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The paper uses analytical modification of the classical boundary integral equations (BIEs) for
the Helmholtz equation to facilitate the process of practical definition of the boundary geometry.
Instead of defining the boundary by means of a boundary integral, the modification makes use of
Bézier curves exclusively. As a result, a new parametric integral equation system (PIES) is obtained
in which boundary geometry is taken into account in original fundamental boundary solutions.
Such boundary definition makes it easy to approximate boundary functions. The proposed method
to obtain numerical solution of the PIES for the Helmholtz equation is characterized by high
effectiveness.
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1. Introduction

Solution of practical problems is very often reduced to the solution of boundary problems
involving mathematical differential (integral) equations modeling real phenomena. Such
problems are typically solved using numerical methods among which the most frequently
applied are finite difference method (FDM), finite element method (FEM)1 and boundary
element method (BEM).2–5

All the above methods have one general characteristic in common, i.e. the final solution
of boundary problems is reduced to numerical solutions of a number of algebraic equation
systems.1,5–7 They differ, however, in the way in which these equation systems are obtained
and the degree of accuracy they offer.7–11 Another common feature the methods share is
the fact that they require domain discretization for both FEM and FDM and boundary
discretization only in the case of BEM. The methods also show different effectiveness when
applied for the solution of complex practical problems.

Their effectiveness can be compared in a number of ways. It is reasonable, however,
to take into account such criteria as: (1) amounts of input data necessary to define the
investigated problem; (2) the complexity (size) of the obtained system of algebraic equations
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approximating the operator equations; (3) accuracy of the obtained solutions; (4) simplicity
of the modification of the solved boundary problem. All the above elements have different
impacts on the effectiveness of the method depending on the types of boundary problems
solved.

Owing to widespread and practical applications of the methods for the solution of a
large number of engineering problems as well as the imperfect character of the solutions
they offer, the methods used to solve boundary problems require further research. In our
work, in spite of quite well-developed FEM and BEM, investigations have been carried out
to improve these methods. It appears that a new look at the same differential equations
and their mathematical reformulation (but equivalent to the classical one) may frequently
lead to a more effective way of their numerical solution.

In our papers, we propose a boundary point method (BPM) to solve boundary
problems.12 The method is based on the parametric integral equation system, which is an
effective alternative to the classical boundary integral equation (BIE). The PIES is obtained
for the Laplace’s equation as a result of the analytical modification of the traditional BIE.
The method of the analytical modification of BIE using linear segments to define boundary
is presented in Refs. 13 and 14, whereas the modification for the smooth boundary geom-
etry defined by Bézier curves is described in Ref. 15. In the PIES, boundary geometry is
mathematically defined by Bézier curves of any given degree, whereas, in practice, only a
small number of points lying on the boundary is posed. The number of these points is con-
siderably smaller than the number of nodes that are necessary in BEM to solve the classical
BIE. Another advantage of the method is that a modification of a considerable part of the
boundary keeping its continuity in the PIES can be affected by means of a small number of
de Boor’s control points.

The purpose of this paper is to generalize the PIES to the boundary problems defined by
the Helmholtz equation. The paper presents an analytical modification of the classical BIE,
which results in obtaining a PIES containing original kernels for the Helmholtz equation.
The uniqueness of these kernels lies in the fact that they include the boundary geometry
defined by Bézier curves of any given degree. The numerical solution of the PIES requires no
traditional boundary discretization and is reduced to the approximation of boundary func-
tions exclusively. A number of testing examples are given to illustrate both the effectiveness
of boundary definition by boundary points and high accuracy of the results obtained by
using the proposed method.

2. Traditional BIE Modification for Helmholtz Equation

The two-dimensional Helmholtz equation is described by the following formula2

∂2φ

∂x2
1

+
∂2φ

∂x2
2

+ k2φ = 0, for x ∈ Ω, (1)

where k is a wave number.
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Equation (1) can be solved by means of Green’s formula presented in the following form:

ū(x) =
∫

Γ
U∗(x, y)

∂u(y)
∂n

dΓ(y) −
∫

Γ

∂U∗(x, y)
∂n

u(y)dΓ(y), x ≡ (x1, x2), (2)

where ū(x) = 0.5u(x) for x ∈ Γ, ū(x) = u(x) for x ∈ Ω, ū(x) = 0 for x /∈ Ω̄.
In the integral identity (2), the integrand U∗(x, y) is called the fundamental solution for

Helmholtz equation. It is described by one of the following formulas5:

U∗(x, y) =
i

4
H

(1)
0 (kr) or U∗(x, y) =

−i

4
H

(2)
0 (kr), (3)

where k is wave number. H
(1)
0 and H

(2)
0 are the Hankel functions — first and second kind

and zero order. Hankel function H
(1)
0 can be presented in the following form

H
(1)
0 (kr) = J0(kr) + iY0(kr). (4)

Functions which occur on the right-hand side of the formula are described by

J0(kr) = 1 − (kr)2

4
, Y0(kr) =

2
π

{(
γ + ln

(kr)
2

)(
1 − (kr)2

4

)}
,

where γ is Euler constant (γ = 0.577216 . . .).
If in (2) x ∈ Γ, then obtained formula becomes the traditional BIE. In this equation the

boundary is defined in formal way by means of the boundary integral. For this reason, for
numerical solving of the BIE the boundary equation method is generally used. The method
bases on physical division of the boundary into elements and their mathematical description
with the help of suitable polynomials.5 An alternative for the BIE, in the Laplace’s equation
case, is the PIES.15 The main difference between traditional BIE and the PIES bases on the
fact, that in the PIES the boundary geometry is mathematically defined as closed continuous
curve. That information is included in the PIES kernels, not in the boundary integral like
in the BIE.

Obtaining PIES for the Helmholtz equation requires modification of the traditional
Green’s formula (2). Modification can be performed in the same way as in Laplace’s
equation.13,15,16 After applying Fourier transformation in (2) the following transform is
obtained

ˆ̄u(ξ) = λ−1(ξ){p̃(ξ) + i[ξ1ũñ1(ξ) + ξ2ũñ2(ξ)]}, ξ ≡ (ξ1, ξ2), (5)

where λ−1(ξ) = [ξ2
1 + ξ2

2 − k2]−1 is an inverse Fourier transform for Helmholtz equation (1),
nm is a direction cosine of normal vector to a boundary Γ, whereas

p̃(ξ) =
∫

Γ
e−i(ξ1y1+ξ2y2)p(y)dΓ(y), (6)

ũñm(ξ) =
∫

Γ
e−i(ξ1y1+ξ2y2)nm(y)u(y)dΓ(y), m = 1, 2. (7)
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In the formula (5) the boundary is defined by means of boundary integrals (6) and (7),
which are called the boundary transforms.

2.1. The convolution integral equation system in the domain of

Fourier transforms

The integral (7) was used for defining transform function ũñm(ξ) on the boundary Γ. An
unknown integrand u(y) in (7) is described by the following Fourier formula

u(y) =
1

4π2

∫
R2

ei(ω1y1+ω2y2)û(ω)dω, (8)

where integrand û(ω) is showed by means of

û(ω) = 2λ−1(ω){p̃(ω) + i[ω1ũñ1(ω) + ω2ũñ2(ω)]}, ω ≡ (ω1, ω2). (9)

Formula (9) is a particular case of formula (5).
After consideration of (9) and (8) in (7), the convolution integral equation system in

Fourier transform domain is obtained in the following form:

ũñm(ξ) =
∫

R2

K̃m(γ1, γ2)λ−1(ω){p̃(ω) + i[ω1ũñ1(ω) + ω2ũñ2(ω)]}dω. (10)

The kernel in this equation is a contour integral

K̃m(γ1, γ2) =
1

2π2

∫
Γ

ei(γ1y1+γ2y2)nm(y)dΓ(y), γi = ωi − ζi, (11)

which takes into consideration boundary geometry Γ. In the further contemplations the
boundary Γ is divided into n nonlinear segments (but only theoretically).

3. Modeling of the Continuous Boundary by Means of Bézier Segments

In order to define closed boundary geometry, in boundary problems, Bézier curves17 can be
used. Domain Ω, restricted by Bézier segments with assurance of a class of continuity C1

at points of segment joints, is shown in Fig. 1.
Each segment Γk(s) (k = 1, 2, . . . , n) can be described by means of the following Bézier

curves17

Γk(s) =
{

y1

y2

}
=

{
Γ(1)

k (s)

Γ(2)
k (s)

}
=

n∑
i=0

ViBi,n(s∗), (12)
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Fig. 1. Modeling of the domain Ω by means of Bézier curves.

where Bi,n(s∗) are Bernstein base functions of n degree, and they are written in the following
form:

Bi,n(s∗) =
(

n

i

)
(1 − s∗)n−is∗i, 0 ≤ s∗ ≤ 1,

and Vi are Bézier control points.
The kernel (11), after consideration of Bézier segments (12) in it, takes the following

form:

K̃m(γ1, γ2) =
1

2π2

n∑
l=1

∫ sl

sl−1

ei[γ1Γ
(1)
l (s)+γ2Γ

(2)
l (s)]Jl(s)nm(s)ds, sl−1 ≤ s ≤ sl, (13)

whereas transforms p̃(ω), ũñm(ω) in (10) are presented by means of integrals

p̃j(ω) =
n∑

j=1

∫ sj

sj−1

e−i[ω1Γ
(1)
j (s)+ω2Γ

(2)
j (s)]pj(s)Jj(s)ds,

Jl(s) =
√

(∂y1/∂s)2 + (∂y2/∂s)2,

(14)

ũkñ
(k)
m (ω) =

n∑
k=1

∫ sk

sk−1

e−i[ω1Γ
(1)
k (s)+ω2Γ

(2)
k (s)]uk(s)n(k)

m (s)Jk(s)ds, k = l, j. (15)

In that way in boundary integrals the boundary geometry, defined by means of Bézier
curves, was considered.
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4. PIES for Helmholtz Equation

Considering (14), (15) and (13) in (10) and applying inversion of Fourier transformation
into obtained formula, the PIES takes the following form

0.5ul(s1) =
n∑

j=1

∫ sj

sj−1

{Ū∗
lj(s1, s)pj(s)−P̄ ∗

lj(s1, s)uj(s)}Jj(s) ds, sj−1 < s1, s < sj. (16)

General form of obtained PIES (16) is the same as in the case of the Laplace’s equation,15

the difference is only in kernels Ū∗
lj and P̄ ∗

lj . First function Ū∗
lj is called the fundamental

boundary solution and it is presented in the following form18

Ū∗
lj(s1, s) =

i

4
H

(1)
0 (kη) or Ū∗

lj(s1, s) =
−i

4
H

(2)
0 (kη). (17)

Second function from (16) P̄ ∗
lj is called the singular boundary solution

P̄ ∗
lj(s1, s) =

−i

4η
kH

(1)
1 (kη)[η1n1(s) + η2n2(s)], (18)

where H
(1)
1 are the Hankel functions — first kind and first order.

Function η which occurs in formulas (17) and (18) is described by the following formula

η = [η2
1 + η2

2 ]
0.5, (19)

where η1 = Γ(1)
l (s1) − Γ(1)

j (s), η2 = Γ(2)
l (s1) − Γ(2)

j (s), and Γk(s) (k = 1, 2, . . . , n) are the
boundary segments defined by formula (12).

Boundary solutions (17) and (18), in contrary to classical solutions (2), take into account
the boundary geometry in their mathematical formalism. The boundary geometry is defined
by means of Bézier curves. Therefore, as a result of modification of the traditional BIE, the
PIES was obtained, in which information about boundary geometry is included in kernels
of the system.

5. The Solution in the Domain

When we obtain a solution on the boundary using PIES (16), we can obtain a solution in
the domain. For this reason integral identity, which use solutions on the boundary obtained
earlier, is required. Follow the same way as in Laplace’s equation14,15 case, identity can be
presented in the following form

u(x) =
n∑

j=1

∫ sj

sj−1

{Û∗
j (x, s)pj(s) − P̂ ∗

j (x, s)uj(s)}Jj(s)ds, sj−1 < s < sj. (20)

First function Û∗
j is called the fundamental solution in the domain and it is described

by the following formula18:

Û∗
j (x, s) =

i

4
H

(1)
0 (kη̂) or Û∗

j (x, s) =
−i

4
H

(2)
0 (kη̂). (21)
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Second function from (20) P̂ ∗
j is called the singular solution in the domain

P̂ ∗
j (x, s) =

−i

4η̂
kH

(1)
1 (kη̂)[η̂1n1(s) + η̂2n2(s)]. (22)

Function η̂, which occurs in the formulas (21) and (22), takes into account the boundary
geometry described by Bézier curves, and coordinates of point in the domain, in which the
solution is searched. It is described by formula (19)

η̂ = [η̂2
1 + η̂2

2 ]
0.5, (23)

where η̂1 = x1−Γ(1)
j (s), η̂2 = x2−Γ(2)

j (s), and Γk(s) (k = 1, 2, . . . , n) are boundary segments
described by formula (12).

6. Numerical Solving of PIES

The solution of PIES (16) is reduced to finding the unknown functions uj(s) or pj(s) on
each of the boundary segments of the considered problem. These functions are required in
complex approximating expression form

uj(s) =
M∑

k=0

ū
(k)
j f

(k)
j (s), pj(s) =

M∑
k=0

p̄
(k)
j f

(k)
j (s), (24)

where

ū
(k)
j = u

(k)
j + iv

(k)
j , p̄

(k)
j = r

(k)
j + is

(k)
j , (25)

where u
(k)
j , v

(k)
j , r

(k)
j , s

(k)
j are the unknown coefficients on segment j, k is the number of

the coefficients, whereas f
(k)
j (s) are global base functions on each segment. We can use any

orthogonal polynomials19 as base functions in the proposed algorithm. Generally f
(k)
j (s) are

presented in the following form

f
(k)
j (s) = {Pk(s),Hk(s), Lk(s), Tk(s)}, (26)

where

Pk(s) are the Legendre polynomials, Hk(s) are the Hermite polynomials,

Lk(s) are the Laguere polynomials, and Tk(s) are the Chebyshev polynomials.

After insertion of (24) into (16), the PIES is obtained. The PIES written down for all
collocation nodes takes the matrix form

[H]{ūj} = [G]{p̄j}, (27)
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where

[hlj] = 0.5δlj

M∑
k=0

f
(k)
j (s) +

M∑
k=0

∫ sj

sj−1

P̄ ∗
lj(s1, s)f

(k)
j (s)Jj(s)ds,

[glj] =
∫ sj

sj−1

Ū∗
lj(s1, s)f

(k)
j (s)Jj(s)ds. (28)

The unknown functions of complex approximating series (24) are described by

{ūj} = {u(k)
j } + i{v(k)

j }, {p̄j} =
{
r
(k)
j

}
+ i

{
s
(k)
j

}
. (29)

After consideration of (29) in the matrix equation (27), each segment can be presented
in the following form[

H1 −H2

H2 H1

]{
u

(k)
j

v
(k)
j

}
=

[
G1 −G2

G2 G1

]{
r
(k)
j

s
(k)
j

}
, (30)

where

H1 = Rehij , H2 = Im hij, G1 = Re gij , G2 = Im gij .

Unknown coefficients u
(k)
j , v

(k)
j or r

(k)
j , s

(k)
j are solutions of algebraic equation system

(27). Multiplication of coefficients by base functions leads to continuous solution on each
segment.

7. Tested Examples and Discussion

Effectiveness of proposed algorithm for numerical solving of the PIES was tested on various
examples with different analytical solutions and in the different domains. Obtained solutions,
for various number of expressions in the complex approximating series (24), arrangement
of collocation nodes and value of wave number k, were compared with the exact and other
numerical results.

7.1. Example 1

In the first example, circular domain (Fig. 2) defined by Bézier curves of the third degree was
considered. For its defining only interpolating boundary points Vi (i = 0, 3, 6, 9, 12, 15, 18, 21)
were applied. The Dirichlet boundary conditions were set. They are calculated on the basis
of analytical solution showed by function

u = −i
cos[k(1 − x)]

sin(k)
. (31)

In order to solve the following example k = 1 was taken. Solutions presented here refer
to one cross-section: y = 0 and −0.45 ≤ x ≤ 0.45.
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Fig. 2. Circular domain defined by Bézier curves of the third degree.

The influence of the collocation nodes placement and the number of terms in the approx-
imating series (24) were analyzed. The test has been carried out taking into account 2, 3, 4
and 5 terms (M = 1, 2, 3, 4) of the approximating series (24), and three ways of arrangement
of collocation nodes:

(1) placement uniformity,
(2) placing of nodes at points corresponding to the roots of the Chebyshev polynomials,
(3) placement of two collocation nodes at a distance of 0.1 from the boundary with all the

remaining nodes being placed in a uniform way.

The first stage of the tests has been carried out taking into account four terms (M = 3)
of the approximating series. The relative error of obtained results is shown in Fig. 3. Only
imaginary part of solution is presented below, because analytical value of the real part
amounts to 0.

As seen in the diagrams, the proposed method gives very accurate results for all arrange-
ments of the collocation nodes. The greatest relative error occurs when the collocation points
are placed at sites corresponding to Chebyshev polynomial. Most effective is the case, in
which the collocation nodes are evenly placed.
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Fig. 3. Error values for imaginary part of solution for different placements of collocation nodes.
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Fig. 4. Error values for imaginary part of solution for different number of expressions in the approximating
series.

The next stage of tests refers to investigate an influence of number of expressions in
the approximating series on the accuracy of the results. The tests were performed on the
collocation nodes placement, which gave the most accurate results. 2, 3, 4 and 5 expressions
of the approximating series were considered. The results are shown in Fig. 4.

The results for (M = 1, 2, 3, 4) expressions of the approximating series are practically the
same and at the same time very close to the analytical results (Fig. 4). The tests showed
that smallest relative error occurs when four expressions (M = 3) of the approximating
series were used. The greatest differences between exact and numerical results occur where
M = 4 was considered.

7.2. Example 2

In the second example, the Helmholtz equation (1) in an elliptical domain with the Dirichlet
boundary conditions was solved. Considered domain is shown in Fig. 5. Like in example 1 for
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Fig. 5. Investigated domain defined by Bézier curves of third degree.

boundary geometry defining only interpolating Bézier control points were used. For exact
defining of boundary geometry, number of those points is much less than the number of
nodes in BEM case. The analytical solution is shown by function7

u = exp ik{x cos α + y sin α}. (32)

In order to solve the following example α = 0◦ was taken. Different values of k (k = 0.25,
0.5, 0.75, 1) were considered.

In order to test the accuracy of the method, solutions in the different cross-sections of
the domain were analyzed. Each solution is compared with exact result. Owing to the fact
that there is some regularity of the solution obtained in all individual cross-sections of the
domain, the solutions presented here refer only to one cross-section.

Four terms (M = 3) of the approximating series (13) and evenly placement of collocation
nodes were considered.

The relative error for the real and imaginary parts of solution in the domain for different
k values is shown in Figs. 6(a) and 6(b).

As shown in Figs. 6(a) and 6(b), the value of relative error depends on considered value
of wave number k. Value of the relative error increases with increasing value of k. The
proposed method gives very small relative errors for all considered cases (less then 0.13%
for real part of the solution and 0.28% for the imaginary part).

7.3. Example 3

In the third example a square domain (Fig. 7) with the Dirichlet boundary conditions
was considered. Investigated domain is defined by segments of the first degree. Defining is
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Fig. 6. (a) Error values for real part of solution. (b) Error values for imaginary part of solution.

reduced to set only four corner points Pi (i = 0, 1, 2, 3). In the BEM case, the boundary is
divided into boundary elements (with greater number of nodes). The analytical solution of
Helmholtz equation (1) is shown by function (32) from second example. In order to solve
the following example α = 0◦ and k = 0.25 was taken.

In order to test the accuracy of the results obtained from the PIES, they were compared
with the ones obtained from BEM and with analytical results. The comparison is shown in
Table 1.

The solutions obtained from the PIES give the smallest errors. In order to obtain those
results, eight algebraic equations were solved. The next advantage of proposed method
(modified BEM) is that for obtaining great accuracy, the same or even smaller algebraic
equation system was solved. It is related with the shorter time of calculation and the smaller
number of computer storage used for numerical solving of boundary problems. The smaller
number of input data for boundary geometry definition is also required.
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Fig. 7. Investigated domain defined by Bézier curves of first degree.

Table 1. Comparison of the results obtained from BEM and PIES with the exact results.

PIES (8) BEM (8)

x y |εu|, % Re |εu|, % Im |εu|, % Re |εu|, % Im

0.1 0.5 0.14599724 5.03170777 0.03256180 11.5747893
0.2 0.5 0.00703483 1.77847948 0.04057675 3.72789163
0.3 0.5 0.00900713 0.75538433 0.04821735 1.59977573
0.4 0.5 0.01157435 0.28208655 0.05619728 0.65250360
0.5 0.5 0.01468127 0.01422372 0.06416737 0.06876564
0.6 0.5 0.01841456 0.16385879 0.07120737 0.32312202
0.7 0.5 0.02310681 0.30318077 0.07774126 0.59552782
0.8 0.5 0.02934268 0.42566671 0.08750199 0.85854681
0.9 0.5 0.17697143 0.38620049 0.10618725 1.22615861

Average 0.04845892 1.01564318 0.0.0649287 2.2918979
relative error

(in parentheses — number of solved algebraic equations)

8. Conclusions

In the paper, classical boundary integral equations have been modified to obtain a PIES
for boundary problems defined by a 2D differential Helmholtz equation. In the PIES, the
boundary geometry is not defined by the boundary integral as in BIE (i.e. in a very general
way), it is only included in the original kernels obtained for the PIES and defined by Bézier
curves. This makes it possible to effectively pose boundary geometries with the help of a
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small number of boundary points. Posing only boundary points in the PIES is equivalent
to the definition of the complete boundary geometry in a continuous way, not a discrete
one, as in the case of FEM used to solve the PIES. The above follows from the analytical
and continuous boundary definition by Bézier curves in the fundamental boundary solutions
obtained. Hence the PIES is no longer defined on the boundary but on the straight line in
the parametric system of reference for any given geometry.

As a result of the proposed modification of the classical BIE, a PIES in which the
boundary geometry was analytically included in its mathematical formalism, was obtained.
Such boundary definition offers greater possibilities of more effective concentration on the
approximation process of boundary functions, i.e. solution of the PIES. Thus, we can state
that in the PIES there is no necessity of simultaneous application of the approximation of
the boundary geometry and boundary functions, unlike in BIE.

Finally, the solution of the PIES is reduced to the approximation of boundary functions
entirely. The use of the pseudospectral method to solve the PIES, as shown in the example,
is characterized by high effectiveness and accuracy of the solutions. The obtained PIES
and the proposed method of its solution constitutes an effective alternative method for the
classical BEM.
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