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ABSTRACT

In this paper, an inverse problem of the Laplace equation with
Cauchy data is examined.  Due to the ill-posed behavior of this inverse
problem, the Tikhonov’s regularization technique is employed and
the L-curve concept is adopted to determine the optimal regulariza-
tion parameter.  Also, the singular value decomposition method is
used in conjunction with the L-curve concept for the same problem.
Numerical results show that neither the traditional Tikhonov’s regu-
larization method nor the singular value decomposition method can
yield acceptable results when the influence matrix is highly ill-posed.
A modified regularization method, which combines the singular value
decomposition method and regularization method, is thus proposed,
and this new method shows that it is a better way to treat this kind of
inverse problems comparing with the other two traditional methods.
Numerical results also show that the inverse problem with Cauchy
data is better to formulate by the singular integral equation than by the
hypersingular integral equation for the constant element scheme.  The
inverted boundary data becomes closer to the exact solution when the
number of elements increases, and numerical experiments show that
the rate of convergence is higher for the formulation using the singular
integral equation.  Numerical experiments are made to examine how
the boundary Cauchy data affect the inverted process.  It is concluded
that the inversion of unknown boundary data is more effective when
the Cauchy data are given more precisely and are distributed on the
whole boundary more diversely.

INTRODUCTION

The inverse problem is a complementary part of
the direct problem in the mathematical language since it
is defined as a problem that does not belong to the direct
problem [1].  The inverse problem is more difficult to
work out due to its ill-posed behavior.  Hadamard [2]
defined that a well-posed problem must satisfy three
requirements: (1) existence of solution; (2) uniqueness
of solution and (3) continuous dependence of solution

on data, and he said a problem which does not satisfy
any one of these three requirements is ill-posed.  Being
compared to the direct problem, the inverse problem is
unfortunately ill-posed in most cases.  To the authors’
knowledge, most inverse problems do not have the
existence theorem so far.  And the existence of solution
is usually assumed to be true in most inverse problems.
Mathematically speaking, the existence theorem of so-
lution certainly is important.  However, the existence of
solution is sometimes not very meaningful in practical
applications since data usually contain error, which
might result in no solution at all [3].  The uniqueness of
solution is proved to be true for some cases [4, 5].
However, the uniqueness of solution is not true in some
cases.  For example, Gau and Mura [6] proved that it is
impossible to invert the residual plastic strain in a
domain by the residual boundary displacements.  The
reason for the nonuniqueness of solution is that the
information given is not enough since the plastic strain
inside the plastic zone depends on the loading history
and the same residual boundary displacement data can
be obtained by different loading paths.  Even when the
existence and uniqueness of solution is guaranteed,
inverse problems are not easy to be solved due to the
very sensitive nature of solution on the given data.  It
means a little perturbation on the data may result in a
large amount of error in the solution.

The Cauchy problem is defined as the complete
boundary data that are given on part of the boundary and
no boundary data are prescribed on the remaining part.
Yeih et al. [3] solved the Cauchy problem for an
elstostatic field and further formulated this problem by
the fictitious boundary element method [7] and the
Tikhonov regularization method.  The Cauchy problem
in the Laplace equation for an infinite strip has been
examined [8].

To treat the ill-posed behavior of inverse problems,
several techniques are available.  Tikhonov [9] pro-
posed a regularization method that is derived from a
minimization problem with a constraint condition.
Another well-known approach is the singular value
decomposition method (SVD) [10], which produces a
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pseudo-inverse matrix by omitting the unreasonable
contribution from small singular values below a thresh-
old value.

To select the optimal regularization parameter in
the Tikhonov’s regularization method or the threshold
value in the SVD, two approaches are frequently used.
The first method is to set the threshold value of the
objective functional artificially, then the best regular-
ization parameter in the regularization method and the
best threshold value in the singular value decomposi-
tion method can be determined by an iteration process,
in which the first value of these parameters to make the
objective functional be less than the threshold value is
chosen to be the best parameter.  However, the threshold
value of the objective functional is sometimes not so
easy to be determined and is mainly based on the
experience.  Another approach is the so-called L-curve
concept [11].  Basically, this method can search for all
possible parameters and calculate two indices, one rep-
resents the sensitivity of the solution and the other one
represents the distorted behavior of the system.  The
best parameter is selected by finding the corner of the L-
curve, and this best parameter does not make solution
too sensitive and distort the system too much at the same
time theoretically.  The details of L-curve concept will
be explained in the following section.

In this paper, the Cauchy problem for the Laplace
equation is reexamined.  The Tikhonov’s regularization
method and singular value decomposition method are
employed with the L-curve concept.  It is found that
both methods cannot construct the unknown boundary
data effectively when the ill-posed behavior of the
system is extremely serious.  A new method that com-
bines the concept of the Tikhonov’s regularization
method with the singular value decomposition method
is proposed.  Numerical experiments show that the
proposed method yields better results than the other two
traditional methods.  Several numerical examples are
also included to show how the information of data
influences the solution.

PROBLEM  DEFINITION  AND  FORMULATIONS
CONSTRUCTED  BY  SINGULAR  AND

HYPERSINGULAR  INTEGRAL  EQUATIONS

The Cauchy problem is defined as follows.  The
governing equation that the physical quantities satisfy
inside the domain is the Laplace equation.  For an
arbitrary domain D enclosed by the boundary B, as
shown in Fig. 1, the boundary can be separated into two
parts: one is Bk where the potential and the normal
derivative of the potential are given at the same time,
and the other is Bu where both the potential and the
normal derivative of the potential are unknowns.  The

inverse problem is stated as follows.  For the given
boundary data on Bk, can one invert the unknown bound-
ary data on Bu such that one can reconstruct the solution
of every point inside the domain D?

To formulate this problem by the boundary
integral equations, the following two equations are
constructed for x point on the smooth boundary:

   πu(x) = C.P.V. T
B

(s, x)u(s)dB(s)

  – R.P.V. U
B

(s, x)t(s)dB(s) (1)

   πt(x) = H.P.V. M
B

(s, x)u(s)dB(s)

  – C.P.V. L
B

(s, x)t(s)dB(s) (2)

where u(x) is the single layer potential on the boundary,

t(x) ≡    ∂u(x)
∂nx

 is the normal derivative of the u(x) with nx

representing the outnormal direction at x point, U(s, x)
is the fundamental solution which satisfies    ∇ x

2 U(s, x) =

2πδ(x − s) and is expressed as ln|x − s|, T(s, x) ≡    ∂u(s, x)
∂ns

,

L(s, x) ≡    ∂u(s, x)
∂ns

 and M(s, x) ≡    ∂2U(s, x)
∂ns∂nx

.  In the above

two equations, C.P.V., R.P.V. and H.P.V. represent
Cauchy principal value, Riemann principal value and
Hadamard principal value, respectively.  Eqs. (1) and
(2) together are named as the dual boundary element
method by Chen and Hong [12].  Eq. (1) is also called

Fig. 1.  Illustrative diagram of problem setup.
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the singular integral equation (UT equation) and Eq. (2)
is called the hypersingular integral equation (LM
equation) by the singular nature of the kernels.

To study the Cauchy problem, Eqs. (1) and (2) can
be rearranged into the following discretized forms by
gathering the unknown quantities and known informa-
tion on the opposite sides of the equations.

For the collocation point xi of the i-th element is on
Bk, we have

   – uΣ
j = 1

(B j ∈ Bu)

n

(s j) T
B j

(s j, xi)dB(s j)

   + tΣ
j = 1

(B j ∈ Bu)

n

(s j) U
B j

(s j, xi)dB(s j)

   = uΣ
j = 1

(B j ∈ Bk)

n

(s j) T
B j

(s j, xi)dB(s j) – πu(xi)

   – tΣ
j = 1

(B j ∈ Bk)

n

(s j) U
B j

(s j, xi)dB(s j), (3a)

   uΣ
j = 1

(B j ∈ Bu)

n

(s j) M
B j

(s j, xi)dB(s j)

   + tΣ
j = 1

(B j ∈ Bu)

n

(s j) L
B j

(s j, xi)dB(s j)

   = uΣ
j = 1

(B j ∈ Bk)

n

(s j) M
B j

(s j, xi)dB(s j) – πu(xi)

   – tΣ
j = 1

(B j ∈ Bk)

n

(s j) L
B j

(s j, xi)dB(s j), (3b)

For the collocation point xi of the i-th element is on
Bu, we have

   πu(xi) – uΣ
j = 1

(B j ∈ Bu)

n

(s j) T
B j

(s j, xi)dB(s j)

   + tΣ
j = 1

(B j ∈ Bu)

n

(s j) U
B j

(s j, xi)dB(s j)

   = uΣ
j = 1

(B j ∈ Bk)

n

(s j) T
B j

(s j, xi)dB(s j)

   – tΣ
j = 1

(B j ∈ Bk)

n

(s j) U
B j

(s j, xi)dB(s j), (4a)

   uΣ
j = 1

(B j ∈ Bu)

n

(s j) M
B j

(s j, xi)dB(s j) + πt(xi)

   + tΣ
j = 1

(B j ∈ Bu)

n

(s j) L
B j

(s j, xi)dB(s j)

   = uΣ
j = 1

(B j ∈ Bk)

n

(s j) M
B j

(s j, xi)dB(s j)

   – tΣ
j = 1

(B j ∈ Bk)

n

(s j) L
B j

(s j, xi)dB(s j) . (4b)

Rearranging Eqs. (3a) and (4a) together (or 3(b)
and 4(b) together) into a matrix form, we obtain the
linear equations for singular and hypersingular
formulations, respectively.  And the linear equations
can be generally written as

Ax = b (5)

where A is the influence matrix, x is the unknown vector
and b is the information vector.  It is noted that the
dimension of the leading matrix A is not necessary a
square matrix since the element numbers on Bk and Bu

are not necessary the same.

TIKHONOV’S  REGULARIZATION  METHOD,
SINGULAR  VALUE  DECOMPOSITION,

L-CURVE  AND  MODIFIED  TIKHONOV’S
REGULARIZATION  METHOD

For the Cauchy problem of the Laplace equation,
the influence matrix A is often ill-posed such that the
regularization technique which regularizes the influ-
ence matrix is necessary.  Tikhonov [9] proposed a
method to transform this ill-posed problem into a well-
posed one.  Instead of solving Eq. (5) directly, he
proposed to solve the following problem:

minimize ||x||2 subject to ||Ax − b||2 ≤ ε (6)

where ε is the prescribed error tolerance.  The proposed
problem in Eq. (6) is equivalent to: [6]

minimize ||Ax − b||2 subject to ||x||2 ≤ ε*,         (7)

and the Euler-Lagrange equation obtained from Eq. (7)
is written as

(ATA + αI)x = ATb (8)

where α  is the regularization parameter (Lagrange
parameter).

To solve Eq. (8), the nonlinear iteration method
should be used since the two unknown quantities, α  and
x, are involved.  To determine the regularization method,
an iteration method based on a prescribed error range, ε,
has been proposed [6,7].  However, determination of the
prescribed error range depends on the engineering
judgment.
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Another method is the so-called L-curve concept,
which will be elaborated on later.  Another approach to
solve this ill-posed problem is the singular value de-
composition method.  The singular value decomposi-
tion method decomposes the influence matrix A into the
following form:

A = UΣVT (9)

where U and V are unitary matrices constructed by the
left and right singular vectors, and Σ = diag{σ1, σ2, ...,
σn − 1, σn} where σ1, σ2, ..., σn − 1, σn are singular values
[10].  The psuedo-inverse matrix, A+, then can be con-
structed by the following equation:

A+ = VΣ− 1UT. (10)

When the problem is ill-posed, some singular val-
ues will tend to zero (or more precisely speaking, some
singular values will become too small comparing with
the largest singular value).  Therefore, Σ− 1 will contain
some quantities tend to infinite large which is for sure
not practical in numerical implementation.  For an ill-
posed problem, Σ− 1 is replaced by Σ+ in which the
diagonal elements are determined by the following rule:
(1) determine a prescribed threshold value, γ, and the

maximum singular value σmax;
(2)  if σi ≥ γ • σmax, the corresponding element in γ is Σ+

written as  1
σ ;

(3) if σi < γ • σmax, the corresponding element in Σ+ is
written as 0.

The singular value decomposition method actually
neglects the unreasonable contribution from small sin-
gular values since errors will be enlarged by these small
singular values.

In the above two popular methods, they all require
some prescribed values which is determined artificially.
However, to select an optimal prescribed value is some-
times not so easy.  The L-curve concept [11] is proposed
to aid us in selecting the best parameter.  Two indices
are frequently used, one represents the sensitivity of the
influence matrix on the solution and the other represents
the degree of distortion to the original system.  Usually,
the square of the norm of the unknown vector, ||x||2, is
chosen as the index of sensitivity and ||Ax − b||2 is
chosen as the index of degree of distortion.  In the
logarithm scale, a typical diagram for the Tikhonov
regularization method combined with the L-curve con-
cept is illustrated in Fig. 2.  One can find that when the
regularization parameter, α , is small, ||x||2  tends to very
large even though ||Ax − b||2 is small.  It is shown that the
regularization parameter is too small such that not much
improvement in the influence matrix is done.  On the
other hand, when the regularization parameter, α , is

large, ||Ax − b||2 tends to be very large even though ||x||2
tends to small value which shows that the regularization
parameter is too large such that the original system is
distorted too much.  Therefore, the compromised results
of ||x||2 and ||Ax − b||2 lead us to choose the correspond-
ing value in the corner of the L-shape curve as the
optimal regularization parameter.  The same technique
can be used for the singular value decomposition method
for choosing the threshold value, γ.  Although applica-
tion of the L-curve concept in the singular value decom-
position method has not been adopted to the authors’
knowledge, this concept is adopted in this paper.

It is seen in Eq. (9) that the traditional Tikhonov’s
regularization method adds a parameter, α , in the diago-
nal terms in the matrix ATA.  However, the generalized
Tikhonov’s regularization method suggested the square
of any convergent norm ||Hx||2 can be adopted in Eq. (6)
as the objective functional in stead of using ||x||2, where
H is the prescribed operator.  Based on this concept, the
modified Tikhonov’s regularization method is proposed
as follows:

minimize ||Hx||2 subject to ||Ax − b||2 ≤ ε       (11)

where H is defined as

   
[Hij] ≡ 1 when i = j and σ i ≥ γσmax

0 all other elements.

The corresponding Euler-Lagrange equation is
found as

(ATA + αH)x = ATb. (12)

Fig. 2.  The concept of the L-curve.
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Comparing Eq. (12) with Eq. (8), it is found that
this modified regularization method only adds the regu-
larization parameter in the diagonal elements whose
corresponding singular values are above the required
threshold value.

It is worth mentioned here that both the traditional
regularization method and the singular value decompo-
sition method have one ‘regularization’ parameter,
however, there exist two parameters in the modified
regularization method since it combines the spirits of
these two methods.  Furthermore, the number of indices
representing the degree of distortion should become two
in the modified regularization method; and these two
indices are ||Ax − b||2 and γ.  As shown in Fig. 3, the
shape of ||x||2 versus curve is not the L-curve when ||Ax
− b||2 is too small and the shape of ||x||2 versus ||Ax − b||2
curve becomes L-curve when γ exceeds some value.
Therefore, it is concluded the best parameters one should
choose is the corresponding α  value at the corner of the
very first L-curve and in which the γ value can be
determined.

NUMERICAL  RESULTS  AND  DISCUSSION

Two examples are given as shown in Fig. 4.  For
the circular disc with radius equal to 1, the Cauchy
boundary conditions are given as u = rsinθ = sinθ and t
=  ∂u

∂n  = sinθ for r = 1 and 0 ≤ θ ≤ π.  In this circular disc
example, several numerical experiments are imple-
mented to check for: (1) the performance between SVD,
Tikhonov’s regularization method and modified regu-
larization method; (2) the performance between the
singular integral equation method and the hypersingular
integral equation method; (3) the convergence of
solutions; (4) the effect of information on the solution
by equal length elements on the known and unknown
boundaries; (5) the effect of information accuracy on
the solution by equal element numbers on the known
and unknown boundaries.

Another example is a square with the length of
each side equal to 1.  The Cauchy boundary conditions
are given on partial boundary such that the exact solu-
tion in the whole domain is u(x, y) = xy. In this example,
we examine how the diversity of boundary data will
affect the solution.  For given Cauchy boundary condi-
tions on half of the boundary, four kinds of distributions
are given.  For details of numerical examples, please
refer to Table 1.  In this table, the numerical examples
are labeled with character C representing the circular
case and S representing the square one.  Besides, the
boundary with known Cauchy data for each case are
listed according to Fig. 4, further, the number of ele-
ments on Bk and Bu and the optimal parameter γ and α for
each case are also listed, respectively.

Fig. 5 shows the results of boundary potential, u,
on the unknown boundary by using the SVD method.  It
is clearly shown that the results do not converge to the
exact solution when the number of elements increases.
This result stems from the numerical inaccuracy of the
computer and SVD algorithm.  In SVD method, an
iteration process should be used in order to perform the
singular-value decomposition.  However, the truncated
error large when the dimensions of leading matrix be-
comes are large.  In computation reality, the dimension
of the matrix should be better less than a hundred [13].
A dimension of the matrix larger than 100 will cause
computational difficulty for the personal computer used
nowadays, our results with 144 elements just confirm
this.  It is concluded that although the SVD method can
obtain a reasonable solution theoretically, it cannot
obtain a better solution when the number of elements
increases too much such that the truncate error becomes
dominated.

Fig. 3. Illustrative example for selecting parameters in the modified regu-
larization method.

Fig. 4.  Two numerical examples for the inverse problems.
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Fig. 6 shows the boundary potential, u, on the
unknown side for the circular disc case by using
Tikhonov’s regularization method and the modified
regularization method (36 elements totally).  It is seen
that the modified regularization method performs better
than the Tikhonov’s regularization method.  It is con-
cluded that the modified regularization method is a
better choice than the other two methods.  The conver-
gence of modified regularization method with respect to
element number will be illustrated later.  Figs. 7(a) and
7(b) illustrate the unknown potential, u, for the circular
cases by using the singular integral equation method
and the hypersingular integral equation, respectively.  It
is shown that the convergent speed of the singular
integral equation is faster than that of the hypersingular

integral equation.  Furthermore, the solution obtained
from the singular integral equation is more close to the
exact solution than that obtained from the hypersingular
integral equation for the same element number
discretization.

For the case of equal length element discretization
on the circular disc case (example C4, C2 and C5), the
Cauchy information is given on a quarter, a half and
three quarters of the whole boundary.  As shown in Fig.
8(a), the solution of unknown potential, u, on   3π

2  ≤ θ ≤
2π is more accurate when information on the  known
boundary is more fertile using the singular integral
equation.  However, for the same case the solution of
unknown potential, u, on   3π

2  ≤ θ ≤ 2π using hypersingular

Table 1.  Boundary conditions, elements and best parameters

no. of elements UTequation LM equationLabel Bk
Bk Bu γ α γ α

C1 �� 36 36 5.813E-3 1.E-8 2.733E-5 1.E-3
C2 �� 72 72 5.028E-3 1.E-8 3.593E-5 1.E-3
C3 �� 144 144 N.A N.A 5.396E-6 1.E-3
C4 � 36 108 4.035E-3 1.E-9 8.129E-6 1.E-7
C5 ��� 108 36 7.98E-17 1.E-5 2.06E-17 1.E-2
C6 � 72 72 5.146E-3 1.E-9 1.414E-4 1.E-6
C7 ��� 72 72 1.639E-3 1.E-7 2.570E-5 1.E-2
S1 ���� 100 100 1.135E-3 1.E-7 2.184E-5 1.E-4
S2 ��� 100 100 7.048E-4 1.E-12 1.058E-5 1.E-8
S3 ���� 100 100 1.340E-3 1.E-10 5.803E-6 1.E-8

Fig. 5.  Inverted potential on Bu using SVD method. Fig. 6. Inverted potential on Bu using Tikhonov’s regularization method
and modified method.
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integral equation does not have such a trend (see Fig. 8
(b)).  It seems the case with information given on three
quarters of the whole boundary has the best result, while
the case with information given on a quarter is medium
and the case with information given on half boundary is
the worst.  The reasons will be explained in the
followings.  The first reason comes from the constant
element scheme we adopt.  When we implement poten-
tial u and the flux value t both by constant elements, it
results in incompatibility from these two physical
quantities.  As we can see from the definition of t, if t
belongs to C0 then u should belong to C1 where Cm means
a set in which the element, should guarantee continuity
of the m-th derivative.  Therefore, if we implement t and
u both by constant elements, theoretically speaking, it is
not a physically permissible scheme since physical quan-
tities cannot be compatible.  From our experience, the
hypersingular integral equation is more sensitive to
such an implemented error.  As we increase information
on the known data, it means we have more implemented
error in the known data.  Thus, it results in inaccuracy in
reverted information.  However, as we increase infor-
mation on the known data, the inverted data will become
more accurate since reasonable information will reduce
error.  This can be understood in this way: it is well
known that the laws of large number [14] tell us while
more data will reduce an odd error due to a small
sampling space.  Therefore, as we increase elements in
the hypersingular integral equation, two opposite fac-
tors will compete with each other such that we obtain
our numerical result as shown in Fig. 8(b).

For the case of equal number of elements on Bk and
Bu (cases C6, C2 and C7), 72 elements are used to
discretize Bk and Bu, and a quarter, a half and three
quarters of the whole boundary are assigned as Bk.  As
shown in Fig. 9, the results are compared for the un-
known potential, u, on   3π

2  ≤ θ ≤ 2π.  It can be found that
the result for C6 is the best, that for C2 is the second and
that for C7 is the worst.  In case C6, only a quarter of the
whole boundary has Cauchy data.  On the other hand, a
half and three quarters of the whole boundary have
Cauchy data in cases C2 and C7, respectively.  It seems
puzzling that why increasing the boundary of known
information does not increase accuracy in inverted data.
Remember that in these three cases, we use equal num-
ber of elements on the known boundary and unknown
boundary.  While only a quarter of whole boundary has
known information, the discretization error and collo-
cation error become relatively small.  As we increase
the length of boundary with known information and
keep equal element scheme, the disretization error and
collocation error on Bk increase such that accuracy in
inverted data loses.

For the square case, the effect of distribution of

known Cauchy data on the result is also examined.  The
Cauchy data are given on a half of the whole boundary
and the distribution of boundary data has three different
methods (cases S1, S2 and S3).  The numerical results
are illustrated in Fig. 10.  It is shown that the more
diversely the data distribute, the more accurately the
results are obtained.  This phenomenon is much more
apparent in the solution of t.

Fig. 7. (a) Convergence of solution by UT equation; (b) Convergence of
solution by LM equation.
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CONCLUSIONS

In this paper, the modified regularization method
that combines the merits of the SVD method and
Tikhonov’s regularization method has been proposed to
cope with the Cauchy inverse problem of the Laplace
equation successfully.  Owing to the ill-posed behavior

Fig. 8. (a) Effect of amount of information on the inverted data, UT method;
(b) Effect of amount of information on the inverted data, LM method.

Fig. 9.  Effect of data accuracy on the inverted potential, UT method.

Fig. 10. Effect of diversity of known data on the inverted boundary potential,
UT method.

of such an inverse problem, the L-curve concept is thus
adopted to combine with the proposed approach for
determining the optimal regularization parameter.
Several numerical examples are also included to dem-
onstrate how the information of data influences the
solution of the problem and to show that the current
approach can yield better results than the traditional two
methods.  It is suggested that one should obtain more



J.R. Chang et al.: On the Modified Tikhonov‘s Regularization Method for the Cauchy Problem of the Laplace Equation 121

data as diversely and accurately as possible in perform-
ing inversion process.  Furthermore, the singular inte-
gral formulation is a better choice than the hypersingular
integral formulation.
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