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Regularization of the hypersingular integral in the normal derivative of the conventional Helmholtz
integral equation through a double surface integral method or regularization relationship has been
studied. By introducing the new concept of discretized operator matrix, evaluation of the double
surface integrals is reduced to calculate the product of two discretized operator matrices. Such a
treatment greatly improves the computational efficiency. As the number of frequencies to be
computed increases, the computational cost of solving the composite Helmholtz integral equation is
comparable to that of solving the conventional Helmholtz integral equation. In this paper, the
detailed formulation of the proposed regularization method is presented. The computational
efficiency and accuracy of the regularization method are demonstrated for a general class of acoustic
radiation and scattering problems. The radiation of a pulsating sphere, an oscillating sphere, and a
rigid sphere insonified by a plane acoustic wave are solved using the new method with curvilinear
guadrilateral isoparametric elements. It is found that the numerical results rapidly converge to the
corresponding analytical solutions as finer meshes are applied20@3 Acoustical Society of
America. [DOI: 10.1121/1.1560164

PACS numbers: 43.40.Rj, 43.20.Rz, 43.20[EGW)|

I. INTRODUCTION holtz exterior integral equation formulation to solve the inte-

Boundary element method based on the Helmholtz inte_[ior problems. Although the CHIEF method is very simple to

gral equation has long been applied for the analysis of aCOuér_nplement, it fails when the interior points are located on a

tic radiation and scattering problems. Its significant advan-nOdaI surface of the corresponding interior problem. To date,

tages over other popular numerical techniques such as tHQe selection of some suitable interior points still remains as

finite difference and finite element method include a reduc® difficult problem. On the other hand, the CHIE method

tion of dimensionality of the problem by one, and an auto-uses a linear combination of the Helmholtz integral equation
matic satisfaction of the radiation boundary condition. How-a"d its normal derivative equation. It was proved that the
ever, the classical boundary element method for exterioin€ar combination of these two integral equations would
acoustic problems fails to provide a unique solution at cerY!€ld @ unique solution for all frequencies with a suitable
tain frequencies, which are the characteristics of the assocfPMPlex combination coefficient, even if both the Helmholtz
ated interior problem. The nonuniqueness is a purely mathintégral equation and its normal derivative equation suffer
ematical problem arising from the boundary integralfrom the nonuniqueness problem. Thls method appears to be
formulation rather than from the nature of the physical probfoPust for numerical implementation. However, it suffers
lem. A detailed description about the nonuniquness problerf{Om @ major drawback that hypersingular integral is in-
is presented in Ref. 1. volved in the normal derivative of the Helmholtz integral
Several modified integral formulations have been devel€duation. Numerical techniques for computing nonsingular,
oped to overcome the nonuniqueness problem. By far, thB€arly singular, and nearly hypersmguﬁlar integrals can be
combined Helmholtz integral equation formulatig@HIEF) ~ found in the rewew_paner by Tanale al. ,
proposed by Schenkn 1968 and the composite Helmholtz Burton and Miller used a double surface integral
integral equatiofCHIE) presented by Burton and Miléin method throulghout t.he integral equation to reFjuce the or(jer
1971 are the two most popular approaches. In the cHiegef the hypersmgularlty. AIthough such a teghnlque resultg in
method, Schenékcombined the surface Helmholtz integral numerically tractable kernels,_ itis computatlonally expensive
equation with the interior Helmholtz integral equation to tq evaluate a double surface mte;graI.The regularlzgnon tech-
form an overdetermined system of equations, which was thefidues developed by Meyet al.” and Terdl are valid for
solved using the least-squares procedure. Segbet* pro- planar element only. Mathe\%/sqmp_ared the_doub_le surface
vided a computational method based on the CHIEF method't€gral methodand the regularization techniciuesing qua-
using isoparametric element formulation. Recently Cherfiratic quadrilateral isoparametric elements. It was noted that

et al® extended the CHIEF method to the combined Helm-the regularization technique resulted_ im lyp_e singL_JIar in- )
tegrals over the element near the point of singularity, even if

a polar coordinate transformation was employed. Chien
dElectronic mail: hungkc@ihpc.a-star.edu.sg et all° developed an approach to regularize such hypersin-
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gular integrals by employing certain known identities from —
the associated interior Laplace problems. Adaptive subdivi- E n
sion around singular points was needed in the numerical

computation. Yantf successfully implemented this method

in the study of acoustic scattering across a wide frequency

range. Liu and RizZG developed a general form of the hy-

persingular boundary integral equation, which contained at S
most weakly singular integrals. This weakly singular form

was derived by employing certain integral identities involv- q

ing the static Green’s function. Recently, Liu and Chen

made an improvement on this method with a new formula-

tion that involves only tangential derivatives of the density p
function. EspeciallyC® continuous boundary elements were
employed in the discretization. Wet all4 implemented a FIG. 1. Notation for a structure with smooth surface.

regularized normal derivative equation, which converges in
the Cauchy principal value sense rather than in the ﬁnite'parérationNk— N,. Then, numerical calculations are performed

sense. This equation required the evaluation of tangentigl,, pulsating and oscillating sphere radiation and plane

derivatives everywhere on the boundary. By taking the adzcqystic wave scattering from a rigid sphere. Three kinds of

vantallge of the properties of axisymmetric geometry, Wangy rface Helmholtz integral equations have been solved. They
_et al. succ_essfully computed th_e hypersingular integrals Usz e the conventional Helmholtz integral equatitiE), the

ing tangential operators. But this approach can only be apyormal derivative of the conventional Helmholtz integral
plied to the problems with axisymmetric geometry. Hwehg equation (NDHIE), and the composite Helmholtz integral

regularized the hypersingular Helmholtz integral equation bXequation(CHIE). Finally a conclusion is drawn.
some identities from the associated Laplace equations. The

collocation points were chosen to be the Gauss—Legendre

nodes and no interpolation function was assumed for acous-

tic variables. In that study, an important assumption was thaf- THEORETICAL DEVELOPMENT

the normal derivative of the dimensionless solid angle was -~ ider the acoustic pressure field in the exterior un-

identical to zero as point was on the surface. On the OthetBounded domait. The acoustic field is either radiated by a

hand, source distribution for the equipotential surface frorqcinite body with smooth surfacs vibrating with prescribed

the potential theory was employed to regularize the wealge ity distribution or scattered of acoustic waves from

singularities. Therefore, the value of equipotential inside thg; i 5 rfaces The exterior infinite fluid medium is assumed
domain must be calculated. A mathematical investigation, e homogeneous. Sound travels in the fluid medium with

about the existence of uniqueness theorems of the bounda§¥)eedc and the fluid density ig. The normal vector at any
element methods based on the Helmholtz integral eq“aﬂoﬁoint on the surface is taken to be the inward normal as
was performed by Luke and Martii.They also discussed shown in Fig. 1.

the treatment of the hypersingular integral by the double sur- 114 governing differential equatibnof the exterior

face integral method. o _ _acoustic domain in steady-state linear acoustics is the well-
In this paper, the regularization of the hypersingular in-i.nown Helmholtz equation

tegral in the CHIE method is investigated through the double

surface integral method. As stated earlier, it is computation- (V2+k?) o=0. D
ally expensive to evaluate a double surface integral. Now b)ﬁ_ .
introducing the new concept of discretized operator matrix,] '& Neumann boundary condition on the boundary surface
evaluation of the double surface integral is reduced to th&an be expressed as

evaluation of the two discretized operator matrices. As a re- I

sult, the computational cost for calculating CHIE is compa- O,)—n=iwpvn. (2)
rable to that of solving the conventional Helmholtz integral

equation as the number of frequencies to be computed inn case of acoutic radiation, the acoustic pressprenust
creases. This paper is organized into five sections. Followingatisfy the Sommerfeld radiation condition at infinity,

the Introduction, a detailed theoretical formulation of the

governing equation for acoustic propagation in unbounded .
exterior domain is presented. Next, a discretization scheme rlmf f
for the surface boundary integral equations using a set of
curvilinear quadrilateral isoparametric elements is discussedvhere ¢ represents the acoustic pressurerepresents the

A new concept of discretized operator matrix is introducedcircular frequencyk is the wave number, ang, denotes the
here. The double surface integral is discretized according toormal surface velocity.

this new concept and the discretized operator matrix of the By using the Green’s second identity, the surface Helm-
hypersingular integral operatdly is found. The hypersingu- holtz integral equation that satisfies the Sommerfeld radia-
larity in the integral operatoN, is eliminated using the op- tion condition is

2
dS=0, (3

de
— +ikr
ar
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IG(p,q) de(p) 1 Therefore, the composite integral operatargN, and
J'f ((P(Q)a—nq—Gk(p,fJ) ang d5q=§¢>(p)- MZ are defined as
“ LoNou(p) = [ | G >Hm<t>d3d
The free-space Green's functioG, for the three- 0 oP otP.q angan, S
dimensional wave equation is (12
_ a—ikr —p— dGo(p, dGo(q,t
Gu(p.a)=e “/aar, r=|p—q, (5) Méﬂ(p)=f f gi}p Q)Hf ;r(]q ),u(t)ds}dsq.
. . . q t
wherep is the source point anywhere on the surface, gqisl
) . . (13
the field point on the surface, see Fig. rlrepresents the . o . .
Euclidean distance between poipt@ndg. According to the regularization relationship, Efjl), Burton
In operator notatiofi,Eq. (5) can be written as and Mille® developed the following transformation to re-
move the hypersingularity in the operafsy:
1 e
[— 71+ Mife=Li (6) LoNi=Lo[ Nx—No]+LoNo=Lo[ Ny—No] +M5— 3,
(14
where where
Lo[Ng—N )
L= [ | m@cipas, (@  ColMhNolutp
= Go(p.a)
IGk(p,9) f f 0
MkM:ffﬂ(q)TdSq- )
q

X

f f d7[G(q,t)—Go(a,1)]

gngang

It is well known that the above surface Helmholtz inte- ,u(t)dS[}dSq. (19
gral equation, Eq(4), leads to nonunigueness solutions at-l-hen the CHIE in Eq(9) was rewritten as
certain frequencies that are the characteristics of the associ-
ated interior problem. As discussed in Sec. |, remedies t@{— 31— M+ a(Ny—Ng) o+ a[M3— 1 ]¢
resolve the problem of nonuniqueness have been investigated
by many researchers. Here, the CHIE method is studied.
The CHIE method is based on a linear combination of 2

the surface Helmholtz integral equation, E4), and its nor- In Eq. (16), the hypersingular integral operatb, has

mal derivative with respect to the source point. The resultlngbeen transformed into several weakly singular integral opera-

equation was proven to have unique solutions at all WaV§ors. However, the composite integral operators, such as

numbers, which can be expressed in operator notation as Lo[Nc—No] andM2, are double surface integrals and these
A integrals must be computed for each frequency step. It is
]m, ) very inefficient to numerically implement such an approach.
Therefore, even though it gives rise to tractable kernels, it is
whereq, the coupling constant, is chosen to be strictly com-abandoned by most of the researchers. In this paper, the
plex when wave numbdcis a real number. Here takes the  regularization relationship, Eq11), will be applied. A new
value —i/k. The integral operatordl, and MI can be ex- method is proposed to discretize it. Finally a highly efficient

1 P
—Lo| Lt a1+ M] ﬁ—:. (16)

1
EHW

1
(—EH—Mk-i-aNk]go:[Lk-l-a

pressed as approach is developed to solve the hypersingular integral.
#*Gy(p,q)
Nkﬂzjfl’«(cﬂ—an on. 4
T (10) Ill. DISCRETIZATION OF THE INTEGRAL OPERATORS
IG(p, _ . . . .
MI,u:f f ©n(q) %dsq. The integral operators are discretized using eight-noded,
p

quadratic quadrilateral isoparametric surface elements which
The main drawback of the CHIE method is the numeri-allows the integration of the interpolated variables over a
cal treatment of the hypersingular integral kerigl that  three-dimensional surface to be carried out within a standard
appears in the normal derivative equation. Burton anddasis square in thé,») local coordinate space. The global
Miller® used a regularization relationship, which replaces #-artesian coordinatesare related to the nodal global coor-
hypersingular integral operator with two weakly singular in-dinatesx; by

tegral operators, to deal with the hypersingularity in operator 8
N, . The regularization relationship used is X(€,m)=2, Ni(&n)X;. (17)
i=1
— 1 1171— 2_1

LoNo=[Mo+ 21 1{Mo=21]=Mo—l, (1) N;(£,7) is the shape functidrfor the quadratic quadilateral
wherelLy, Ng, andM are integral operators identical tq, elements with nodes numbered in counterclockwise fashion.
N,, and M, except that the kernels df,, Ny, and My  The acoustic variableg and d¢/dJn are approximated over
containGgy(p,q) = /47t not Gy . each element by the shape functions, that is,
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TABLE I. Comparison of computational time for different methods.

Model Method Per frequency steép For Ny operator(s)
24-element Double surface integi&lq. (16)] 148.751 67 X
Proposed methofEg. (35)] 1.0815552 0.7510800
HIE [Eq. (6)] 1.041 4977 X
96-element Double surface integi&lq. (16)] 8290.458 X
Proposed methofEq. (35)] 12.998 693 8.752 585
HIE [Eq. (6)] 12.818 431 X
8 Similarly, the discretized operator matr, for the in-
d Ip; .
o= Nig;, —=2> N—, (18)  tegral operatoM, is expressed as
i=1 an =1 dn
Gku
. . Akim= 2 I ds;, (21
where ¢; represents the nodal quantity of the variakle m=f(j,1) n
With these relationships, integration of the integral operator Ay

L expressed in Eq(7) can be discretized usingelements  and that for the discretized operator matri@sand D, of

as follows: the integral operators, andN, are
Boim= JJN Goii(p,q)d
L= [ [upareans, i e (P
S 22
n 8 D J.J.a (;0u(p Q) df% ( :
0i,m— | .
=33 | [eupamicenaemdedne mSTin ) ) angang
A5

In the past, the composne integral operditgNg in Eq.
=B {¢}, (19 (12 was directly approximated as

n
where{e}=[¢1,¢2, ...K,¢]", tis the total global node LoNoMi(p)zz fJGOij(p,q)
number. The square matr, is defined as the discretized =1

operator matrix of the integral operatby, A3
n 2 8
3°Gj(a,t)
x ;1 ff 3njr9nt kzl N dS | S,
Byi,m= 2 ffNIGkidecw (20) d
m="£(j,l)
=

AS§

n 8
533 Heo.,mq)
where the functionf(j,l) is the mapping function for the a
relation between element nodes and global nodes. Compar-
ing Eq.(20) and Eq.(7), it is evident that the element of the 9 Gg,.(q t)
discretized operator matrix takes the same integral form as X INgIN,
the integral operator.

Ned§ | d Sy, (23)

which is obviously too computationally expensive to evalu-
ate, and has deterred from implementing the regularization
relationship, Eq(11).

In this study, a new idea is proposed to discretized the
composite integral operatdryNy. Assuming that

f | mf’f;) utds, (24)

over each element, using the shape functidpswe have

8
¢:|§1 Ny, (25)

FIG. 2. Surface discretization of one octant of a sphere using 3 curvilineaV.Vhere W ?S noQaI value of functioqp. Based on the def'ini'
quadrilateral elements. tion of discretized operator matrix, Eq424) can be dis-
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1.0 W
0.8+
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® ImCHIE
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] Im analytical
>° 24 elements
% 0.4
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reduced frequency ka

FIG. 3. Surface discretization of one octant of a sphere using 12 curvilinear . . . .
quadrilateral elements. FIG. 5. Dimensionless surface acoustic pressures from a pulsating sphere

using CHIE with 24 elements.

cretized and expressed in the form of discretized operator .
matrix cretized operator matrik, is equal to the product &, and

Dy,
{#}=Dofu}, (26) E,=ByDy. 30
where{y} and{u} are values at global nodes, and are con- _ ) _ )
stants in the integratiof is the discretized operator matrix The discretized operator2 matrhg corresponding to the
of integral operatoN,. BecauseN, is a hypersingular inte- compos_|te mtegral operat(MO can be o_btaln_ed in the same
gral operator and the integral does not exist in either conven¥@y-Ao is the discretized operator matrix of integral operator
tional or Cauchy-principal value sense. The operator matri®o
D, should be obtained in the Hadamard finite part seéfse. ff 9G
N,

Substituting Eq(24) into Eq. (12), we have Apgim= Z( | das;. (31
=1(j,

Therefore, the regularization relationship, Efl), can be
expressed in the form of discretized operator matrices as

The discretiza_tion of Eq27) can be expressed in discretized BoDo:Ag— 4 (32
operator matrix form as

Eo{u}=Bo{y}, 28 Then, we have

-1/p2_ 1

whereE, is the discretized operator matrix of the composite Do=Bo (Ao —3l). (33)
integral operatot oN,. Substituting Eq(26) into Eq.(28),  Now the double surface integrations in the regularization re-
we have lationship, Eq.(11), have been reduced to the product of

_ surface integrations. Above all, the discretized operator ma-

Eot}=BoDol i 29 trix of the hypersingular integral operathi as higher-order

Because the regularization relationship, Etl), is an iden-  elements are implemented is explicitly found for the first
tity formulation and o is an arbitrary function, the dis- time.

LoNou(p)= ffGo(p,Q)lMQ)dS]- (27)
S

209 |+ | —*—ReNDHIE 10] " ! |
s \ | —e—ImNDHIE k ‘), 7] B L ]
2] Re analytical *i ]
by | T M anaica A o8le —#—Re NOHIE
107 (N R —* o 0.6 | —&— Im NDHIE
o . "
3 . e . 3 1 o® — Re analytical
& 05+ 220900000 H ®eqqqq00® 2 04] % Im analytical
g 0 . ikttt a . ' 96 elements
-0 P 24 elements . 0.2 Ll T
., \ i ey in
'0'5".|.|.,., 7 00 T T 1 T 17T 7T T T " "1 11
1 2 3 4 5 ] 7 8 9 10 1"
209 —«—ReHE | 4 8 s 10 1 N
1 —e—ImHIE ] ol : I
157 Re analytical 0.8 |
10 ——— |m analytical 4 —*—ReHIE
o e x5 o 064 —o—ImHIE
g ** alt * Re analytical
a 0.5 200 ...Q. ' 2 044 —— Im analytical
a o Qe 96 elements
0.0 24 elements . 024 U
N v ] mc‘!{.'.“gl__“'_
- ]
05 T T T T T T 0.0 T T T T 1 T T T T T
o] 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 10 11
reduced frequency ka reduced frequency ka

FIG. 4. Dimensionless surface acoustic pressures from a pulsating spheFéG. 6. Dimensionless surface acoustic pressures from a pulsating sphere
using HIE and NDHIE with 24 elements. using HIE and NDHIE with 96 elements.
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0.8

0.6 4

p/pev,

0.4 4

0.2

0.0

* ReCHIE
® ImCHIE

Re analytical
— Im analytical
96 elemenis

reduced frequency ka

7%(Gyij — Goij)
D, .= JJN#d ,
fm m=1(j,1) : &ntanq S]
AS

(36)
_ 3G (P,d)
I:im_ ) fle—ﬂﬂp dSq

A§

m=1(j,|

Since the discretized operator matkdg of the hypers-
ingular integral operatd¥ has already been obtained by Eq.
(33), the linear equation system in E(5) can be numeri-
cally solved using a weakly singular integration scheme,
such as that proposed by Lachat and Wat€on.

As the discretized operator matiiX, is independent of

FIG. 7. Dimensionless surface acoustic pressures from a pulsating sphefeequency, the computational cost of solving E2f) is com-
using CHIE with 96 elements.

IV. TREATMENT OF THE HYPERSINGULARITY IN

OPERATOR N

Now applying the integral operatdt,, Eq.(9) can be

modified as

— 31+ M+ o (Nge—=Ng) +Nolle

Lk+ o

de

on

1
§|+M[

parable to that of solving the conventional Helmholtz inte-
gral equation, Eq(6), as the number of frequencies to be
computed increases. Table | presents the computational time
for solving the problem of pulsating sphere radiation, which
will be described in detail in Sec. V, using different methods.
Here the computer is a Dell Latitude C610 notebook.
Clearly, the new approach greatly improves the computa-
tional efficiency as compared to the technique applied in Eq.
(16). For each frequency step, the computational time for the
new method is very close to that for the HIE E).

V. NUMERICAL EXAMPLES

In order to test the accuracy and efficiency of the new
method, two cases of acoustic radiation and a case of plane

The term Ny—Ng) has removed the hypersingularity in op- acoustic wave scattering from rigid sphere have been com-
eratorN,. Only the termN, still contains hypersingularity. puted. The two acoustic radiation problems are pulsating

Using the discretized operator matrices, E2f) can be dis-

cretized and expressed as

- %I +A+ a[D+D0]}{<p}=

1
SI+F

+
Bk Cl{2

sphere radiation and oscillating sphere radiation. In all three
examples, the surface of a sphere is, respectively, modeled
using 24 and 96 curvilinear quadrilateral isoparametric ele-
ments to observe the convergence of the new method. Each
octant of a sphere is discretized using 3 and 12 surface ele-
ments as shown in Figs. 2 and 3. Due to symmetry, the
problems are computed in half space. For radiation prob-
lems, three linear equation systems are computed. They are

whereD is the discretized operator matrix for integral opera-ine conventional Helmholtz integral equatiilE), normal

tor (Ni—No) anle: is the discretized operator matrix of gerjyative equation of the conventional Helmholtz integral
integral operatoM,,

2.0+

—%— Re NDHIE )
15| —e—mnoHE  []}
Re analytical * '\
- Im analytical ke
o ' . ey
3 .
E-3 -
L4
24 elements \
: T T  — T T T T T T
20 1 3 4 5
—i— Re HIE
154 —@—ImHIE
4| — Re analytical
B° 1.0—. Im anaiytical “‘_‘,Fﬂ* ¥ 13
g 054 0oe® |
a 1 -
0.0+ o*®
9 L
0.5 24 elements
L} L} L} T M T v L}
0 1 2 3 4 5 6

FIG. 8. Dimensionless surface acoustic pressures for an oscillating sphere

using HIE and

J. Acoust. Soc

reduced frequency ka

NDHIE with 24 elements #s=0°.

. Am., Vol. 113, No. 5, May 2003

equation (NDHIE), and the composite Helmholtz integral
equation (CHIE). Comparisons between the numerical re-
sults of these three linear equation systems clearly show the
nonuniqueness problem and the effectiveness of the new
method. For plane acoustic wave scattering from a rigid
sphere, only the conventional Helmholtz integral equation
and the composite Helmholtz integral equation are com-
puted. These examples are computed using the in-house de-
veloped codessFL This software is suitable to solve multi-
domain acoustic problems, especially the problems of
structural—acoustic interaction.

A. Pulsating sphere radiation

The analytical solutiol? of the acoustic pressure(r)
for a sphere of radiug, pulsating with an uniform radial
velocity vy, is given by
o(r) _a ika

-2 —ik(r—a)
pCug I 1+ika® ' 37

Yan et al.: Evaluation of hypersingular integral equation 2679



1.0 1.0 vk
0.8 * ReCHIE 0.8
® ImCHIE * ReCHIE
Re analytical ® ImCHE
0.6 e Im anaiytical 0.6 Re analytical
o elements ° Im analytical
2 § 96 elements
a 0.4 & 044
0.2 0.2
0.0+ 0.0
T L) L) L) T T T T T T Ll L) L Ll ) L 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 10 N
reduced frequency ka reduced frequency ka

FIG. 9. Dimensionless surface acoustic pressures for an oscillating sphefdG. 11. Dimensionless surface acoustic pressures for an oscillating sphere
using CHIE with 24 elements a&=0°. using CHIE with 96 elements a#&=0°.

Dimensionless surface acoustic pressures as a functiodhere 6 is the angle made by the radial direction and the
of the reduced frequendsa are plotted in Figs. 4—7. Figures direction of the velocity. In the following exampl@=0 is
4 and 5 present the results obtained using 24 elements. Whiflong the direction of axis.
the numerical results obtained using 96 elements are pre- The dimensionless surface acoustic pressureg=ef
sented in Figs. 6 and 7. The comparison between the nume@e displayed as function of the reduced frequency in Figs.
cal results obtained using the HIE and NDHIE with the cor-8—11. Figures 8 and 9 show the results obtained using the
responding analytical solutions is shown in Figs. 4 and 6. [fnodel with 24 elements. The results for 96 elements model
is evident that the HIE equation fails to provide unique so-aré shown in Figs. 10 and 11. The comparison between the
lutions nearkka= 7, 27, 8.13, and & and the NDHIE equa- numerical results obtained using the HIE and NDHIE with
tion fails to provide unique solutions ne&m=0, 4.493, the corresponding analytical solutions is shown in Figs. 8
5.616, 7.725, and 9.784. On the other hand, the numeric@nd 10. As can be seen, the HIE equation fails to provide
results calculated using the CHIE, which are plotted in FigsUnique solutions neaka=4.493, 7.725, and 9.349. Simi-
5 and 7, are unique for all the frequencies. Figure 7 show4rly, the NDHIE equation also suffers from the nonuniqun-
that with a finer mesh, the numerical results obtained usingSS neaka=2.062, 5.911, 5.616, 6.787, 8.521, and 9.150,

up to 10.5. played in Figs. 9 and 11 are unique for all the wave numbers.
Figure 11 shows that with a finer mesh discretization the
surface acoustic pressures for an oscillating sphere obtained
_ . using the CHIE agree quite well with the corresponding ana-
B. Oscillating sphere radiation . .

lytical solutions forka up to 10.5.
The analytical solutiof? of the acoustic pressure for an

oscillating sphere of radius with a radial velocityv , cos() . , -
C. Plane acoustic wave scattering from a rigid sphere

is given by
o(r) [a\? ika(1+ikr) _ To provide a further test of the new technique, the scat-
=|-| cog0) z=———5—-e k"3 (38  tering of a plane acoustic wave, = goe” *? from a rigid
pCuo 1\ T 2(1+ika)—ka sphere of radius is computed. The analytical solutithof

90

1.04

0.8+ —*—Re NDHIE oo — ~ ¥ _— ] o HIE
—e—Im NDHIE ka=1 - e CHE
- 06 Re analytical 0.08 | —— analytical

1 1 T T T T 1 0.02 4

Im analytical ey : r=5a and ka=1
lo 96 elements 0.06 150 2 24 elgn\ents
o $_Te ) ~ NN
I ° 0.04 / - 7 3 X \
T T T T T v / y ‘Z 4 p B N

104 ek ".._u bk 0.00 180 0
0.8 1 —be— Re HIE 0.02
05 —e— ImHIE )
o 9] Re analytical 0.04

§_ 0.4 4 Im analytical :

-y 96 elements 0.06 - 210
02 o ®.4°) q :
0.0-] 0.08 -|

T T T T T T T T T T TN e
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the scattered acoustic pressyrgr,d) at a distance from

the center of the sphere and at an angfeom the direction
of the incoming wave is given by

< - jm(ka)
—mZ=0 —(=1) (2m+1)m hy(kr)

QDs(r ,0)
®o
X P, (cosh), (39

wherej, is spherical Bessel function of the first kind amg
is spherical Hankel function of the second kirit},, denotes
Legendre polynomial of orden.

tegral equation proposed by Burton and MifteThe dis-
cretized operator matrix of a composite integral operator is
proved to be just the product of the two discretized operator
matrices corresponding to the two integral operators, which
construct the composite integral operator. The double surface
integrals employed by Burton and Milfeare discretized ac-
cording to this new concept. Above all, the discretized op-
erator matrix of the hypersingular integral operabdg is
explicitly found for the first time as higher-order elements
are implemented. Subsequently, an elimination of the hyper-
singularity in the integral operatdy, is implemented using
the formulationN,—Ng. The new method greatly improves
the computational efficiency and has tractable integral ker-
nels. Numerical calculations are performed for pulsating and
oscillating sphere radiation and plane acoustic wave scatter-
ing from a rigid sphere with curvilinear quadrilateral isopara-
metric elements being employed. As finer meshes are ap-
plied, the numerical results agree quite well with the
corresponding analytical solutions. Here surface of the object
is constrained to be smooth enough. Further investigations
will extend the new technique to problems with arbitrary
shape structure.
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