
Solving the hypersingular boundary integral equation
in three-dimensional acoustics using
a regularization relationship

Zai You Yan, Kin Chew Hung,a) and Hui Zheng
Institute of High Performance Computing, 1 Science Park Road #01-01 The Capricorn,
Singapore Science Park II, Singapore 117528

~Received 2 August 2002; revised 2 January 2003; accepted 24 January 2003!

Regularization of the hypersingular integral in the normal derivative of the conventional Helmholtz
integral equation through a double surface integral method or regularization relationship has been
studied. By introducing the new concept of discretized operator matrix, evaluation of the double
surface integrals is reduced to calculate the product of two discretized operator matrices. Such a
treatment greatly improves the computational efficiency. As the number of frequencies to be
computed increases, the computational cost of solving the composite Helmholtz integral equation is
comparable to that of solving the conventional Helmholtz integral equation. In this paper, the
detailed formulation of the proposed regularization method is presented. The computational
efficiency and accuracy of the regularization method are demonstrated for a general class of acoustic
radiation and scattering problems. The radiation of a pulsating sphere, an oscillating sphere, and a
rigid sphere insonified by a plane acoustic wave are solved using the new method with curvilinear
quadrilateral isoparametric elements. It is found that the numerical results rapidly converge to the
corresponding analytical solutions as finer meshes are applied. ©2003 Acoustical Society of
America. @DOI: 10.1121/1.1560164#

PACS numbers: 43.40.Rj, 43.20.Rz, 43.20.Fn@EGW#
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I. INTRODUCTION

Boundary element method based on the Helmholtz in
gral equation has long been applied for the analysis of ac
tic radiation and scattering problems. Its significant adv
tages over other popular numerical techniques such as
finite difference and finite element method include a red
tion of dimensionality of the problem by one, and an au
matic satisfaction of the radiation boundary condition. Ho
ever, the classical boundary element method for exte
acoustic problems fails to provide a unique solution at c
tain frequencies, which are the characteristics of the ass
ated interior problem. The nonuniqueness is a purely m
ematical problem arising from the boundary integ
formulation rather than from the nature of the physical pro
lem. A detailed description about the nonuniquness prob
is presented in Ref. 1.

Several modified integral formulations have been dev
oped to overcome the nonuniqueness problem. By far,
combined Helmholtz integral equation formulation~CHIEF!
proposed by Schenck2 in 1968 and the composite Helmhol
integral equation~CHIE! presented by Burton and Miller3 in
1971 are the two most popular approaches. In the CH
method, Schenck2 combined the surface Helmholtz integr
equation with the interior Helmholtz integral equation
form an overdetermined system of equations, which was t
solved using the least-squares procedure. Seybertet al.4 pro-
vided a computational method based on the CHIEF met
using isoparametric element formulation. Recently, Ch
et al.5 extended the CHIEF method to the combined Hel

a!Electronic mail: hungkc@ihpc.a-star.edu.sg
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holtz exterior integral equation formulation to solve the in
rior problems. Although the CHIEF method is very simple
implement, it fails when the interior points are located on
nodal surface of the corresponding interior problem. To da
the selection of some suitable interior points still remains
a difficult problem. On the other hand, the CHIE meth
uses a linear combination of the Helmholtz integral equat
and its normal derivative equation. It was proved that
linear combination of these two integral equations wou
yield a unique solution for all frequencies with a suitab
complex combination coefficient, even if both the Helmho
integral equation and its normal derivative equation suf
from the nonuniqueness problem. This method appears t
robust for numerical implementation. However, it suffe
from a major drawback that hypersingular integral is
volved in the normal derivative of the Helmholtz integr
equation. Numerical techniques for computing nonsingu
nearly singular, and nearly hypersingular integrals can
found in the review paper by Tanakaet al.6

Burton and Miller3 used a double surface integr
method throughout the integral equation to reduce the o
of the hypersingularity. Although such a technique results
numerically tractable kernels, it is computationally expens
to evaluate a double surface integral. The regularization te
niques developed by Meyeret al.7 and Terai8 are valid for
planar element only. Mathews9 compared the double surfac
integral method3 and the regularization technique7 using qua-
dratic quadrilateral isoparametric elements. It was noted
the regularization technique resulted in 1/r type singular in-
tegrals over the element near the point of singularity, eve
a polar coordinate transformation was employed. Ch
et al.10 developed an approach to regularize such hyper
13(5)/2674/10/$19.00 © 2003 Acoustical Society of America
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gular integrals by employing certain known identities fro
the associated interior Laplace problems. Adaptive subd
sion around singular points was needed in the numer
computation. Yang11 successfully implemented this metho
in the study of acoustic scattering across a wide freque
range. Liu and Rizzo12 developed a general form of the hy
persingular boundary integral equation, which contained
most weakly singular integrals. This weakly singular for
was derived by employing certain integral identities invo
ing the static Green’s function. Recently, Liu and Che13

made an improvement on this method with a new formu
tion that involves only tangential derivatives of the dens
function. Especially,C0 continuous boundary elements we
employed in the discretization. Wuet al.14 implemented a
regularized normal derivative equation, which converges
the Cauchy principal value sense rather than in the finite-
sense. This equation required the evaluation of tangen
derivatives everywhere on the boundary. By taking the
vantage of the properties of axisymmetric geometry, Wa
et al.15 successfully computed the hypersingular integrals
ing tangential operators. But this approach can only be
plied to the problems with axisymmetric geometry. Hwan16

regularized the hypersingular Helmholtz integral equation
some identities from the associated Laplace equations.
collocation points were chosen to be the Gauss–Lege
nodes and no interpolation function was assumed for ac
tic variables. In that study, an important assumption was
the normal derivative of the dimensionless solid angle w
identical to zero as point was on the surface. On the o
hand, source distribution for the equipotential surface fr
the potential theory was employed to regularize the w
singularities. Therefore, the value of equipotential inside
domain must be calculated. A mathematical investigat
about the existence of uniqueness theorems of the boun
element methods based on the Helmholtz integral equa
was performed by Luke and Martin.17 They also discussed
the treatment of the hypersingular integral by the double s
face integral method.

In this paper, the regularization of the hypersingular
tegral in the CHIE method is investigated through the dou
surface integral method. As stated earlier, it is computati
ally expensive to evaluate a double surface integral. Now
introducing the new concept of discretized operator mat
evaluation of the double surface integral is reduced to
evaluation of the two discretized operator matrices. As a
sult, the computational cost for calculating CHIE is comp
rable to that of solving the conventional Helmholtz integ
equation as the number of frequencies to be computed
creases. This paper is organized into five sections. Follow
the Introduction, a detailed theoretical formulation of t
governing equation for acoustic propagation in unboun
exterior domain is presented. Next, a discretization sche
for the surface boundary integral equations using a se
curvilinear quadrilateral isoparametric elements is discus
A new concept of discretized operator matrix is introduc
here. The double surface integral is discretized accordin
this new concept and the discretized operator matrix of
hypersingular integral operatorN0 is found. The hypersingu
larity in the integral operatorNk is eliminated using the op
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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erationNk2N0 . Then, numerical calculations are perform
for pulsating and oscillating sphere radiation and pla
acoustic wave scattering from a rigid sphere. Three kinds
surface Helmholtz integral equations have been solved. T
are the conventional Helmholtz integral equation~HIE!, the
normal derivative of the conventional Helmholtz integr
equation ~NDHIE!, and the composite Helmholtz integra
equation~CHIE!. Finally a conclusion is drawn.

II. THEORETICAL DEVELOPMENT

Consider the acoustic pressure field in the exterior
bounded domainE. The acoustic field is either radiated by
finite body with smooth surfaceS vibrating with prescribed
velocity distribution or scattered of acoustic waves fro
rigid surfaceS. The exterior infinite fluid medium is assume
to be homogeneous. Sound travels in the fluid medium w
speedc and the fluid density isr. The normal vector at any
point on the surface is taken to be the inward normal
shown in Fig. 1.

The governing differential equation1 of the exterior
acoustic domain in steady-state linear acoustics is the w
known Helmholtz equation,

~¹21k2!w50. ~1!

The Neumann boundary condition on the boundary surfacS
can be expressed as

]w

]n
5 ivrvn . ~2!

In case of acoutic radiation, the acoustic pressurew must
satisfy the Sommerfeld radiation condition at infinity,

lim
r→`

E E S ]w

]r
1 ikr D 2

dS50, ~3!

where w represents the acoustic pressure,v represents the
circular frequency,k is the wave number, andvn denotes the
normal surface velocity.

By using the Green’s second identity, the surface He
holtz integral equation that satisfies the Sommerfeld rad
tion condition is

FIG. 1. Notation for a structure with smooth surface.
2675Yan et al.: Evaluation of hypersingular integral equation
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E E S w~q!
]Gk~p,q!

]nq
2Gk~p,q!

]w~p!

]nq
DdSq5

1

2
w~p!.

~4!

The free-space Green’s functionGk for the three-
dimensional wave equation is

Gk~p,q!5e2 ikr /4pr , r 5up2qu, ~5!

wherep is the source point anywhere on the surface, andq is
the field point on the surface, see Fig. 1.r represents the
Euclidean distance between pointsp andq.

In operator notation,8 Eq. ~5! can be written as

F2
1

2
I 1MkGw5Lk

]w

]n
, ~6!

where

Lkm5E E m~q!Gk~p,q!dSq , ~7!

Mkm5E E m~q!
]Gk~p,q!

]nq
dSq . ~8!

It is well known that the above surface Helmholtz int
gral equation, Eq.~4!, leads to nonuniqueness solutions
certain frequencies that are the characteristics of the as
ated interior problem. As discussed in Sec. I, remedies
resolve the problem of nonuniqueness have been investig
by many researchers. Here, the CHIE method is studied

The CHIE method is based on a linear combination
the surface Helmholtz integral equation, Eq.~4!, and its nor-
mal derivative with respect to the source point. The result
equation was proven to have unique solutions at all w
numbers, which can be expressed in operator notation a

H 2
1

2
I 1Mk1aNkJ w5H Lk1aF1

2
I 1Mk

TG J ]w

]n
, ~9!

wherea, the coupling constant, is chosen to be strictly co
plex when wave numberk is a real number. Herea takes the
value 2 i /k. The integral operatorsNk and Mk

T can be ex-
pressed as

Nkm5E E m~q!
]2Gk~p,q!

]np]nq
dSq ,

~10!

Mk
Tm5E E m~q!

]Gk~p,q!

]np
dSq .

The main drawback of the CHIE method is the nume
cal treatment of the hypersingular integral kernelNk that
appears in the normal derivative equation. Burton a
Miller3 used a regularization relationship, which replace
hypersingular integral operator with two weakly singular
tegral operators, to deal with the hypersingularity in opera
Nk . The regularization relationship used is

L0N05@M01 1
2I #@M02 1

2I #5M0
22 1

4I , ~11!

whereL0 , N0 , andM0 are integral operators identical toLk ,
Nk , and Mk except that the kernels ofL0 , N0 , and M0

containG0(p,q)51/4pr not Gk .
2676 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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Therefore, the composite integral operatorsL0N0 and
M0

2 are defined as

L0N0m~p!5E E G0~p,q!H E E ]2G0~q,t !

]nq]nt
m~ t !dStJ dSq ,

~12!

M0
2m~p!5E E ]G0~p,q!

]nq
H E E ]G0~q,t !

]nt
m~ t !dStJ dSq .

~13!

According to the regularization relationship, Eq.~11!, Burton
and Miller3 developed the following transformation to re
move the hypersingularity in the operatorNk :

L0Nk5L0@Nk2N0#1L0N05L0@Nk2N0#1M0
22 1

4I ,
~14!

where

L0@Nk2N0#m~p!

5E E G0~p,q!

3F E E ]2@G~q,t !2G0~q,t !#

]nt]nq
m~ t !dStGdSq . ~15!

Then the CHIE in Eq.~9! was rewritten as

L0$2 1
2 I 2Mk1a~Nk2N0!%w1a@M0

22 1
4 I #w

5L0H Lk1aF1

2
I 1Mk

TG J ]w

]n
. ~16!

In Eq. ~16!, the hypersingular integral operatorNk has
been transformed into several weakly singular integral ope
tors. However, the composite integral operators, such
L0@Nk2N0# andM0

2, are double surface integrals and the
integrals must be computed for each frequency step. I
very inefficient to numerically implement such an approa
Therefore, even though it gives rise to tractable kernels,
abandoned by most of the researchers. In this paper,
regularization relationship, Eq.~11!, will be applied. A new
method is proposed to discretize it. Finally a highly efficie
approach is developed to solve the hypersingular integra

III. DISCRETIZATION OF THE INTEGRAL OPERATORS

The integral operators are discretized using eight-nod
quadratic quadrilateral isoparametric surface elements w
allows the integration of the interpolated variables ove
three-dimensional surface to be carried out within a stand
basis square in the~j,h! local coordinate space. The glob
Cartesian coordinatesx are related to the nodal global coo
dinatesxi by

x~j,h!5(
i 51

8

Ni~j,h!xi . ~17!

Ni(j,h) is the shape function8 for the quadratic quadilatera
elements with nodes numbered in counterclockwise fash
The acoustic variablesw and ]w/]n are approximated ove
each element by the shape functions, that is,
Yan et al.: Evaluation of hypersingular integral equation
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TABLE I. Comparison of computational time for different methods.

Model Method Per frequency step~s! For N0 operator~s!

24-element Double surface integral@Eq. ~16!# 148.751 67 x
Proposed method@Eq. ~35!# 1.081 555 2 0.751 080 0
HIE @Eq. ~6!# 1.041 497 7 x

96-element Double surface integral@Eq. ~16!# 8290.458 x
Proposed method@Eq. ~35!# 12.998 693 8.752 585
HIE @Eq. ~6!# 12.818 431 x
to

d

p
e

a
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tion

the

e

w5(
i 51

8

Niw i ,
]w

]n
5(

i 51

8

Ni

]w i

]n
, ~18!

where w i represents the nodal quantity of the variablew.
With these relationships, integration of the integral opera
Lk expressed in Eq.~7! can be discretized usingn elements
as follows:

Lkw5EE
S

Gk~p,q!w~q!dSq

5(
j51

n

(
i51

8 EE
DSj

Gk~p,q!Ni~j,h!J~j,h!djdhw i

5Bk$w%, ~19!

where $w%5@w1 ,w2 , . . .K,w t#
T, t is the total global node

number. The square matrixBk is defined as the discretize
operator matrix of the integral operatorLk ,

Bki,m5 (
m5 f ~ j ,l !

EE
DSj

NlGki jdSq , ~20!

where the functionf ( j ,l ) is the mapping function for the
relation between element nodes and global nodes. Com
ing Eq. ~20! and Eq.~7!, it is evident that the element of th
discretized operator matrix takes the same integral form
the integral operator.

FIG. 2. Surface discretization of one octant of a sphere using 3 curvilin
quadrilateral elements.
, Vol. 113, No. 5, May 2003
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ar-
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Similarly, the discretized operator matrixAk for the in-
tegral operatorMk is expressed as

Aki,m5 (
m5 f ~ j ,l !

EE
DSj

Nl

]Gki j

]n
dSq , ~21!

and that for the discretized operator matricesB0 andD0 of
the integral operatorsL0 andN0 are

B0i ,m5 (
m5 f ~ j ,l !

EE
DSj

NlG0i j ~p,q!dSq ,

~22!

D0i ,m5 (
m5 f ~ j ,l !

EE
DSj

]2G0i j ~p,q!

]np]nq
NldSq .

In the past, the composite integral operatorL0N0 in Eq.
~12! was directly approximated as

L0N0m i~p!5(
j 51

n EE
DSj

G0i j ~p,q!

3H (
l 51

n EE
DSl

]2G0 j l ~q,t !

]nq]nt
(
k51

8

NkmkdStJ dSq

5(
j 51

n

(
l 51

n

(
k51

8 EE
DSj

G0i j ~p,q!

3H EE
DSl

]2G0 j l ~q,t !

]nq]nt
NkdStJ dSqmk , ~23!

which is obviously too computationally expensive to eva
ate, and has deterred from implementing the regulariza
relationship, Eq.~11!.

In this study, a new idea is proposed to discretized
composite integral operatorL0N0 . Assuming that

c~q!5EE
S

]2G0~q,t!

]nq]nt
m~t!dSt , ~24!

over each element, using the shape functionsNl , we have

c5(
l 51

8

Nlc l , ~25!

wherec l is nodal value of functionc. Based on the defini-
tion of discretized operator matrix, Eq.~24! can be dis-

ar
2677Yan et al.: Evaluation of hypersingular integral equation
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here
cretized and expressed in the form of discretized oper
matrix,

$c%5D0$m%, ~26!

where$c% and $m% are values at global nodes, and are co
stants in the integration.D0 is the discretized operator matri
of integral operatorN0 . BecauseN0 is a hypersingular inte-
gral operator and the integral does not exist in either conv
tional or Cauchy-principal value sense. The operator ma
D0 should be obtained in the Hadamard finite part sense16

Substituting Eq.~24! into Eq. ~12!, we have

L0N0m~p!5EE
S

G0~p,q!c~q!dSq . ~27!

The discretization of Eq.~27! can be expressed in discretize
operator matrix form as

E0$m%5B0$c%, ~28!

whereE0 is the discretized operator matrix of the compos
integral operatorL0N0 . Substituting Eq.~26! into Eq. ~28!,
we have

E0$m%5B0D0$m%. ~29!

Because the regularization relationship, Eq.~11!, is an iden-
tity formulation and m is an arbitrary function, the dis

FIG. 3. Surface discretization of one octant of a sphere using 12 curvili
quadrilateral elements.

FIG. 4. Dimensionless surface acoustic pressures from a pulsating s
using HIE and NDHIE with 24 elements.
2678 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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ix

cretized operator matrixE0 is equal to the product ofB0 and
D0 ,

E05B0D0 . ~30!

The discretized operator matrixA0
2 corresponding to the

composite integral operatorM0
2 can be obtained in the sam

way.A0 is the discretized operator matrix of integral opera
M0 ,

A0,im5 (
m5 f ~ j ,l !

EE
DSj

Nl

]G0i j

]n
dSq . ~31!

Therefore, the regularization relationship, Eq.~11!, can be
expressed in the form of discretized operator matrices as

B0D05A0
22 1

4I . ~32!

Then, we have

D05B0
21~A0

22 1
4I !. ~33!

Now the double surface integrations in the regularization
lationship, Eq.~11!, have been reduced to the product
surface integrations. Above all, the discretized operator m
trix of the hypersingular integral operatorN0 as higher-order
elements are implemented is explicitly found for the fi
time.

ar

ere

FIG. 5. Dimensionless surface acoustic pressures from a pulsating sp
using CHIE with 24 elements.

FIG. 6. Dimensionless surface acoustic pressures from a pulsating sp
using HIE and NDHIE with 96 elements.
Yan et al.: Evaluation of hypersingular integral equation
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IV. TREATMENT OF THE HYPERSINGULARITY IN
OPERATOR Nk

Now applying the integral operatorN0 , Eq. ~9! can be
modified as

@2 1
2 I 1Mk1a@~Nk2N0!1N0##w

5FLk1aF1

2
I 1Mk

TG G ]w

]n
. ~34!

The term (Nk2N0) has removed the hypersingularity in o
eratorNk . Only the termN0 still contains hypersingularity
Using the discretized operator matrices, Eq.~34! can be dis-
cretized and expressed as

F2
1

2
I 1Ak1a@D1D0#G$w%5FBk1aF1

2
I 1F G G H ]w

]nJ ,

~35!

whereD is the discretized operator matrix for integral ope
tor (Nk2N0) and F is the discretized operator matrix o
integral operatorMk

T ,

FIG. 7. Dimensionless surface acoustic pressures from a pulsating s
using CHIE with 96 elements.

FIG. 8. Dimensionless surface acoustic pressures for an oscillating sp
using HIE and NDHIE with 24 elements asu50°.
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
-

Dim5 (
m5 f ~ j ,l !

E E
DSj

Nl

]2~Gki j2G0i j !

]nt]nq
dSq ,

~36!

Fim5 (
m5 f ~ j ,l !

EE
DSj

Nl

]G0i j ~p,q!

]np
dSq .

Since the discretized operator matrixD0 of the hypers-
ingular integral operatorN0 has already been obtained by E
~33!, the linear equation system in Eq.~35! can be numeri-
cally solved using a weakly singular integration schem
such as that proposed by Lachat and Watson.18

As the discretized operator matrixD0 is independent of
frequency, the computational cost of solving Eq.~35! is com-
parable to that of solving the conventional Helmholtz in
gral equation, Eq.~6!, as the number of frequencies to b
computed increases. Table I presents the computational
for solving the problem of pulsating sphere radiation, whi
will be described in detail in Sec. V, using different method
Here the computer is a Dell Latitude C610 noteboo
Clearly, the new approach greatly improves the compu
tional efficiency as compared to the technique applied in
~16!. For each frequency step, the computational time for
new method is very close to that for the HIE Eq.~6!.

V. NUMERICAL EXAMPLES

In order to test the accuracy and efficiency of the n
method, two cases of acoustic radiation and a case of p
acoustic wave scattering from rigid sphere have been c
puted. The two acoustic radiation problems are pulsat
sphere radiation and oscillating sphere radiation. In all th
examples, the surface of a sphere is, respectively, mod
using 24 and 96 curvilinear quadrilateral isoparametric e
ments to observe the convergence of the new method. E
octant of a sphere is discretized using 3 and 12 surface
ments as shown in Figs. 2 and 3. Due to symmetry,
problems are computed in half space. For radiation pr
lems, three linear equation systems are computed. They
the conventional Helmholtz integral equation~HIE!, normal
derivative equation of the conventional Helmholtz integ
equation ~NDHIE!, and the composite Helmholtz integra
equation ~CHIE!. Comparisons between the numerical r
sults of these three linear equation systems clearly show
nonuniqueness problem and the effectiveness of the
method. For plane acoustic wave scattering from a ri
sphere, only the conventional Helmholtz integral equat
and the composite Helmholtz integral equation are co
puted. These examples are computed using the in-house
veloped code,SSFI. This software is suitable to solve mult
domain acoustic problems, especially the problems
structural–acoustic interaction.

A. Pulsating sphere radiation

The analytical solution10 of the acoustic pressurew(r )
for a sphere of radiusa, pulsating with an uniform radia
velocity v0 , is given by

w~r !

rcv0
5

a

r

ika

11 ika
e2 ik~r 2a!. ~37!

ere

ere
2679Yan et al.: Evaluation of hypersingular integral equation
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Dimensionless surface acoustic pressures as a func
of the reduced frequencyka are plotted in Figs. 4–7. Figure
4 and 5 present the results obtained using 24 elements. W
the numerical results obtained using 96 elements are
sented in Figs. 6 and 7. The comparison between the num
cal results obtained using the HIE and NDHIE with the c
responding analytical solutions is shown in Figs. 4 and 6
is evident that the HIE equation fails to provide unique s
lutions nearka5p, 2p, 8.13, and 3p and the NDHIE equa-
tion fails to provide unique solutions nearka50, 4.493,
5.616, 7.725, and 9.784. On the other hand, the nume
results calculated using the CHIE, which are plotted in Fi
5 and 7, are unique for all the frequencies. Figure 7 sho
that with a finer mesh, the numerical results obtained us
the CHIE agree very well with the analytical solutions forka
up to 10.5.

B. Oscillating sphere radiation

The analytical solution10 of the acoustic pressure for a
oscillating sphere of radiusa with a radial velocityv0 cos(u)
is given by

w~r !

rcv0
5S a

r D 2

cos~u!
ika~11 ikr !

2~11 ika!2k2a2 e2 ik~r 2a!, ~38!

FIG. 9. Dimensionless surface acoustic pressures for an oscillating sp
using CHIE with 24 elements asu50°.

FIG. 10. Dimensionless surface acoustic pressures for an oscillating sp
using HIE and NDHIE with 96 elements asu50°.
2680 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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where u is the angle made by the radial direction and t
direction of the velocity. In the following example,u50 is
along the direction ofz axis.

The dimensionless surface acoustic pressures atu50
are displayed as function of the reduced frequency in F
8–11. Figures 8 and 9 show the results obtained using
model with 24 elements. The results for 96 elements mo
are shown in Figs. 10 and 11. The comparison between
numerical results obtained using the HIE and NDHIE w
the corresponding analytical solutions is shown in Figs
and 10. As can be seen, the HIE equation fails to prov
unique solutions nearka54.493, 7.725, and 9.349. Sim
larly, the NDHIE equation also suffers from the nonuniqu
ess nearka52.062, 5.911, 5.616, 6.787, 8.521, and 9.15
whereas the numerical results calculated using the CHIE
played in Figs. 9 and 11 are unique for all the wave numb
Figure 11 shows that with a finer mesh discretization
surface acoustic pressures for an oscillating sphere obta
using the CHIE agree quite well with the corresponding a
lytical solutions forka up to 10.5.

C. Plane acoustic wave scattering from a rigid sphere

To provide a further test of the new technique, the sc
tering of a plane acoustic wavew I5w0e2 ikz from a rigid
sphere of radiusa is computed. The analytical solution19 of

ere

ere

FIG. 11. Dimensionless surface acoustic pressures for an oscillating sp
using CHIE with 96 elements asu50°.

FIG. 12. The angular dependence ofws /w0 aska51.0 andr 55a with 24
elements.
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FIG. 13. The angular dependence ofws /w0 as ka5p and r 55a with 24
elements.

FIG. 14. The angular dependence ofws /w0 as ka54 and r 55a with 24
elements.

FIG. 15. The angular dependence ofws /w0 aska51.0 andr 55a with 96
elements.
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FIG. 16. The angular dependence ofws /w0 as ka5p and r 55a with 96
elements.

FIG. 17. The angular dependence ofws /w0 as ka54 and r 55a with 96
elements.

FIG. 18. The angular dependence ofws /w0 aska54.493 andr 55a with
96 elements.
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the scattered acoustic pressurews(r ,u) at a distancer from
the center of the sphere and at an angleu from the direction
of the incoming wave is given by

ws~r ,u!

w0
5 (

m50

` F2~2 i !m~2m11!
j m8 ~ka!

hm8 ~ka!Ghm~kr !

3Pm~cosu!, ~39!

wherej m is spherical Bessel function of the first kind andhm

is spherical Hankel function of the second kind.Pm denotes
Legendre polynomial of orderm.

Figures 12–14 present the results obtained using the
element model. While Figs. 15–19 present the results
tained using the 96-element model. The results atr 55a are
presented. Figures 12 and 15 show the angular depend
of ws /w0 aska51.0. It is observed that the numerical resu
obtained using both the HIE and CHIE agree well with t
analytical solutions. Figures 13 and 16 show the results a
reduced frequencyka5p. As ka5p is one of the charac
teristic frequencies,11 the scattered acoustic pressures o
tained using the HIE do not agree with the correspond
analytical solutions. However, the scattered acoustic p
sures obtained using the CHIE again agree very well with
analytical solutions. Figures 14 and 17 demonstrate the
gular dependency ofws /w0 at ka54. Comparisons betwee
these two figures indicate that the numerical results conve
rapidly as finer meshes are applied. Angular dependencie
ws /w0 at ka54.493 and 2p are presented in Figs. 18 and 1
respectively. These frequencies correspond to the chara
istic frequencies of either the conventional Helmholtz in
gral equation or its normal derivative equation. All these fi
ures demonstrate that the new technique can overcome
nonuniqueness problem encountered in acoustic scatte
analysis using the conventional Helmholtz integral equati

VI. CONCLUSIONS

By introducing the concept of discretized operator m
trix, a new method has been generated to overcome the
persingular integral involved in the composite Helmholtz

FIG. 19. The angular dependence ofws /w0 aska52p andr 55a with 96
elements.
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tegral equation proposed by Burton and Miller.3 The dis-
cretized operator matrix of a composite integral operato
proved to be just the product of the two discretized opera
matrices corresponding to the two integral operators, wh
construct the composite integral operator. The double sur
integrals employed by Burton and Miller3 are discretized ac-
cording to this new concept. Above all, the discretized o
erator matrix of the hypersingular integral operatorN0 is
explicitly found for the first time as higher-order elemen
are implemented. Subsequently, an elimination of the hyp
singularity in the integral operatorNk is implemented using
the formulationNk2N0 . The new method greatly improve
the computational efficiency and has tractable integral k
nels. Numerical calculations are performed for pulsating a
oscillating sphere radiation and plane acoustic wave sca
ing from a rigid sphere with curvilinear quadrilateral isopar
metric elements being employed. As finer meshes are
plied, the numerical results agree quite well with t
corresponding analytical solutions. Here surface of the ob
is constrained to be smooth enough. Further investigati
will extend the new technique to problems with arbitra
shape structure.
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