysis and simulations 
are almost impossible without new efficient theories and methods. So, it has become an urgent subject and 
task to find suitable numerical methods and techniques for the large-scale frictional contact problems with 
complicated calculations.  
However, The Fast Multipole Method (FMM) was considered as one of the ten distinguished scientific 
calculation algorithms in 20 century[3]. Combined with the FMM, the conventional Boundary Element 
Method (BEM) could be used to efficiently solve large-scale frictional contact problems and it had obtained 
a great progress in theory and application, which directly resulted in the formation and development of a new 
Fast Multipole Boundary Element Method (FM-BEM)[4-10]. Based on the Generalized Minimal Residual 
(GMRES) algorithm [6], the FM-BEM aims at the solution of large scale problems and the improvement of 
computational efficiency. Now it has become one of the most popular numerical methods and has been 
extensively applied in computational mathematics and mechanics, mechanical engineering, acoustics, and 
numerical simulations of composite materials and complicated engineering problems with highly nonlinear 
factors. 
In authors’ group, the investigations on the FM-BEM started in 2001. Some exploratory and productive 
works in theory, in numerical methods and in applications have been made in recent years [5-7, 11-18]. The 
purpose of this paper is to systematically introduce some of our results about the FM-BEM and its research 



progress in rolling engineering field, including the principle, mathematical theory, optimization model, 
numerical formulae and algorithms, and some large-scale numerical simulations of complicated frictional 
contact systems. 
 
2 FUNDAMENTAL PRINCIPLES FOR THE FM-BEM  
 

2.1 Combination point for the FMM and BEM 
 
FMM originates in the computation of electrostatic field. It can be used to compute the interaction of 
quantity particles. These particles are divided into different sets according to their spatial locations. When a 
set is far away from another set, the interaction of their particles is computed by using the FMM. Otherwise, 
it is directly computed. In addition, direct computation is also used to compute the interaction of two 
particles that are in the same set. The FMM expression is as follows: 
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where nXXX ,,, 21 K  indicate the points in 3R , and nqqq ,,, 21 K are a group of constants related with 

nXXX ,,, 21 K .  
Combined with the FMM, the BEM has been developed into the FM-BEM. The root reason is the FMM can 
be used to fast compute the far influence coefficients in the BEM. The key to establish the FM-BEM is the 
BEM fundamental solutions can be decomposed into the FMM expressions. In the FMM, we find that Eq.(1) 

can be reduced to a general mathematical formula ∑
≠ ji ij
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( ijR  indicates the distance between two arbitrary 

particles, and ic  is a constant that indicates the quantity of electricity for a particle). While in the BEM, the 
discrete expressions for the boundary integral equations can also be reduced to the general formula 

∑
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( ijR indicates the distance between a source point and an integral point, and ic is an influence 

coefficient that indicates the interaction between the source point and the integral point) or its partial 
derivatives. For example, the final discrete expression for the boundary integral equation of the elastic 
problems is as follows: 
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where qx  indicates the source point, c
q yxR −=  the distance between the source point and a multipole 

center, )( q
ijm xR , )( q

im xS , )( q
ij xP  and )( q

i xQ  the operators of partial derivative, and 
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2.2 Equivalence of the fundamental solutions for the BEM and FM-BEM 
 
To introduce the FMM into the BEM, fundamental solutions and kernel functions are appropriately 
decomposed [11]. The two kinds of solution are proved to be equivalent. To further demonstrate this 
equivalent relationship, some numerical examples are made for elastic problems.  
For the fundamental solutions of displacements ),( yxUij and tractions ),( yxTij , the conventional BEM 
solutions can be decomposed into FM-BEM format ones with two terms. If 1== ji , then ),(11 yxU is 
shown in Fig.1. If 3,2,1,1 === pji , then ),(11 yxT  is shown in Fig.2. 
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(a)FM-BEM format with two terms                    (b)Comparison of two kinds of format 

Fig.1 Equivalence of solutions for ),(11 yxU  
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(a)FM-BEM format with two terms                    (b)Comparison of two kinds of format 

Fig.2 Equivalence of solutions for ),(11 yxT  
 

From Figs.1-2, we can see that the conventional BEM solutions and the FM-BEM ones are coherent in the 
numerical analysis. If r  indicates the radius of the minimal set of integral points, and R  the distance 
between the source point and the center of the object points set, then the two kinds of solutions are almost 
coincident when rR 3> . It verifies that the introduction of FMM is very significant under the 
condition rR 3> .  
 
2.3 Existence and uniqueness of the solution for GMRES(m) based FM-BEM 
 
GMRES(m) algorithm is usually used to well solve the frictional contact FM-BEM problems. In the solution 
process, the most important of all is the solution of the least squares problems, which can be expressed 
as[16]:  
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Let DrCvxxxXyBAV m
T

mmm ===== ,,),,(, 121 βL . From reference [16], BXCD −=  and Eq.(3) 
satisfies the following algebraic conditions: 

CBBXB TT =    (4) 

The linear equations Eq.(4) is the algebraic equation for the least squares solution, in which BBT  and CBT  
are the coefficient matrix and the constant term, respectively.  
Theorem 1[16]. Suppose that mnRB mn >∈ × , , then BBT  is a symmetric matrix. 
Theorem 2[16]. For the matrix BBT , there exists an orthogonal matrix nnRT ×∈ ，which results in 

),,,()()( 21
1

n
TTT diagTBBTTBBT λλλ L== − , where nλλλ ,,, 21 L  are the eigenvalues of BBT . 

Theorem 3[16]. Suppose that mnRB mn >∈ × , , then BBT  is positive definite. 
From the above analysis, the equations of frictional contact system can be reduced to a simple system of 
equations 

bxA =    (5) 

where XxcBbBBA TT === ，, . 
Theorem 4[16]. From Theorem 1-3, the FM-BEM solution of Eq.(5) is existent and unique. 
 
3 OPTIMIZATION FM-BEM AND ITS NUMERICAL ALGORITHMS FOR THE ELASTIC AND 
ELASTO-PLASTIC FRICTIONAL CONTACT SYSTEM 
 
3.1 Spherical harmonics and numerical formulae 
 
In the FM-BEM, it is very important for the simulation to select a suitable spherical harmonic function. 
Some numerical formulae must be derived for the spherical harmonics. 
From the Addition Formula [13], we have 
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The bounded (for θ ) periodic (for ϕ ) solutions totals 12 +n  with πϕ 20 ≤≤  and πθ ≤≤0 . 
nmeP imm

n ±±= ,,1,0,)cos( Lϕθ  
Using Rodrigues formula[13], the associated Legendre function )(xPm

n  can be proved to satisfy the 
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In the FM-BEM, the spherical harmonic function 
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is taken as the bounded periodic solution of Eq. (6), which satisfies the relationship 
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where *
nmY  is the conjugate complex of nmY , and 
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Eq. (11) can be proved by Eq. (7). Eq. (10) can be proved by Eq. (8) and the following relationship: 
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However, Eq. (7) is required if 0<m  or 0<′m . 
In the FM-BEM, Eq. (9) is the bond of spherical harmonic function and associated Legendre function. For 
the numerical computation of the spherical harmonic function ),( ϕθnmY  in Eq. (9), the key point is the 
associated Legendre polynomial. There are many numerical methods to compute the associated Legendre 
polynomial. However, most of them are not too well. A more effective computational method is given as 
follows. 
The associated Legendre polynomial satisfies many recurrence relationships, which can be with respect to n  
or m , or to both n  and m . Most of them with respect to m  are instable and not suitable for numerical 
computation. Using mathematical induction, )(xPm

n  is proved to satisfy 
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which is stable with respect to n  and also a practical numerical formula. It can be proved that )(xPm
n  has 

closed expression 
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with respect to initial values. For Eq. (13), let 1+= mn , 0)(1 =− xP m
m , then 
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In Eq. (13), the two initial values suitable for general n  are given by Eqs. (14) and (15). 
 
3.2 Practical strategies for the numerical integration 
 
Compared with the conventional BEM, the FM-BEM shows obvious superiority in the computation of 
influence coefficients, as is shown in Fig. 3.  

          
(a)Conventional BEM                                                                     (b)FM-BEM 
Fig. 3 Efficiency comparison for computing influence coefficients 

 



In Fig. 3, iq  indicates the center of the i th element on the observation surface, ip  indicates the i th source 
node, and Q  the multipole center. From Fig. 3, we can see that the operations can be approximately reduced 
from )( 2NO  to )(NO  if the FM-BEM is used in the computation of influence coefficients. The 
computational efficiency can be greatly improved.  
 
3.3 Optimization mathematical model for the elastic and elasto-plastic frictional contact system 
 
3.3.1 node-to-surface contact mode  
 
To obtain the system of equations for the frictional contact system, it is necessary to discriminate the contact 
states from bodies A  and B , for which the node-to-surface frictional contact model is used [5, 6]. 
The position of the elastic body is found during the solution process. Coordinates of the nodes will indicate 
when contact occurs. The two contact bodies should meet the constraint demands without penetration. P is 
an arbitrary point on object A, which is shown in Fig.4. (a) is the contact model and (b) is a partially enlarged 
detail. If P meets the conditions of Eq.(16), P is considered to be in contact with element S on object B. 
Element S is composed of four nodes (X1, X2, X3, X4). 
 

 
Fig.4 Node-to-surface contact model 

 

⎩
⎨
⎧

Δ⊂Δ⊂
≤

431V321V PP
δ

XXXorXXX
d

   (16) 

where d indicates the distance between P and Pv, Pv the pedal of P on element S, and δ  the contact tolerance 
(defaulted as one hundredth of the length of the smallest element).  
 
3.3.2 Establishment of the optimization mathematical model 
 
For the contact bodies, when the boundaries are discretized, the total numbers of discrete nodes are AN  
and BN , respectively. The nodes on the contact surface are c

AN  and c
BN , respectively. For each contact node 

of bodies A  and B , three necessary equations are added through the linearization of the nonlinear contact 
constraints[6]. Then a node-to-surface optimization mathematical model can be established for the elastic 
frictional contact system, which is shown in Eq.(17)[14].  

{ }⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

==

==

==

==

==

),,2,1(

)3,,2,1(0)(

)3,,2,1(0)(

)3,,2,1(0)(

)3,,2,1(0)(

)(min

NFjxx

Nixg

Nixg

Nixf

Nixf

xF

j

c
B

B
i

c
A

A
i

B
B
i

A
A

i

L

L

L

L

L

   (17) 

In Eq.(17), the objective function is a least squares residual modular function,  
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i  are two residual functions defined from the control equations for bodies A  and B , 

respectively. )(xg A
i  and )(xg B

i  are two functions defined in the linearization of the nonlinear contact 

constraints for bodies A  and B , respectively. Let )(3 c
B

c
ABA NNNNNF +++=  be the total Degree Of 

Freedom(DOF). By using the GMRES(m) algorithm and least square method, the solution of the system 
equations reduces to bxA = [14].  
 
3.4 Secondary optimization of the model 
 
In the model expressed by Eq.(17), if the objective function )(xF  is replaced by the strictly convex 

quadratic function ),(),(
2
1)( xbxAxx −=ϕ , then a new quadratic programming model for the frictional 

contact system can be established as follows: 
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It can be demonstrated that the optimum solution to the quadratic programming model expressed by Eq.(18) 
is existent and unique[16]. The optimality condition for the quadratic programming model is not only 
sufficient, but also necessary. 
 
3.5 Fast solver: IGMRES(m) algorithm 
 
By using the truncation technology, we proposed a fast Incomplete Generalized Minimal Residual 
(IGMRES(m)) algorithm based on the FM-BEM and established the convergence theory [14, 15]. Detailed 
steps are as follows: 
(1) Initialization: Choose the step number m , and set the parameter )2( mqq ≤≤  and the precision ε ; 
Choose the initial value 0)0( =x , and compute ,/, )0(

1
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(2) Iteration: For mj ,,2,1 L=  
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jH  is a strip upper Hessenberg matrix. When 1=j , the first column is omitted and then mmm HVVA 1+= ; 

(3) Solve the least squares problems mm
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(4) Construct the approximate solutions mm
m yVxx += )0()( ; 



(5) Compute the modular of residual vectors )()( mm xAfr −= ; 

(6) Restart judgment: If ε≤)(mr and )()( )0()( xx m ϕϕ < , )(mxx =  is the solution and the iteration is stopped. 

Otherwise, set )()0( mxx = and turn to Step(1).  
In addition, we presented a novel convergence analysis method that combines theoretical proof with 
numerical experiments [17]. Through the analysis of the influence of truncation index on the computational 
efficiency and precision, the IGMRES(m) algorithm has been proved to be rapidly convergent with stable 
process and high precision. Compared with the GMRES(m) algorithm in other related papers, the 
IGMRES(m) algorithm has much more excellent convergence condition and computational performances. 
The IGMRES(m) algorithm and the convergence analysis method are especially suitable for the simulations 
of elastic and elasto-plastic frictional contact systems and other nonlinear computing systems with 
complicated and time-consuming iterations. 
 
4 SOME APPLICATIONS OF THE FM-BEM IN ROLLING ENGINEERING 
 
4.1 Large-scale simulations of roll shape and stand stress 
 
4.1.1 Roll shape of the back-up roll 
 
For the back-up roll of a large-scale four-high mill on rigid mount and on rocker bar bearing, their 
deformations are numerically simulated by the mathematical programming FM-BEM. The roll discrete 
meshes are shown in Fig.5(a). The number of discrete elements is 5668, and the DOF is 34008. Young’s 
modulus and Poisson’s ratio are E＝200 Gpa andμ＝0.3, respectively. The width of contact zone is 14mm. 
The assumed pressure on the roller surface is 1330Mpa. 36-point Gauss integral is used in the numerical 
integration.  
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(a) Discrete meshes for the roller (b) Displacements on the roller surface 
Fig. 5 Discrete meshes and displacements on the roller surface 

 
After 12 hours, 18 minutes and 16 seconds, the deformations of the roller on two kinds of support are 
obtained. The deformation curves are shown in Fig.5(b). The results show that the deformation of roller on 
rocker bar bearing is larger than that of on rigid mount. The increment is less than 1.5%, so it is necessary to 
consider its influence.  
 
4.1.2 Field of stand stress  
 
By using the mathematical programming FM-BEM, the field of stand stress is numerically simulated. The 
stand structure and discrete meshes are shown in Fig.6, and the main computing parameters are shown in 
Table 1. The deformation and stress of the stand are shown in Fig. 7. The maximal tension stresses for the 
medial surface of the stand upright, the bottom surface of the lower separator and the top surface of the 
entablature are 8.4MPa, 26MPa and 5.85MPa, respectively. The maximal tension stress 58MPa occurs at the 
transitional round corner of the bottom surface and the cylinder of the entablature boring. The deformations 



on the bottom surfaces of the stand window and the entablature boring are not uniform on the plane. So the 
average value 0.466mm is taken, which indicates the longitudinal deformation of the stand window.  
 

Table 1 Main parameters 
Sectional area of 
the upright (/cm2) Material Young’s modulus 

(/GPa) 
Intensity limitation 

(/MPa) Poisson’s ratio Rolling pressure 
(/MN) 

Equilibrant 
(/KN) 

6105 ZG35 210 600 0.3 22 700 

 

 

 

 
Fig.6 Stand and discrete meshes Fig.7 Field of stand stress 

 
4.2 Simulation of the assembly process for large-scale oil film bearing tapered sleeve and roll neck 
 
By using the optimization FM-BEM, the assembly process is demonstrated for the tapered sleeve and roll 
neck of a large-scale oil film bearing. A roll neck inside a tapered bearing sleeve with an oil-film is the 
assembly shown in Fig.8 (a). The exterior surface of the tapered sleeve is a cylindrical surface. The taper of 
the inner surface is 30:1< , which is the same as that of the neck surface. There is a hydraulic bulge 
assembly groove seal at each end of the inner surface of the sleeve. In the actual assembly, a “fish tail” and 
“bonding” phenomena exists. The simulation of contact pressure change is significant not only in theory, but 
also in engineering practice. During the assembly, the roll neck is fixed, and the tapered sleeve moves 54mm 
in the axial direction. This results in a magnitude value of 1.8 mm in the radial direction.  
Stress concentration occurs near the seal grooves, where meshes of the tapered sleeve and roll neck are 
subdivided. Their discrete meshes are shown in Fig.8 (b) and (c), respectively. The computing parameters 
are shown in Table.2. Young’s modulus and Poisson’s ratio are E＝206 Gpa andμ＝0.3, respectively. 
 

  
(a) Calculation model (b) Meshes for the tapered sleeve (c) Meshes for the roll neck 

Fig.8 Calculation model and discrete meshes 
Table 2  Computing parameters 



Totality Contact zone Bodies 
Node number Element number Node number Element number 

DOF 

Tapered sleeve 3120 3120 1380 1200 13500 
Roll neck 2854 2852 1500 1440 13062 
Total number 5974 5972 2880 2640 26562 

 
When the assembly is fit together, the distribution of the contact pressure is shown in Fig.9(a). In the contact 
zone, the peak value of contact pressure reaches 678Mpa (It is less than the yield limit of the sleeve, but it is 
greater than the yield limit of the roll neck 590Mpa.), which is the main reason causing “fish tail” in the roll 
neck. Therefore, under the current assembly conditions, “fish tail” and “bonding” are inevitable for the 
sleeve and roll neck. 
 

  
(a) Before optimization (b) After optimization 

Fig. 9 Contact pressure 
 
The total load is divided into five incremental steps, and the total computation time is 18 hours and 23 
minutes. However, if the FM-BEM without the mathematical programming is used, the convergence is 
exceptionally slow and no satisfactory results can be obtained (Two incremental steps take more than 30 
days).  
To improve the stress concentration phenomena in the assembly, we optimize the magnitude of interference 
for the tapered sleeve, as is shown in Fig.10, where mm065.01 =Δδ , mm03.01 =′Δδ , mm05.02 =Δδ , 

mm025.02 =′Δδ , mmSS 3621 == . 
 

 
Fig.10 Optimized tapered sleeve 

 
After optimization, the distribution of contact pressure inside of the tapered sleeve is shown in Fig.9(b). The 
pressures at both ends obviously reduce and the peak value reduces to 210Mpa. It is in the elastic range.  
 
4.3 Reliability analysis of the 3500mm mill pressure screw-pairs  
 
Fig.11 shows the properties of 3500 heavy and medium plate mill press down system. (a) is the structural 
diagram. (b) and (c) show the thread profile and the pressure screw-pairs profile, respectively. 
 



 
1. Pressure screw  2.Nut  3.Spherical mat  4.AGC  5.Bearing block  6.Stand 

Fig.11 3500mm mill pressure screw-pairs 
 

The medium diameter of pressure screw is d = 656 mm and the screw pitch is t = 40 mm. There are 22 teeth 
in nut altogether. Material properties and loads are shown in Table.3. The coefficient of friction between 
teeth is 0.1, which is the static friction value with lubrication. 
 

Table 3 Materials and loads 
No. Properties Pressure screw Pressure nut 
1 Materials 42CrMo ZcuCn23Al6Fe3Mn2 
2 Young’s Modulus E / GPa 206 103 
3 Poisson ration ν  0.3 0.3 
4 Rolling force Fr / MN 70 70 
5 Additional force Fe / MN 1 1 

 
The running clearance and tip clearance of the pressure screw-pairs are 0.167 mm and 0.8 mm, respectively. 
The computing model is shown in Fig.12(a). The discrete mesh charts for the pressure screw and nut are 
shown in Fig.12(b). There are altogether 5,390 four nodes linear surface elements (2,696 for screw and 2,694 
for nut). 
 

 

 
Fig.12 Computing model (a) and discrete meshes (b) 

 
The 3-D traction field in the pressure screw-pair of a 3500 heavy and medium plate mill press down system 
is successfully calculated by applying the mathematical programming FM-BEM and the corresponding 
program that has been developed by our group. The main results are shown in Fig.13.  
In Fig.13, θ  indicates the included angle between the horizontal axial and each cross-section. Line 1 
indicates the distribution of circumferential traction under medium-diameter orientation, and line 2 indicates 
that under interference loads.  
The computing results show the medium diameter orientation is unreliable, especially under the interference 
of an outer force couple. Under such working conditions, the circumferential traction distribution on the 
screw teeth is extremely uneven, which is the main reason for the destruction and short life time of 
screw-pairs. Also, the simulation results provide a new tool for designing new pressure screw-pairs whose 
pressure distribution will be even. When utilizing the same precision (the relative tolerance is 10E-5), the 
FM-BEM uses almost the same CPU time as used by the FEM, but the needed computer memory size is only 



one eightieth of that needed by the FEM (10MB vs. 800MB). The FM-BEM is well suited for computing 
large-scale engineering problems.  
 

(a) Medium-diameter Orientation (b) Addendum Orientation 
 

 
(c) Under partial load (d) The second circle under partial load 

Fig.13 3-D contact stress distributions of the screw teeth 
 
4.4 Numerical simulation of the cold-rolling process of 2030mm four-high mill 
 
Combined with high performance computation and numerical optimization technique, a kind of 
IGMRES(m) based multi-body network parallel FM-BEM method is proposed. Under PVM network 
parallel computing platform, related Fortran source programs are developed for large scale computation. 
The cold-rolling process of 2030mm strip four-high mill is successfully simulated and many satisfactory 
results are finally obtained. Compared with other related methods and numerical simulations, the 
computational efficiency and the problem scale are greatly improved. 
 
4.4.1 Multi-body Network Parallel FM-BEM 
 
At first, the network parallel computing environment is established. Then the computing procedure is 
analyzed and designed for multi-body network parallel FM-BEM. The hardware structure and the software 
environment for the parallel computing are shown in Fig.14.  
 

(a)Hardware structure 

 
(b)Software environment 

Fig.14 Hardware structure and software environment 
 

4.4.2 Simulation of Cold-rolling Process of Four-high Mill by Using the Network Parallel FM-BEM 
Method 



 
By using the IGMRES(m) based multi-body network parallel FM-BEM method, 2030mm strip cold-rolling 
process of four-high mill is simulated. The calculation model and the discrete meshes are shown in Fig.15. 
The size and rolling parameters for the back-up roll, the working roll and the strip are shown in Table 4.  
 

 
(a)Roll system (b)Roller 

 

 
 

(c)Strip 

Fig. 15 Calculation model and discrete meshes 
 

Table 4 Rolling parameters  
Back-up roll Working roll Strip 
Young’s modulus (E/GPa) 210 Young’s modulus (E/GPa) 210 Young’s modulus (E/GPa) 206 
Poisson ratio (υ ) 0.3 Poisson ratio (υ ) 0.3 Poisson ratio (υ ) 0.3 
Roll radius (R/mm) 750 Roll radius (R/mm) 300 Initial thickness (h0/mm) 1.25 
Roll body length (L/mm) 2030 Roll body length (L/mm) 2230 Width (b/mm) 1850 
Friction coefficient (μ ) 0.1 Friction coefficient (μ ) 0.1 Friction coefficient (μ ) 0.08 
Contact tolerance (Δ /mm) 0.001 Contact tolerance (Δ /mm) 0.002 Contact tolerance (Δ /mm) 0.003 

-- -- -- -- Yield stress ( sσ /MPa) 250 
-- -- -- -- Stiffness coefficient (H) 0.002 
-- -- -- -- Press down ratio (％) 20 
-- -- -- -- Forward pull (T1/N) 2430 

 

 
(a)Contact pressure 

 
(b)Tangential friction 

 
(c)Axial friction 
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(d)Displacement of the back-up roll 

Fig.16 Main computing results 



4.4.3 Main Results and Discussions 
 
In the numerical simulation, the presented method is implemented on 10 computers. The truncation ratio is 
0.1. After 40 hours and 37 minutes, some final results are obtained for the coupling deformation of the 
working roll and the back-up roll, as are shown in Fig.16. 
In addition, other related numerical simulations have been made by our group. It shows that it is impossible 
to solve the above rolling problem by traditional BEM. By using the FM-BEM, the final success also can not 
be achieved because this large computational scale often results in all kinds of troubles and makes the 
solution be interrupted. Among our simulations, there are two other successful experiments. One is for the 
strip rolling problem with breadth-thickness ratio 200 by using the network parallel BEM method on 7 
computers. The computation lasts more than 5 days. The other one is for the strip four-high mill rolling 
problem with breadth-thickness ratio 1850 by using the GMRES(m) based network parallel FM-BEM 
method on 10 computers. The computation time is 42 hours and 24 minutes. These experiments and 
computational results demonstrate that the IGMRES(m) based network parallel FM-BEM method has 
greatly improved the computational efficiency and can solve the large scale strip rolling problems with 
irregular multi-body structures and complex computing conditions. 
 
5 CONCLUSIONS 
 
According to the international progress of the numerical analysis methods, we introduced the FMM into the 
BEM and preliminarily developed the numerical method of FM-BEM. Also we established some 
mathematical theories of FM-BEM, presented some practical efficient formulae and algorithms, and mainly 
applied it into the simulation of rolling engineering. For the study of FM-BEM, different researchers have 
different viewpoints and they are interested in different application fields. For the present, the studies of 
FM-BEM have all kinds of specialties. So we can objectively say that the development of FM-BEM is still 
immature in theory, in numerical method and in applications. Many problems on FM-BEM need us to think 
about.  
In our further investigations, we will address ourselves to the improvement of FM-BEM theory and try to 
develop it into a kind of mature numerical method. Therefore, it is necessary to abstract the essence from the 
present FM-BEM in different application fields. This research is significant for the numerical method itself 
and its service ability of guiding applications.  
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