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AN APPLICATION OF FAST MULTIPOLE METHOD IN

ANALYZING ACOUSTIC FILTERS
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ABSTRACT

The purpose of this study is to investigate the acoustic performance of mufflers.
As a numerical scheme for analyzing an acoustic filter, the boundary element method is
more suitable than are domain methods, such as the finite element method, which has to
mesh the domain.  However, the coefficient matrices established by the boundary ele-
ment method are full and often non-symmetrical.  In order to decrease the computational
time required, the fast multipole method has been applied.  The fast multipole method,
when compared with the boundary element method, reduces CPU time from an order of
N 2 to Nlogγ N, where N is the number of unknowns and γ is a constant.  This study
focused on the different geometries of plates within simple expansion acoustic filters.
Numerical analysis demonstrates that the transmission loss at a particular frequency
performance is better when employing a simple expansion acoustic filter with plates.
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I. INTRODUCTION

An acoustic filter is a widely employed noise
control tool. Many studies (Davis et al., 1954; Igarashi
and Toyama, 1958; Miwa and Igarashi, 1959; Bernake,
1971; Wang, 2000) have been performed in order to
predict and understand the performance of acoustic
filters according to the filter theory or the transfer
matrix method.  Young and Crocker (1975) applied
the Finite Element Method (FEM) in order to ana-
lyze the characteristics of mufflers; the results com-
pared well to those from the plane wave theory.
Panigrahi and Munjal (2005) investigated multiply con-
nected complex acoustic filters based on network theory.
Wang et al. (1998; 1999a; 1999b) analyzed three-di-
mensional mufflers with mean flow or absorbent
material using the Boundary Element Method (BEM).

Generally, for analyzing an acoustic filter, BEM
is more suitable than domain methods, such as
FEM, which have to mesh the domain.  However, the
coefficient matrices established by BEM are full and
often non-symmetrical.  The CPU time is about the
order of N 2 for building the matrices.  To decrease

the computational time required, the FMM, which was
recently developed, has been applied.  Rokhlin (1985)
developed the FMM for the 2D Laplace equation in
1985.  This method was further developed by
Greengard and Rokhlin (1987) for the pairwise force
calculation with Coulombic or gravitational potential.
The applications of FMM and related methods are
found in various fields.  Chen et al. (2004; 2009)
solved 2D exterior acoustic problems and success-
fully expanded the four kernels in the dual formula-
tion into degenerate kernels that separate field and
source points, using addition theory.  Chen and Hong
(1999) discussed the regularization of hypersingular
integrals and divergent series based on dual bound-
ary element methods.  The FMM can also be applied
to 2D seismic scattering, 3D topography and basin
problems (Fujiwara, 1998; Fujiwara, 2000).  The
FMM for use with Laplace, Helmholtz, and heat equa-
tions was discussed by Nishimura (2002).  Gomez and
Power (1997) applied multipole direct and indirect
BEMs to solve the 2D Stokes cavity flow.

In this study the concept of Chen and Chen
(2004) will be adopted and extended to analyze the
2D acoustic filters.  The remainder of this paper is
organized as follows.  The theory underlying the
FMM is briefly introduced.  Simple expansion acous-
tic filters with different rigid plates inside are then
analyzed and discussed.
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II. BASIC FORMULATION

For an interior acoustic problem, acoustic pres-
sure p should be governed by the Helmholtz equa-
tion as follows:

∇ 2p + k2p = 0, (1)

where ∇ 2 is the Laplacian operator and k is the wave
number.  By applying the Green second identity and
introducing the fundamental solution of the Helmholz
equation, the boundary integral formulation can be
derived as (Tanaka et al., 1985)

C(   )p(   )ξ ξ

= (   , s )
Γ

∂p

∂n
dG Γξ (s )

(s )

(s )

–
∂G
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Γ

p dΓ Γ, ,∈ξ
(   , s )ξ

(s )(s )
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where ξ  is the field point, s  is the source point, Γ is
the boundary, (s )∂/∂n  is an outward normal deriva-
tive at the source point, and C(   )ξ  is the solid angle
of the field point.  The free space fundamental solu-
tion of the Helmholtz equation is written in Eq. (3)
and satisfies Eq. (4):

G = 1
4iH0

(2)(k – ),(   , s )ξ ξ s (3)

where H0
(2)(k – )ξ s  is the Hankel function of the second

kind zeroth order, and i is the square root of –1.

∇ 2G + k2G = – δ ,(   , s )ξ (   , s )ξ (   , s )ξ (4)

where δ(   , s )ξ  is the Dirac delta function.
To solve the problem, the boundary is divided

into N line segments.  The state variables of pressure

and pressure gradient are assumed to be constant and
equal to the value on each center of element Γβ.  The
boundary integral formulation Eq. (2) can be rewrit-
ten as

1
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By applying Eq. (5) to each node and integrating each
element, the linear algebraic system equation ex-
pressed in matrix form is

[A]{p (s )},(s )}=[B]{pn (6)

where {p(s )} and {pn =
∂p

∂n
(s )}

(s )

(s )
 are column vec-

tors of pressure and the pressure gradient, respec-
tively.  The matrix coefficients in [A] and [B] are

calculated Aαβ = 1
2

δαβ + 
Γβ

∂G

∂n

(   , s )ξ
(s )

dΓβ  and Bαβ

= 
Γβ

dΓβG(   , s )ξ , where subscripts α and β are the

labels of the collocation element and integration
element, respectively.  When α = β, the constant δαβ
= 1; otherwise, it is zero.

III. THE FAST MULTIPOLE METHOD

A brief illustration of the FMM is introduced as
follows.  First, the kernel function G(   , s )ξ , which ex-
ists in the boundary integral formulation, separated the
field points and source points into two terms by the
addition theorem (Chen and Chen, 2004; Abramowitz
and Stegun, 1965), as shown in the following equation:
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where µ  is the center of the multipole, Jm(ζ ) is a
Bessel function of the first kind and ζ is an argument.

Taking the normal derivative with G(   , s )ξ  at the

source point, the function nG (   , s )ξ  can also be de-
rived and displayed in the following equations (Chen
and Chen, 2004; Abramowitz and Stegun, 1965):
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The partial derivatives of the Bessel, Hankel and co-
sine functions are displayed as follows:
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∂n

(Jm(k )–s µ
(s )

= k
2[Jm – 1(k ) – Jm + 1(k )]–s µ–s µ

⋅
(sx – µ x)nx + (sy – µ y)ny ,

–s µ

(s ) (s )
(9)

∂
∂n

)
(s )

(Hm
(2)(k –s µ

= k
2 m – 1(k ) – Hm + 1(k )]–s µ–s µ[H (2) (2)

⋅
(sx – µ x)nx + (sy – µ y)ny ,

–s µ

(s ) (s )
(10)

∂
∂n

cos(mθ) = m
sin(mθ)

sinθ
[axnx + ayny(s ) (s )],

(s )
(11)

ax

=
(sy – µ y)

2(ξ x – µ x) – (sx – µ x)(sy – µ y)(ξ y – µ y)
3

,
– µξ–s µ

(12)

ay

=
(sx – µ x)

2(ξ y – µ y) – (sx – µ x)(sy – µ y)(ξ x – µ x) ,
3

– µξ–s µ
(13)

where suffixes x and y are the components of the lo-
cal  coordinates .   To s impli fy  the  expansive
formulation, the origin rotates or transfers from the
global coordinate to each center of the multipole as
shown in Fig. 1.  Therefore, the outward normal vec-
tors of local coordinates (nx ny(s ), (s ))  are united and
equal to (0, –1) for an interior acoustic problem. By
substituting unit outward normal vectors into Eqs. (9)-
(11), the component of nx(s ) can be eliminated.

Thus, the kernel functions have been expanded
into a series form.  Since the kernels become singu-
lar as s  approaches ξ , the matrix coefficient will be
calculated in two parts: integration of the regular el-
ement and singular element.  This integration is dis-
cussed as follows.

1. The Regular Integral Situation (Chen and Chen,
2004; Abramowitz and Stegun, 1965)

In this case, the kernel functions are expanded
into series form.  The matrix components can be

developed using the following formula:

Bαβ = GRdΓβΓβ

= – i
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(14)

where M is a positive integer used to approximate
the sums of an infinite series.

The value of Rm, β is called a multipole moment,
and it is related to the length of the source element.
The value C1

α, β, m is related to the field points.  When
the boundary is divided into uniform meshes, Rm, β  is
calculated only once.  Thus, they are displayed in the
following equations:

Cα, β , m
1 = – i

4εm H2m
(2)(k )cos(2mθ) ,– µξ (15)

Rm, β ≅ 4
k J2m + 2n + 1(0.5lβ k)Σ

n = 0

M

, (16)

where lβ is the length of the βth source element Γβ,
and εm is denoted by

εm = 1 , m = 0
2 , m ≠ 0 . (17)

In Eq. (14), θ is an angle from µξ  to sµ  as shown in

Physical node 

Geometry node 

ξ : Field point 

s : Source point 

µ :  Multipole point 

Y

X

µ
s

ξ

θ

Y ’

X’

µ (0,0)

s(sx,0)

(0.5l  ,0)β

(-0.5l  ,0)β

Fig. 1  The global coordinate (X, Y) and local coordinate (X’, Y ’)
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Fig. 2.  When the angle is located in the interior of
the acoustic filter, such as θ1, the value can be calcu-
lated by

θ = cos– 1(
( () )

) .
– µξ

( )– µξ

–s µ

( )–s µ
(18)

On the contrary, when the angle is located on the ex-
terior of the acoustic filter, such as θ2, the solution
for the value should be amended as in the following
equation:

θ = 2π – cos– 1(
( () )

) .
– µξ

( )– µξ

–s µ

( )–s µ
 (19)

Furthermore, the value of Aαβ can also be derived by
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where the value C 2
α, β, m is defined as

Cα, β , m
2 = ik

4 H2m + 1
(2) (k )sin[(2m + 1)θ] .– µξ   (21)

For further details of the regular integral, refer
to the research of Chen and Chen (2004).

2. The Singular Integral Situation

 In this study, the integration values for the two
singular kernels are derived using the conventional
BEM, which is displayed as follows.  A weakly sin-
gular integral led to the limiting form for small argu-
ments in the formula.  The value of weakly singular
integral can then be derived using Eq. (22):
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Γ β

=
lβ
8i H0

(2)(kη
lβ
2 )dη
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As the normal and surface of the strongly singular
integral are orthogonal, the value of the kernel can
be defined as follows:

Aαα = 1
2 + = 1

2 .
Γβ

∂G

∂n

(   , s )ξ
(s )

dΓβ (23)

IV. TRANSMISSION LOSS

This work investigates the characteristics of an
acoustic filter using the FMM.  Transmission loss for
an acoustic filter is generally used as the parameter
representing its performance evaluation.  The deri-
vation of transmission loss for an acoustic filter is as
follows.

An acoustic system has three parts: the inlet,
outlet and other, and can be simulated using a linear
acoustic four-pole network (Munjal, 1987; Wang et
al., 2001).  By adopting the linear Euler equation,
the pressure gradient can be converted to a normal
velocity.  Furthermore, the acoustic filter wall is as-
sumed rigid; thus Eq. (6) becomes (Wang and Liao,
1998; Wang, 1999; Wang, 2000)

A11 A12
A21 A22

pin, out
pother

= (– ik)
B11
B21

{ρρcun} in, out ,

(24)

where ρc is the characteristic impedance of the me-
dium and un is normal velocity.  We assume that only
the plane wave was propagated in the inlet and outlet
pipes.  The relation of pressure and particle velocity
between the inlet and outlet of an acoustic linear fil-
ter can then be represented by (Young and Crocker,
1975)

p
ρρcun in

=
T11 T12
T21 T22

p
ρρcun out

, (25)

where T11, T12, T21 and T22 are known as the four-
pole parameters.

We assume that pin = 1 and un, out = 0 in Eq. (25);
thus T11 and T21 of the transfer matrix can be derived.
Similarly T21 and T22 can also be obtained by assign-
ing un, in = 1 and pout = 0

T11 =
pin
pout un, out = 0

, T21 =
– ρcun, in

pout un, out = 0
,

(26, 27)

T12 =
pin

ρcun, out pout = 0
, T22 =

– ρcun, in
ρcun, out pout = 0

.

(28, 29)

: Field point
: Source point 
: Multipole point 
= 1, 2

s1

ss2

12

ξ

ξ

β

β
β

θ
1θ

µ

µ

2µ

Fig. 2 The angles located in the interior/exterior of the acoustic
filter
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The transmission loss of an acoustic filter is defined
as the difference between input sound power level and
transmitted sound power level.  Sound power can be
derived based on the product of the cross sectional
area and intensity.  According to the derivation in
(Munjal, 1987), the ratio of input power and trans-
mitted power can be obtained and related to the four-
pole parameters in Eq. (30).  Therefore, transmission
loss of an acoustic filter in terms of the four-pole
parameters can be expressed as (Young and Crocker,
1975; Munjal, 1987; Panigrahi and Munjal, 2005)

TL = 10 log10(
Wi
Wt

)

= 10 log10(
Sin
Sout

T11 + T12 + T21 + T22
2

2

) ,    (30)

where Wi is incident sound power, Wt is transmitted

sound power and Sin
Sout

 denotes the ratio of inlet to out-

let cross-sectional area.

V. NUMERICAL RESULTS

To verify the efficacy of the present method, a
rigid straight duct with a piston at the duct end is
analyzed (Tanaka et al., 1985).  Notably, pin

uin
 and pout

uin
can be calculated by the FMM.  Fig. 3 presents the
results of a rigid straight duct with a piston at the
duct end, where uin is the mean value of particle ve-
locities for all of the elements on the inlet boundary,
and pin and pout are the mean values of pressure at the
inlet and outlet boundaries, respectively.  The solid
lines in Fig. 3 are defined by Eqs. (31) and (32), which
are based on plane wave theory:

pin
uin

= – iρc 1
tan kl , (31)

pout
uin

= – iρc 1
sin kl , (32)

where l is the straight duct length, ρ is density of the
medium (density of air is 1.2 kg/m3) and c is the speed
of sound (c = 340 m/s).  The agreement between FMM
and 1D theory is good.

Figure 4 presents the geometry and transmission
loss of a simple expansion acoustic filter.  A com-
parison of the FMM, FEM and BEM indicates that
the results were generally the same.  The results of
FEM and BEM were obtained from the research of
Bilawchuk and Fyfe (2003).  These cases demonstrate
in detail that the FMM prediction is reliable; therefore,
this method can be expanded to other cases.

Figure 5(a) shows the geometry and transmis-
sion loss of a simple expansion acoustic filter.  The
agreement between FMM and BEM is good.  Since
kernel functions are expanded into the infinite series,
discussing the convergence is useful.  If too many
terms are required, the efficiency of the proposed method
will decrease.  The absolute error is defined as

Error = |TLFMM – TLBEM|, (33)

where TLBEM and TLFMM are the transmission loss in-
dicated by the BEM and FMM, respectively.  Since
the constant element is considered in this study, and
a wavelength must include about six to eight nodes
for the spatial size in acoustic fields, Fig. 5(b) exhib-
its the absolute error of the transmission loss against
different frequencies.  It stands to reason that the ab-
solute error is less than 0.2 when the constant M is
equal to 6 or 7 and that it can be tolerated.

For the simple expansion acoustic filter case
(Fig. 5), Fig. 6 shows the absolute error of the trans-
mission loss versus the Mth partial sum in approxi-
mating the infinite series in Eq. (14) and Eq. (20).
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Fig. 6(a) shows the sum of the infinite series at a fre-
quency of 100Hz.  For boundary meshes of 78, 156
and 234 elements, seven terms are sufficient to ap-
proximate the sum of the infinite series in order to
generate the required accuracy.  Fig. 6(b) presents a
similar analysis for 5000 Hz with 156, 234 and 312
elements.  Again, partial sum of only seven terms can
generate accurate results.  Thus, the summation in-
dex is chosen from 0–6, i.e., seven terms, in all the
following numerical analyses which are used to ap-
proximate the infinite series.

The most important characteristics of the FMM
are that it accelerates the speed of the required
calculation.  To illustrate this characteristic, the same
acoustic filter (Fig. 5) is utilized.  Fig. 7 presents the
required CPU times for different mesh numbers us-
ing the FMM and BEM at a frequency of 100 Hz.  Fig.
7 indicates that the FMM reduces CPU time from the

order of N 2

3100
 to N

3500
log2.5N.  This analytical result

demonstrates that the FMM obviously reduces com-
puting time.
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Next, this study explores the phenomena of an
acoustic filter with rigid circular cylinders.  Fig. 8
displays the geometry of a simple expansion acous-
tic filter with circular cylinders, and its transmission
loss.  The radii of the circular cylinders are 0.2, 0.5
and 0.8 cm, respectively.  The dimensions of the
simple expansion acoustic filter are the same as those
in Fig. 5 and are used in the following cases.  The
circular cylinders are uniformly located inside the
simple expansion acoustic filter.  The noise is reduced
better for the acoustic filter when the rigid circular
cylinders are larger.  Additionally, the transmission
loss of the acoustic filter with largest circular cylin-
ders has better efficiency with frequencies at about
2000-3500 Hz in this design.

This study now analyzes acoustic filters with
rigid saw-toothed plates.  Fig. 9 shows the geometry
of the plate and the numerical results for rigid saw-
toothed plates with heights of h1 of 0.4, 0.6 and 0.8
cm.  The analytical result indicates that the transmis-
sion loss of a simple expansion with saw-toothed
plates at about 2500-3500 Hz is better than in the case
of a simple expansion acoustic filter (Fig. 5).
Incidentally, the performance can be improved by
increasing the height of h1.

This study now extends the observation of trans-
mission loss to an acoustic filter with a rigid plate.
Fig. 10 shows the geometry of the simple expansion
acoustic filter with rigid plate, and demonstrates its
performance.  As Fig. 10 indicates, the height of h2
strongly affects the capacity of an acoustic filter.  In
this case, the highest plate has the best performance
at roughly 1500-3700 Hz.  Furthermore, an acoustic
filter with a rigid plate (Fig. 10) with approximately
1500-3500 Hz has finer performance in comparison
with a simple expansion acoustic filter (Fig. 5).  The

Fig. 8 Transmission loss of an acoustic filter with rigid circular
cylinders
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Fig. 10 The transmission loss of the acoustic filter with a rigid
plate

Fig. 9 The transmission loss of a simple expansion acoustic fil-
ter with rigid saw-toothed plates
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reason for the improvement is that the rigid plate acts
as a resonator in order to reduce the sound energy at
specific frequencies; therefore, better resonant fre-
quencies can be obtained.

VI. CONCLUSIONS

It is concluded, from what has been said above,
that the FMM improves the efficiency of the conven-
tional BEM in analyzing performance of an acoustic
filter.  The fundamental solution is expanded into a
series form.  When the boundary is divided into uni-
form meshes, the integration of the source may be
obtained only once.  The FMM can reduce CPU time
to the order Nlogγ N by reason of the separated technique.
When compared with different methods, such as BEM,
FEM and plane wave theory, the agreement is good.
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An acoustic filter with different rigid plates inside
has been analyzed and discussed.  Simple expansion
of the acoustic filter with rigid circular cylinders, saw-
toothed plates, or plates improves the noise reduc-
tion at specific frequencies.  This study extended the
FMM to analyze 2D acoustic filters; this extension
was shown to be feasible.  In future work, the FMM
could be applied to 3D problems.

NOMENCLATURE

A, B coefficient matrix
c speed of sound
C(   )ξ solid angle of the field point
C1

α, β, m, C2
α, β, m a value related to the field points

G f u n d a m e n t a l  s o l u t i o n  o f
Helmholtz equation

Gn the normal derivative with G
i square root of -1
k wave number
lβ the length of the source element
m summation index
M positive integer
nx outward normal of local coor-

dinates x
ny outward normal of local coor-

dinates y
N number of unknowns
p acoustic pressure
pn pressure gradient
Rm, β multipole moment
s source point
Sin inlet cross-sectional area
Sout outlet cross-sectional area
T11, T12, T21 and T22 four-pole parameters
un normal velocity
Wi incident sound power
Wt transmitted sound power
α the labels of the collocation el-

ement
β the labels of the integration el-

ement
δ Dirac delta function
εm constant
Γ boundary
γ constant
µ multipole point
θ an angle from µξ  to sµ
ξ field point
ρ density of the medium
ζ argument
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