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Abstract

This paper validates the discrete element method for linear flexible multibody systems, elaborated in Part
1 of the paper, of which the flexible bodies are a composition of flexible beams. An automatic procedure is
developed to convert the linear equations of motion of a multibody system from force to displacement
input. By this procedure, support motions and displacements of actuators between the bodies can be
employed as an input to the system. Furthermore, using this procedure, the methodology explained in Part
1, which was valid for tree structured systems can be extended to systems containing closed kinematic
chains. The methodology of Part 1 is applied for the discrete and finite element approximations to model
the horizontal behaviour of an agricultural spray boom. As the inputs to the spray boom are known under
the form of positions, the equations of motions are converted from force to position inputs. The discrete
and finite element approximations are compared based on accuracy and the complexity of the resulting
models.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The equations of motion of a mechanism can be derived in several ways. In Part 1 of this article
[1] the discrete and finite element method for modelling linear flexible multibody systems are
compared theoretically. In this part of the article, both methods are applied to a model of an
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agricultural spray boom. The accuracy with respect to the complexity of the models is assessed.
The models are evaluated by applying input forces and observing the response of the system by
measuring accelerations or displacements. In case the input forces v and w are known or
measured, the response can be calculated by solving the following differential equation:
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¼ VsvþWsw; ð1Þ

in which Ms; Cs; Ks; are, respectively, the mass, damping and stiffness matrices of the system, q
and u are co-ordinate vectors describing rigid and flexible body motions respectively. On the right
hand side of Eq. (1), distinction is made between forces v from commands of a controller, and
forces w created by disturbances in the system. Matrices Vs andWs are the force and disturbance
input distribution matrices corresponding to v and w:
However, in many applications the input excitations are not known as forces but rather as

displacements, velocities or accelerations. A typical example can be found in the field of
earthquake or shock engineering, in which the intensity of the earthquake is registered in an
accelerogram, representing the ground acceleration time history diagram [2–6]. To minimize the
effect of support motion on a certain structure, the displacement of the support, instead of forces
is considered as the input [7–12]. In the study of the response of vehicles to guideway unevenness,
the guideway profile is known and in case the speed of the vehicle is given, the vertical
displacements of the contact point of the tires can be deduced as a function of time [3]. Another
application, which is related to the latter, can be found in service load simulation [13–15] in the
automotive sector. In service load simulation, procedures are developed to determine the inputs,
applied to the actuators of a shaker, in order to simulate or to reproduce road measurements on a
vehicle. Apart from some spindle-coupled test rigs, the shakers are position controlled instead of
force controlled systems and displacements must be determined as inputs instead of forces.
In this paper a similar problem is met. The soil profile of a standard track is known from which,

together with a dynamic model of the tractor or trailer, disturbances in the form of positions,
velocities or accelerations to the spray boom itself can be calculated, but not the forces. In other
cases, the accelerations, measured at the three-point hitch of the tractor or at the connections of
the boom to the vehicle are known, instead of the forces applied by the vehicle to the boom. These
accelerations are inputs to the model of the spray boom. By this, disturbances w and control
forces v of Eq. (1), should be transformed to positions, velocities or accelerations.
As a consequence, before comparing the accuracy of the models from the discrete and finite

element approach on the agricultural spray boom, the problem of position input in relation to
Eq. (1) is solved. Initially, a literature survey is performed. Subsequently, formulas to transform
Eq. (1) from force to position input are derived. These formulas are applied to models of the
agricultural spray boom. The resulting displacement input models, based on a discrete and finite
element approximation, are evaluated. Finally, conclusions are drawn.

2. State of the art

In the literature, techniques are available to transform the equations of motion of a mechanical
system to positions, velocities or acceleration inputs, but only for a limited number of situations.
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Very often, especially in earthquake engineering, it is supposed that motions of the base, to which
the structure is connected, excite the system. Furthermore, the assumption is made that the base is
free to move and acts like an undeformable, solid structure, such that the motion of all connection
points is the same. In many textbooks [2,3,6], this situation is called ground or base motion or
excitation by support motion. Most of the time, the procedure how to use the accelerations of the
base as inputs, is illustrated by a simple single-degree-of-freedom system. In the more general case
of a finite multiple-degree-of-freedom system, the accelerations of the base can be easily
transformed to input forces. The equations of motion are derived by considering no input forces
and all co-ordinates are expressed relatively to the base. As the base is free to move, the co-
ordinates of the base, have no contribution in the stiffness and damping matrix. The columns of
the mass matrix corresponding to the co-ordinates of the base motion are extracted from the mass
matrix and serve as inertia forces exciting the system.
In continuous systems, consisting of one flexible body, described by a partial differential

equation, the suppositions of base or support motion are considered too. In this case, the absolute
displacement of every point can be split into a rigid-body translation of the support and the elastic
body deformations [16,17]. Contrary to the elastic body deformations, the motion of the base is
independent of the spatial co-ordinates and does not contribute to the stiffness of the flexible
body. Therefore, the base acceleration, multiplied by the total mass of the system can be
considered as an inertia force exciting the system.
An alternative method to introduce positions and velocities as inputs to the equations of

motion can be found in systems, having a finite number of degrees of freedom. Sometimes, the
supposition can be made that only forces, resulting from springs and dampers, connected between
the structure and the supports, excite the structure. Again, this problem is handled in many
textbooks about vibrations, which have already been mentioned. Most of them illustrate the
principle by a simple single-degree-of-freedom system. In Ref. [16], the problem is treated more
extensively. Contrary to the previous situation, in which the structure was considered as excited
by the accelerations of the support or the base, the latter is not included in the derivation of the
equations of motion of the system. It is not necessary that each support excecutes the same
motion. Based on these assumptions, input distribution matrices driven by the positions of the
supports can be derived. Since the system is only excited by forces induced by the motion of the
springs and dampers between the supports and the structure, the force input distribution matrices
are zero and can be omitted. In the construction of the stiffness and damping matrix,
discrimination is made between spring and damping forces, resulting from the connections to the
supports and the other internal spring and damping forces. The contributions of the support
springs and dampers in these matrices are separated and moved to the other side of the equations.
The new input distribution matrices are obtained by grouping the support positions and the
support velocities in different matrices. In the case in which the deformation of the support
springs or dampers are used as co-ordinates, the dampers and the springs between the structure
and the support do not need to have a linear behaviour, because their deformation itself is given as
an input. This is illustrated in Ref. [18], where the vibrations of an aerial vehicle subjected to
earthquakes are studied. In this case, the soil under the vehicle is considered as a non-linear
spring, parallel to a non-linear damper.
In the previously discussed methods, suppositions (structure is excited by a base or by springs

and dampers) had to be made to transform the equations of motion to position, velocity or
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acceleration inputs. A general solution to write the equations of motion as a function of motions
of certain locations on the structure is found in continuous systems, described by partial
differential equations. The motion of certain points, serving as inputs to the system are introduced
in the equation of motion as time-varying boundary conditions [17,19]. Unfortunately, the
solution of the partial differential equations becomes very difficult, especially in case of multi-
support motions [20,21] and the selection of the numerical technique to solve the differential
equations must be chosen very carefully. Using an appropriately selected approximation method,
the partial differential equations with moving boundary conditions turn into an equation
comparable to Eq. (1) in which v and w represent co-ordinates describing the motion of the
boundary.
In this paper, the underlying idea for introducing displacement inputs instead of force inputs is

different from the previous described methods. The causality on which the laws of Newton are
based, is preserved i.e., a change in motion is caused by a force. This implies that in order to excite
a system, forces are required. Therefore, the equations of motion are derived by using forces as
inputs, resulting in Eq. (1). No bases, supports, dummy springs or dampers are introduced. In
case of continuous structures, instead of using varying boundary conditions, the equations of
motion are derived by introducing forces on the boundaries. After selecting an appropriate
approximation method, the equations of motion turn into Eq. (1). Since the motions of the input
or at the boundaries are known, it is possible, by proper selection of equations in Eq. (1), to
calculate the forces causing these motions. Once the forces are known, the remaining unknown co-
ordinates of the left hand side of Eq. (1) can be computed. It turns out that these calculations are
pure algebra, which can performed automatically once the equations of motion are known.

3. Introduction of displacement inputs into the equation of motion

In order to excite a dynamical system, forces and torques are required. In the case in which the
change of position of a point of the system is considered to be the excitation signal, a force must
be delivered, of which it is assumed implicitly that enough power is available, to realize the
displacement. Therefore, the equations of motion are derived with forces and torques as input
signals, leading to Eq. (1) in case of linear systems. In this section, there is no need to distinguish
between disturbance and control forces v and w but rather to discriminate between known forces
and torques ff and forces and torques fp of which the motion of their point of action is given:

Ms .quþ Cs ’quþ Ksqu ¼ Jsfp þ Fsff ð2Þ

in which Js and Fs are the input distribution matrices corresponding to fp and ff respectively. For
ease of notation, the Lagrangian co-ordinates and the flexible co-ordinates are combined in qu: In
the presented methodology, the forces fp; will be replaced by the displacement dp at their point of
action pointing in the direction of the forces fp:

dp ¼ JTs qu: ð3Þ

It is easy to see that the matrix Js of Eq. (3) is similar to the force input distribution matrix of the
forces fp in Eq. (2). Eq. (2) describes the dynamic equilibrium of the flexible multibody system.
When the system is subjected to a virtual displacement, which does not violate the kinematic
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constraints, the total work performed by all forces, equals zero. By using Lagrangian co-ordinates
q and by restricting the flexible deformations to a limited number of co-ordinates u; the total
number of co-ordinates qu; equals the number of the degrees of freedom of the system. For open
kinematic chains, they uniquely determine the state of the system, satisfying the constraints.
Because of this both sides of Eq. (2) could be premultiplied by dquT; the virtual change of the
hybrid co-ordinates qu:

dquTMs .quþ dquTCs ’quþ dquTKsqu ¼ dquTJsfp þ dquTFsff : ð4Þ

The term dquTJs; equal to the variation of Eq. (3), represents the virtual displacements in the
direction of the forces fp; which are allowed by the system. The above derivation looks
straightforward, because the equations of motion of expression (2) have been derived by the
principle of virtual work. However, even if Eq. (2) would have been obtained by another method,
expression (3) is still valid on condition that the system is tree structured and the co-ordinates
used, determine the state of the system uniquely and satisfy the constraints imposed by the system.
In non-linear multibody dynamics, expression (3) is interpreted as a constraint equation, which

is incorporated by a Lagrange multiplier in Eq. (2). The solution of such problems generally leads
to differential–algebraic equations (DAE), that should be solved by advanced algorithms [22]. In
case of linear systems, Eq. (3) can be substituted in Eq. (2). Generally, the number of forces fp;
equal to the number nd of the displacements dp; is smaller than the number nqu of the co-ordinates
qu: As the co-ordinates qu uniquely determine the state of the system, Js can be permuted to split
it in a nd � nd regular upper part Jsr and a singular ðnqu � ndÞ � nd lower part Jss: Equivalently, the
co-ordinates qu are permuted and split in a similar way. Inserting this in Eq. (3) results in

dp ¼ JTsrqur þ J
T
ssqus ð5Þ

in which qur can be interpreted as the nd co-ordinates of qu which are directly influenced by dp and
qus as the ðnqu � ndÞ remaining co-ordinates of qu: The co-ordinates qur can then be considered as
consisting of a known part, determined by the displacements dp and an unknown part determined
by qus:

qur ¼ ðJTsrÞ
�1dp � ðJTsrÞ

�1JTssqus: ð6Þ

By performing the same permutations on Eq. (2) and by splitting the co-ordinates qu in qur and
qus; it is proven in Appendix A that Eq. (2) can be written as a function of the known
displacements dp:

Mdd Mdq
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¼
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Fq

" #
ff þ

Idd

Oqd

" #
fp; ð7Þ

in which Idd is an ðnd � ndÞ unity matrix and Oqd an ðnqu � ndÞ � nd matrix of zeros. Der
Kiureghian and Neuenhofer [23] postulate an equation, having a comparable form as Eq. (7),
based on the derivations in the book of Clough and Penzien [6]. However, they do not consider
the force inputs ff and formulas to calculate the block matrices of Eq. (7) are not described. In
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Ref. [6], the problem of multiple support systems is handled for finite-dimensional structures but
an equation having the shape of Eq. (7) is not derived.
In the lower part of Eq. (7), ff and dp; together with its derivatives are known such that the

unknown co-ordinates qus can be calculated. In the upper part of Eq. (7), dp and ff are given, and
as qus has already been determined, fp can be computed. To describe the motion and deformation
of the system, it is not necessary to know fp as dp is supposed to be known. Consequently, the
upper part of Eq. (7) can be omitted and only the lower part of Eq. (7) suffices to calculate the
dynamic behaviour of the system:

Mqq .qus þ Cqq ’qus þ Kqqqus ¼ �Mqd
.dp � Cqd

’dp � Kqddp þ Fqff : ð8Þ

Note that the number of degrees of freedom of the system is reduced by nd ; because Eq. (3)
imposes nd constraints on Eq. (2). In [6,23], Kqd is eliminated, based on static considerations.
Nevertheless, both the first and the second derivative of dp must be known at the same time.
In many situations, only the positions are given in a sampled vector and the first and
second derivative need to be calculated numerically. Appendix B proves that Eq. (8) can
easily be transformed into state-space form, in which no derivatives of dp are required to
calculate qus:

.x1

.x2

" #
¼

0qq Iqq

�M�1
qq Kqq �M�1

qq Cqq

" #
x1

x2

" #
þ

0qf Ac

�M�1
qq Fd �M�1

qq CqqAc � Ak

" #
ff

dp

" #
; ð9Þ

qus ¼ �M�1
qq Mqddp þ x1: ð10Þ

The equation of motion, transformed into Eqs. (9) and (10) has the advantage that the behaviour
of the mechanical flexible multibody system can be assessed with tools of system theory and linear
algebra, which is of large value in control engineering. The states retain a physical meaning since
the matricesMqq; Cqq and Kqq can still be interpreted, respectively, as mass, damping and stiffness
matrices. The state vector x1 corresponds to positions or rotations, whereas x2 corresponds to
velocities, as it is the derivative of x1:
If the accelerations or velocities of qus are required as output, the state-space equation must be

augmented by an accelerometer model or by filters performing the derivatives. In the case of no
forces ff are present, derivatives of qus are obtained by taking the corresponding derivatives of dp

as an input to the system, which follows from Eq. (8).
In many situations, qus is not required as an output but rather a linear combination y of qur

or qus:

y ¼ LT
1 LT

2

� � qur

qus

" #
: ð11Þ

If the components of qus are relative co-ordinates and the absolute position of a point needs to be
known, also qur must be taken into account. Eq. (11) is transformed to known quantities by
combining expressions (10) and (6):

y ¼ ðLT
2 � LT

1 ðJ
T
1 Þ

�1JT2 Þx1 þ ðLT
1 ðJ

T
1 Þ

�1 þ LT
1 ðJ

T
1 Þ

�1JT2M
�1
qq Mqd � LT

2M
�1
qq MqdÞdp: ð12Þ
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The method presented can also be employed to derive the dynamic equations for continuous
structures, described by partial differential equations, having multiple support motions as dealt by
Chen et al. [20,21], Schlager et al. [19] and Meirovitch [17]. Instead of first proposing a solution in
the form of a restricted linear combination of wave forms which leads ultimately to a discrete
approximation of the structure, the structure is first discretized. This can for example be
performed with one of the methods proposed in Ref. [1]. On the structure where support motion
occurs, forces are introduced and the equations of motions are derived. By the procedure of this
subsection the introduced forces exerted by the supports on the structure are converted to support
motions. The application of complex numerical techniques can as such be avoided, which is a
major advantage. Clough and Penzien [6] suggested a similar procedure.
The technique elaborated in this section is not restricted to support motions only. Changing the

lengths of actuators and linking two bodies of the system, can also by used as inputs to the
multibody system. The procedure is the same as in the case of support motions. The equations of
motion are derived with the actuator force as an input. By the procedure explained in this paper,
the equations of motion are converted automatically from force to position input.
In addition, methods for deriving the equations of motion of tree structured flexible multibody

systems, can be extended to systems with closed kinematic chains by using the procedure
presented. In such systems, certain points in the structure cannot be described in a unique way,
because these points can be reached through different paths along the joints and the bodies. A
joint keeps two adjacent bodies together by exerting constraint forces and torques on the bodies in
the directions in which no motion is allowed. These constraint forces and torques acting from one
body to the other are for coupled bodies equal in magnitude and direction but have opposite sign.
Therefore, after all closed kinematic chains in a mechanism are broken by removing joints, the
constraint torques and forces due to the joints, are retained and considered as external forces.
Because, the manipulated structure has become a tree structure, the methodology to derive the
equations of motion, developed in Ref. [1], can be used. Subsequently, the external forces and
torques are transformed to position inputs. As the external forces and torques of a removed joint
act on two disconnected bodies, the displacement inputs express the change of relative position
between the two bodies. Consequently, if all relative positions between all disconnected bodies are
set equal to zero, the kinematic chains are closed again. This is accomplished by removing the
corresponding columns in expressions (9), (10) and (12).

4. Modelling the horizontal behaviour of an agricultural spray boom

In this section, the horizontal behaviour of an agricultural spray boom is modelled. As in the
horizontal plane, mainly yawing and jolting are responsible for an irregular spray distribution
pattern, only these motions are investigated. Fig. 1 shows the top view of the system to be
modelled. The structure consists of a platform driven by two excitation actuators and on which a
spray boom with horizontal suspension is mounted. The platform is able to reproduce yawing and
jolting tractor motions inducing horizontal boom vibrations. The two hydraulic actuators of the
shaker are fixed onto the upper part of the platform such that their pistons can reproduce the
motion of the two drawbar tips of the tractor three point hitch. The double acting double-rod
linear pistons of the two cylinders have a stroke of 100 mm and net area of 290 mm2 (Rexroth,
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type CG 70 E 25/16-XXZ13/01 HFUM11T). Two LVDT position sensors (Solartron DC 50)
measure the position of the pistons in the cylinders. The piston positions are fed back to two PID
controllers (Rexroth VT1600S3X) regulating two four-way servovalves (Rexroth, type 4 WS 2
EM6-1 X/5B1ET315Z7EM). The boom is represented by a 12 m long slender beam, having
vibrational characteristics comparable to a large spray boom, with a working width ranging
between 32 and 40 m: In order to isolate the boom from the tractor, it is provided with a
translational degree of freedom along the driving direction of the tractor and a rotational degree
of freedom around a vertical axis. The translational degree of freedom is realized by a cradle,
sliding through bearings (shaft sliding collars) along two axles, connected to the platform. A
revolute joint, which is composed of a vertical axle and a bearing, provides the rotational degree
of freedom. Connecting springs, between the platform and the spray boom, create a passive
suspension.
The flexible multibody system consists of two rigid bodies i.e., the platform and the cradle and

one flexible body, the boom. The bodies are numbered in ascending order, according to their
position in the kinematic tree, starting from the absolute reference frame (0x; 0y; 0z), which is
selected at the position of the vertical axle of the revolute joint when the system is at rest. This
point coincides with the centre of mass of the platform and the cradle. Floating reference frames
(1x; 1y; 1z), (2x; 2y; 2z) are put at the centres of mass of, respectively, the platform and the cradle
and coincide with (0x; 0y; 0z) when the system is in rest position. The floating reference (3x; 3y; 3z)
of the boom is located at the centre of mass of the beam, when it is in undeformed state. All
Z-axes are perpendicular to the sketch and point towards the reader.
In order to allocate the intermediate element and the element reference frames, the flexible

beam must be divided into elements. In case of the finite element method, no restrictions are
placed on the division of the structure into elements. The easiest way is to take elements of equal
length. However, for the discrete element method, all points of the body, which are connected to
other bodies and points in which forces are acting must be mass allocation points and are
consequently the start or end of an element. The selection criterion in case of the discrete element
method is depicted in Fig. 2. This figure shows two element sizes, but care has been taken that they
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Fig. 1. Top view of a simplified agricultural spray boom.
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do not differ too much. Between the end points of the boom and the spring attachments, and
between the two spring attachments, the elements have the same size. The nodal points serve as
mass allocation points. Mass is concentrated around the nodal points and the lumped masses
cover, except for the lumped masses at the tips of the boom, two elements. In this way, four types
of lumped masses, different in size, are created. The location of the intermediate element reference
frame must be such that the deformation can be described easily. The co-ordinates of the most
common shape functions in finite element analysis for beam structures are most of the time
defined with respect to an intermediate element reference frame, which is considered at the node at
the left tip of the beam element. Their orientation is parallel to the floating reference frame (3x; 3y;
3z). There is no need to allocate element reference frames, as the beam itself is the last body in the
kinematic tree.
To be able to describe every point of the system kinematically, in the case of the finite element

method, shape functions must be selected. Because the height and the width of the beam are
almost negligible with regard to its length, deflection due to shear should not be investigated.
Furthermore, as only yawing and jolting motions are studied, deformations along the beam can
be neglected. Therefore, Hermitian interpolation functions, defined as

c3j1
¼ 1� 3

x2
3j

L2
3j

þ 2
x3
3j

L3
3j

; c3j2
¼ x3j � 2

x2
3j

L3j

þ
x3
3j

L2
3j

;

c3j3
¼ 3

x2
3j

L2
3j

� 2
x3
3j

L3
3j

; c3j4
¼ �

x2
3j

L3j

þ
x3
3j

L2
3j

ð13Þ

are sufficient to approximate the flexible behaviour of the beam. Symbol L3j represents the length
of the beam element 3j and x3j is the x-co-ordinate of the intermediate element reference frame
(3jx; 3jy; 3jz). The displacement of a point on a certain element is described as a linear combination
of these functions, in which the linear interpolation coefficients are displacements and rotations
of, respectively, the left and the right node. In this case every node can move in the 3y-direction
and rotate around the 3z direction of the floating reference frame (3x; 3y; 3z). To calculate the
rotation of the cross-section in every point of the beam, the interpolation functions are derived
once with respect to x3j: To derive the equations of motion of the system the relation between the
displacement due to flexible deformations and the strain is required [24], which is for small
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displacements:

eij ¼ Dijtij ; ð14Þ

where Dij is an operator defined by

@
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0 0
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0
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@zij

0
@

@xij

0
@

@zij

@

@yij

2
6666666666666666666664

3
7777777777777777777775

: ð15Þ

The stress strain relationship is, similarly to the discrete element method, considered as the stress
strain relationship of a Hookean material:

rij ¼ kijeij : ð16Þ

Material damping is introduced through modal damping. Following Refs. [24–26], the equations
of motion of the system, in which the flexibilities are approximated by the finite element method,
are derived.
For the discrete element method, mass, stiffness, damping and input distribution matrices are

derived. As indicated in Part 1 of this article [1] the contribution of the flexible bodies to the
stiffness matrix is performed by assembling precalculated matrices, which are dependent on the
material, properties of the cross-section and the length of the beam. These elementary blocks are
obtained by calculating the elastic curve of each beam element. As no shear force is involved and
only concentrated forces can be applied [1], the elastic curve of a beam element is a third order
polynomial [27]. Consequently, the basic building blocks for calculating the contribution of the
flexible bodies to the global stiffness matrix are exactly the same as the ones for the finite element
approximation whenever Hermitian interpolation functions are used.
As proved in Ref. [1], construction of the mass matrix for the discrete element method, is the

same as for the finite element method by using linear interpolation functions. This produces for
the discrete element method, in terms of the finite element method, an inconsistent mass matrix.
To assess the impact from this inconsistency, a consistent mass matrix is calculated for the discrete
element method by using Hermitian interpolation functions. In this case the only difference
between the equations of motion, obtained for the discrete and finite element approximation, is
the difference in size of the elements selected for both methods.
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Similarly to the finite element approximation, the contribution to the damping matrix for the
discrete element method is derived by assuming modal damping.
Before assessing the results, the forces applied by the excitation actuators (Fig. 1), need to be

transformed to position inputs as the position of the piston rods are fed back through a PID
controller. In this case the matrix Js of Eq. (2) equals the force input distribution matrix Ws: No
matrix Fs is present and the results of the previous section can be applied immediately, leading to
the state-space description of Eqs. (9) and (12). From these equations, the eigenfrequencies, listed
in Table 1 are calculated. For both the finite element method and the discrete element method, in
which the mass is allocated through Hermitian interpolation functions, convergence of the first
five eigenfrequencies is achieved with six elements. Actually, the only difference between the two
methods is the way the beam is divided. The formulas to derive the matrices are exactly the same
for both methods. Contrary to the discrete element method, in which mass is allocated based on
geometrical considerations (Fig. 2) or linear interpolation functions, convergence of the
eigenfrequencies is achieved after dividing the beam in 20 elements. Even then the results are
worse.
The same conclusion can be drawn by comparing the measured singular values with the

singular values computed via the state-space matrices of Eqs. (9) and (12) for the finite and the
discrete element method with geometrical mass allocation (Fig. 3). Singular values or principal
gains are obtained by a singular value decomposition of the transfer function matrix [28], which is
an input output formulation of the state-space description (9, 12) of the system. As the transfer
function matrix is function of the frequency, the singular values are also frequency dependent.
The principal gains express the amplification characteristics of the system. For a system with one
input and one output, the singular value plot corresponds to the magnitude curve of a bode plot.
In this case the singular values correspond to the amplification between (anti-)symmetric
excitation and (anti-)symmetric response of the spray boom.
The results of the discrete element method with mass allocation based on Hermitian

interpolation functions are not shown because they coincide with the singular values of the finite
element method. Generally, a good correspondence is demonstrated between measurements and
calculations. However, a mismatch is found between the lowest singular value between 2.5 and
3:5 Hz; which can be explained by Coulomb friction in the bearings of the cradle, causing stick
slip of the cradle. During the experiments, this phenomenon was clearly visible. Coulomb friction
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Table 1

Eigenfrequencies of the horizontal behaviour of an agricultural spray boom for the three approximation methods

Measured (Hz) Finite element Discrete element Discrete element

method method (Hermitian method (geometrical

(6 elements) (Hz) mass allocation, mass allocation

6 elements) (Hz) 20 elements (Hz)

0:34 0:2450 0:2442 0:2436
0:59 0:5869 0:5866 0:5814
0:88 0:9352 0:9326 0:9305
2:8 2:7874 2:7984 2:9316
4:2 4:0393 4:0501 3:9881
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is non-linear and can therefore not be modelled by the procedures outlined in this chapter. When
the cradle sticks, motion is stopped and the only sensor output is noise. This explains why between
2.5 and 3:5 Hz the measured singular value is below the calculated singular value.
This example shows that allocation of mass based on geometrical considerations is not a good

idea, but it is better to perform it by approximating the deflection of the beam. If the mass is
allocated appropriately, the discrete and the finite element method render the same results.
However, the finite element method gives more freedom with respect to the division of the beam in
elements. Furthermore, in this case, the complexity of the models is similar such that it can be
concluded that the finite element method is a better approximation technique for this application.
Probably, the application is unfavourable for the discrete element method as the flexible body is a
uniform beam. By trying to approximate the deflection shape of the beam, the concept of the finite
element method fits better to this application. Actually, in the calculation of the mass matrix, the
discrete element method was tailored to the finite element method.
In case the body consists of lumped masses, interconnected by flexible beams of a small or

negligible mass, it may be expected that the discrete element method performs better. Such
structures can be found in for example flexible robots of which the rotor of the motor and the
payload mass are large with respect to the robot arm [29]. The structure can be considered as a
collection of lumped masses, interconnected by leave springs, fitting better the general concept of
the discrete element method. Furthermore, the mass matrix can be derived as in case of a lumped
system. For the finite element method, problems for deriving the mass matrix may be expected, as
an integral [1,24–26] must be evaluated. Therefore, the finite element method needs to be tailored
to the discrete element method by deriving the mass matrix as a lumped or inconsistent mass
matrix. In many textbooks [2,8,16,17,30,31], results of the finite element method with a lumped
and a consistent mass matrix are compared by applying it to a uniform beam. Based on this single
application, these authors conclude that the results with the consistent mass matrix are better.
Actually, the same is performed in the application here. As there is no difference in the formulas
for the stiffness matrix between the discrete and the finite element method, the two distinct mass
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Fig. 3. Singular value plot of the horizontal behaviour of an agricultural spray boom, measured values: solid line, finite

element method: dashed line, discrete element method with geometrical mass allocation: dotted line.
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allocations in the discrete element method can be seen as a finite element method with a consistent
and a lumped mass matrix. The discrete element method, where mass is allocated based
on Hermitian interpolation functions, coincides with the finite element method, using a
consistent mass matrix, whereas the discrete element method in which mass is allocated based
on geometrical considerations can be interpreted as the finite element method with a lumped mass
matrix.

5. Conclusions

A general method has been derived to convert linear equations of motion for flexible multibody
systems from force to displacement inputs. Both support motions as well as displacements of
actuators, linking two bodies, can be used as inputs to the equations of motion. By this, the
procedure of Ref. [1] to derive the equations of motion of linear flexible multibody systems, which
was valid for tree structured systems can be extended to systems containing closed kinematic
chains.
The methodology of Ref. [1] is applied to model the horizontal behaviour of an agricultural

spray boom. The flexible boom is approximated by the discrete and finite element method and
both methods are compared. As already noted in Ref. [1], the mass and stiffness matrices
of the discrete element method are inconsistent. In case of the spray boom, the finite element
method is better suited than the discrete element method. The model with the finite
element approximation is the smallest and delivers the highest accuracy. A possible reason for
this is that the idea of the finite element fits better to the example of the agricultural spray boom,
in which the mass is continuously distributed along the boom. Structures consisting of
undeformable masses, interconnected by beams with negligible mass, fit better to the discrete
element approach.

Appendix A. Derivation of Eqs. (7), (9) and (10)

A.1. Derivation of Eq. (7)

In this Appendix, it is shown how to combine Eqs. (2) and (6) to arrive at expression (7).
To split qu into qur and qus; certain permutations need to be carried out. In order to
avoid overloading the notations, it is supposed that the permutations have already been
performed on Eq. (2) i.e., that the first entries of qu correspond to qur and the remaining to qus:
According to the dimensions of qur and qus; the matrices of Eq. (2) can be separated in block
matrices i.e.,

Ms ¼
Msrr Msrs

Mssr Msss

" #
; ðA:1Þ

in which Msrr is an nd � nd matrix, Msrs is an nd � ðnqu � ndÞ matrix, Mssr is an ðnqu � ndÞ � nd

matrix and Msss is an ðnqu � ndÞ � ðnqu � nd Þ matrix. The same can be performed equivalently
for Cs and Ks: Also the force input distribution matrix Fs can be split in an ðnd � nf Þ matrix Fsr
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and an ððnqu � ndÞ � nf Þ matrix Fss in which nf is the number of entries in ff :

Fs ¼
Fsr

Fss

" #
ðA:2Þ

Supposing that Eq. (4) is already in permuted form, by using qur and qus instead of qu and by
replacing Ms; Cs; Ks; Fs and Js with their block form, Eq. (4) can be expanded:

dquTr Msrr .qur þ dquTr Msrs .qus þ dquTs Mssr .qur þ dquTs Msss .qus

þ dquTr Csrr ’qur þ dquTr Csrs ’qus þ dquTs Cssr ’qur þ dquTs Csss ’qus

þ dquTr Msrr .qur þ dquTr Ksrsqus þ dquTs Kssrqur þ dquTs Ksssqus

¼ dquTr Fsrff þ dquTs Fssff þ dquTr Jsrfp þ dquTs Jssfp: ðA:3Þ

Inserting Eq. (6) and combining some terms results in:

ddTpMdd
.dp þ ddTpMdq .qus þ dquTs Mqd

.dp þ dquTs Mqq .qus þ ddTpCdd
’dp þ ddTpCdq ’qus

þ dquTs Cqd
’dp þ dquTs Cqq ’qus þ ddTpKdddp þ ddTpKdqqus þ dquTs Kqddp þ dquTs Kqqqus

¼ ddTpFdff þ dquTs Fqff þ ddTp fp ðA:4Þ

in which:

Mdd ¼ J�1
sr MsrrðJTsrÞ

�1; ðA:5Þ

Mdq ¼ J�1
sr Msrs � J�1

sr MsrrðJTsrÞ
�1JTss; ðA:6Þ

Mqd ¼MssrðJTsrÞ
�1 � JssJ

�1
sr MsrrðJTsrÞ

�1 ðA:7Þ

Mqq ¼Msss þ JssJ
�1
sr MsrrðJTsrÞ

�1JTss �MssrðJTsrÞ
�1JTss � JssJ

�1
sr Msrs ðA:8Þ

matrices Cdd ; Cdq; Cqd ; Cqq; Kdd ; Kdq; Kqd and Kqq are defined equivalently and Fd and Fq are
calculated as follows:

Fd ¼ J�1
sr Fsr; ðA:9Þ

Fq ¼ Fss þ JssJ
�1
sr Fsr: ðA:10Þ

By writing Eq. (A.4) into matrix form, expression (7) is obtained.

A.2. Derivation of Eqs. (9) and (10)

In this Appendix, it is shown how Eq. (8) can be transformed to the state-space equation of
Eq. (9). On both sides of the equality sign of Eq. (8), the highest degree of the derivatives is the
same. This implies that a direct feed term is present in the state-space equations. To separate this
term, Eq. (8) is pre-multiplied on both sides of the equality sign byM�1

qq : For ease of notation and
to structure the equation, Eq. (8) is transformed in the Laplace domain with Laplace variables:

ðIqqs2 þM�1
qq Cqqs þM�1

qq KqqÞqus

¼ � ðM�1
qq Mqds2 þM�1

qq Cqds þM�1
qq KqdÞdp þM�1

qq Fqff : ðA:11Þ
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The direct feed term can be split by making a term in dp; which is a multiple of the term in qus:
Adding terms, cancelling each other performs this. After some manipulations, Eq. (A.11)
turns into

qus ¼M
�1
qq Mqddp � ðIs2 þM�1

qq Cqqs þM�1
qq KqqÞ

�1

� f½ðM�1
qq Cqd �M�1

qq CqqM
�1
qq MqdÞs

þ ðM�1
qq Kqd �M�1

qq KqqM
�1
qq MqdÞ
dp �M�1

qq Fqff g: ðA:12Þ

The direct feed term does not have any contribution to the states. Therefore, to get better insight
how to select the states, the second term of the right hand side of Eq. (A.12), containing the
dynamics, is replaced by a vector qud

s :

qus ¼ �M�1
qq Mqddp þ qud

s : ðA:13Þ

By introducing some new symbols:

Ac ¼M�1
qq Cqd �M�1

qq CqqM
�1
qq Mqd ; ðA:14Þ

Ak ¼M�1
qq Kqd �M�1

qq KqqM
�1
qq Mqd ðA:15Þ

and by applying the inverse Laplace transform, qud
s can be determined from the following

differential equation:

.qud
s þ Ac

’dp ¼ �M�1
qq Cqq ’qud

s �M
�1
qq Kqqqu

d
s � Akdp þM�1

qq Fqff : ðA:16Þ

From this equation, states must be selected appropriately. A straightforward way is to put
Eq. (A.16) in a simulation diagram of Fig. 4. The states that x1 and x2 are located after each
integral sign and are, respectively, qud

s and ’qud
s þ Acdp:

They can be calculated from the following equations:

’x1 ¼ x2 � Acdp; ðA:17Þ

x2 ¼M�1
qq Cqqðx2 � AcdpÞ �M�1

qq Kqqx1 � Akdp þM�1
qq Fqff : ðA:18Þ

After writing Eqs. (A.17) and (A.18) into matrix form and by replacing qud
s in Eq. (A.13) by x1;

Eqs. (9) and (10) are obtained.
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Fig. 4. Simulation diagram of Eq. (A.16).
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Appendix B. Design parameters of the agricultural spray boom

Numerical values of all parameters necessary to derive the equations of motion of the
horizontal behaviour of an agricultural spray boom are given in Table 2 (See Fig. 5). All
parameters are measured, weighted or are material properties provided by the supplier, except the
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Table 2

Numerical values for the physical properties of the spray boom

Symbol Value Description

m1 250 kg Mass of the table

m2 50 kg Mass of the cradle

m3 35:76 kg Mass of the beam

I1 250 kg m2 Moment of inertia of the table

I2 50 kg m2 Moment of inertia of the cradle

I3 361:38 kgm2 Moment of inertia of the beam

r3 7800 kg=m3 Mass density of the beam

dcb 0:07 m Distance between the revolute joint

and the centre of mass of the beam

Lt 1:78 m Distance between the excitation actuators

Lk 1:318 m Distance between the spring attachment points

bbi 0:0158 m See Fig. 5

bbu 0:02 m See Fig. 5

hbi 0:056 m See Fig. 5

hbu 0:0603 m See Fig. 5

ks 1100 N=m Spring stiffness

Eb 1:81011 N=m2 Young’s modulus of the beam

cg 160 N s=m Viscous damping of cradle

ct 2 N s=rad Viscous damping of revolute joint

cb 0:0001 Modal damping coefficient

hbu

bbi

bbu

hbi

Fig. 5. Cross-section of the beam.
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damping coefficients cg; ct and cb; which are determined experimentally. The mass m1; the moment
of inertia I1 of the platform and the moment of inertia I2 of the cradle are fictitious values.
However they do not have any influence on the dynamics of the system, as the degrees of freedom
of the platform are removed by transforming the force inputs of the excitation actuators to
position inputs. When computing the mass m3 and the moment of inertia I3 of the beam with the
values in Table 2, a different m3 and I3 will result as listed in Table 2. The reason for this is that in
reality the boom is not exactly a beam. For constructional reasons, an extra stiff beam needed to
be added, which explains the difference.
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