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Abstract

The following three models, which lead to the frequency independent damping, are examined: the
hysteretic model, which consists of linearly elastic spring and (in parallel with the spring) Coulomb’s
element with the force proportional to the value of displacement; the modified hysteretic model, which is
constructed by the addition (sequential) of an elastic spring to the foregoing model; the quasi hysteretic
model, which has a structure similar to the hysteretic model but takes account of mean values of
displacements and velocities. Some basic problems of theory of vibrations for a single-degree-of-freedom
system (action of an instantaneous impulse; free vibration due to an initial non-zero displacement; response
to a suddenly applied constant force; vibration under the action of periodic forces) are considered. A
comparison is carried out for results corresponding to the models and also to the model with constant
complex stiffness and model with viscous damping.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of frequency independent damping arose in 1927 when Kimball and Lovell [1]
discovered that many engineering materials exhibit a type of internal damping in which the energy
loss per cycle is proportional to the square of the strain amplitude and is independent of the
frequency of the applied sinusoidal strain. This result was confirmed further by many
investigators. A mathematical description of the corresponding damping force was done by
Theodorsen and Garrick [2]: ‘‘The structural friction can be described by a force in phase with the
velocity but of a magnitude proportional to the restoring force. With each restoring force term,
say aCa; there will be a friction term iagaCa; in which ga is the damping coefficient’’. It is implied
that steady harmonic vibrations in the complex form expðiotÞ (o is circular frequency, t is time)
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are considered. It is seen that the restoring force and damping force are assumed as linear (a is a
deflection). Actually, the cited determination introduces the notion of the independent of
frequency complex stiffness. A large number of papers (e.g., [3–17]) have been written on the
subject of structural damping as it is determined in Ref. [2]. Other names for this kind of damping
are hysteretic damping [6], ideal hysteretic damping [15], material damping [18] and rate-
independent damping [19]. A circumstantial analysis of the concept can be found in Refs. [11–15].
An important result obtained independently by Fraeijs de Vuebeke [10], Caughey [11] and
Crandall [13] is that the linear hysteretic damping violates the requirement of causality: the system
responds before exiting. Also in Ref. [20] the analysis is given which concerns the transient
response of the linear system with constant complex stiffness and the corresponding violation of
the causality principle.
A spreading of the cited description given by Theodorsen and Garrick for the harmonic motion

onto the general case of motion has been done by Reid [7]:

F ¼ k x þ Zjxj
’x

j ’xj

� �
; ð1Þ

where F is total force (linearly elastic plus damping) applied to the model, x is displacement, ’x is
velocity (derivative by time), k and Z are stiffness and damping coefficient, respectively. A
hysteretic loop corresponding to a periodic motion with amplitude x0 is shown in Fig. 1. The
damping force in the form used in Eq. (1) is referred to in Ref. [21] as linear Coulomb friction
force. For a harmonic motion in the form x ¼ x0 expðiotÞ; where x0 is a positive amplitude of
vibrations one obtains using Eq. (1) (for o > 0)

F ¼ kxð1þ iZÞ: ð2Þ

The Eq. (2) exactly corresponds to the above cited structural friction description of Theodorsen
and Garrick. This fact can lead to an erroneous opinion that model (1) and the model of
structural (or linear hysteretic) damping are equivalent for steady harmonic motion [7,22].
However the application of the complex representation of forces and displacements has a meaning
only for linear systems and is absolutely meaningless for a non-linear system with force of the
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form (1), for which a possibility of separation of real or imaginary parts of the complex solutions
in order to obtain a real solution does not exist. In fact, the steady state solution [12,21] for a one-
degree-of-freedom system with the force (1), excited by a harmonic force p0 cosðotÞ or p0 sinðotÞ;
differs substantially from the corresponding solution for force (2) representing the linear
hysteretic model. Note that in Ref. [12] the mentioned solution is obtained for non-stop motion
and in Ref. [21] the one-stop motion in the half-period of vibration is permitted (in addition to
force (1), also the viscous damping force and the constant Coulomb friction force are considered).
The assumptions about the continuous or one-stop motion are justified if o is large enough. Free
vibration in the case of the force (1) are studied in Ref. [12]; the results of [12] relating to free
vibrations were obtained again in Ref. [22].
In the paper the behaviour of model (1) in the cases not considered in previous investigations is

studied: steady oscillations of a one-degree-of-freedom system under the action of a harmonic
force without limitation on the number of stops, response to instantaneous application of a
constant force to the system. This model will be called the hysteretic model. In parallel, two
additional models are analyzed in the paper:

(a) modified hysteretic model obtained by sequential adding of an elastic spring to model (1),
which eliminates discontinuities in the force (1) (when the velocity changes its sign) and
removes the problem of stops,

(b) the quasi hysteretic non-linear model introduced in Ref. [23], which for steady vibration under
the action of a harmonic force leads to the same results as the model (2) (from the structural
damping description) and allows one to treat dynamic problems in time domain without
difficulties.

The linear model corresponding to (2), which is called the complex stiffness model, and the
model of equivalent viscous damping with the same energy loss per cycle at natural frequency as
in the case of the considered non-linear models, are used in the paper for the purpose of
comparison. Actually, the model of equivalent viscous damping is an appropriate choice if a
mechanical system with one-degree-of-freedom is dealt with. For multi-degree-of-freedom
systems, this model can be exploited for separate undamped modes of vibration [14,19], i.e., it
is assumed that damping forces do not change the modes of vibration. However such a treatment
is not appropriate if the system to be analyzed consists of parts with significantly different levels of
damping, e.g., soil foundation and a structure interacting with soil [19]. In addition, in many cases
when dealing with very large systems arising from the finite element method, it is desirable to carry
out straightforward numerical integration in time domain without determination of natural
vibration modes and frequencies for the considered system (this determination is inherent in the
method of equivalent viscous damping). Complex stiffness model is widely used when studying
steady harmonic vibrations. In other cases the principle of superposition can be applied assuming
the linearity of the system; application of Fourier transform or series for obtaining a transient
response of a mechanical system is also an application of the superposition principle. As
mentioned above, such a treatment in the case of complex stiffness model leads to the violation of
the requirement of causality. The three non-linear models which are the object of investigation
in the paper are free of the mentioned flaws; they allow the numerical integration in time
domain which leads to the transient or steady state response of the considered mechanical
system.
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2. Description of considered models

2.1. Hysteretic model

This model is determined by Eq. (1), and the corresponding hysteretic loop is shown in Fig. 1.
When changing the sign of velocity, the force becomes discontinuous; the corresponding point
(x;F ) passes along a vertical line from the line with angle coefficient kð1� ZÞ to the line with angle
coefficient kð1þ ZÞ or vice versa. For eliminating some undesirable properties in the behaviour of
the model, it will assumed throughout that 0pZo1: The energy loss per cycle, W ; is independent
of frequency and equal to 2kZx20: Consider the damping ratio:

D ¼
W

2pkx20
¼

Z
p
: ð3Þ

Note that together with this determination of damping ratio, another determination is used
[23–26], in which instead of the value kx20 in Eq. (3) the value F0x0 appears (F0 is the amplitude of
force). Such a determination is suitable in the cases when it is difficult to separate out the potential
energy of the considered system. When using the second determination of damping ratio, one
obtains

D1 ¼
W

2pF0x0
¼

Z
pð1þ ZÞ

: ð4Þ

In what follows determination (3) will be used.
Although Eq. (1) is non-linear, it offers a property inherent in linear systems: if a function xðtÞ

entering (1) is changed by the function CxðtÞ; where C is a constant, then the corresponding force
will be equal to CF ðtÞ:When studying vibrations of a mechanical system, this property leads to a
possibility to compare results for model (1) with the corresponding results for linear systems.

2.2. Modified hysteretic model

The mechanical system leading to this model is shown in Fig. 2, where the part with parameters
k1 and Z1 corresponds to the hysteretic model determined by Eq. (1). Introducing an additional
spring with the stiffness k0 appears to be suitable, eliminating discontinuities in the force, which
are inherent in model (1). Also the stops taking place in some cases of using model (1) are
removed. The hysteretic loop for this model has the form shown in Fig. 3. The angle coefficients
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ka; kb; ka in Fig. 3 are as follows:

ka ¼
1

k0
þ

1

k1ð1þ Z1Þ

� ��1
; kb ¼

1

k0
þ

1

k1ð1� Z1Þ

� ��1
; ka ¼ 0:5ðka þ kbÞ: ð5Þ

If a point (x;F ) lies at a moment on the line with angle coefficient ka or kb and the velocity
changes its sign passing the zero value, then the point begins to move along the line with angle
coefficient k0; and the value F remains continuous. For time intervals in which the velocity does
not change its sign, there are linear relations between Dx and DF with coefficients ka; kb or k0:
This description, following from the behaviour of the mechanical system shown in Fig. 2, is
sufficient for obtaining a relation between the force and displacement, and can serve instead of a
constitutive equation.
It is appropriate to deal with other independent parameters instead of k0; k1; Z1; namely

k0; k ¼ ka; Z ¼
ka � kb

2k
: ð6Þ

This results in (similarly to the hysteretic model)

ka ¼ kð1þ ZÞ; kb ¼ kð1� ZÞ: ð7Þ

Parameters k1; Z1 (if needed) can be expressed through parameters k0; k; Z: According to Fig. 3,
the energy loss per cycle will be

W ¼ 2kZx20
b� 1� Z
b� 1þ Z

; ð8Þ

where

b ¼
k0

k
: ð9Þ

Using Eq. (3) the following relationship for damping ratio D is obtained

D ¼
W

2pkx20
¼

Z
p
b� 1� Z
b� 1þ Z

: ð10Þ
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Parameter Z can be expressed through damping ratio:

Z ¼ r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � pDðb� 1Þ

p
; ð11Þ

where

r ¼ 0:5ðb� 1� pDÞ: ð12Þ

Note that the property of ‘‘linearity’’ mentioned in Section 2.1 takes place also for the modified
hysteretic model. In fact, for the function CxðtÞ; the plot on the plane ðx;FÞ is similar (with the
similarity centre in the origin of co-ordinates and with the coefficient of similarity C) to the
original plot (for function xðtÞ). Thus the corresponding values of F will be C times as great as the
force relating to xðtÞ:

2.3. Quasi hysteretic model

This model has been suggested in Ref. [23] and was used in non-linear seismic response analysis
in Refs. [24,25]. The equation relating a force to a displacement has a structure similar to (1) but
contains mean values (relative to time) of displacements and velocities:

F ¼ kðxmÞ x þ ZðxmÞ ’x
xm

’xm

� �
; ð13Þ

where kðxmÞ and ZðxmÞ two functions depending on mean value of displacements; ’xm is mean value
of velocity (derivative ’x). The weighted mean value is determined as follows:

zm ¼
ðn þ 1Þ

tnþ1

Z t

0

snz2ðsÞ ds

� �1=2
; ðz ¼ x; ’xÞ: ð14Þ

As the parameter n is made greater than 0, correspondingly more relative weight is given to data
close to time t: The name ‘‘quasi hysteretic’’ appears to be suitable since the velocity is included in
constitutive equation (13), whereas the term ‘‘hysteretic’’ implies the independence of the velocity.
Note that in the process of numerical solution of a system of differential equations which appears
when using the model of the type (13) the corresponding integrals entering (14) are determined
numerically. It is important that each time step adds a small portion to values of integrals already
calculated by the beginning of the step. Using Newmark’s method with iterations leads to effective
solution of the corresponding non-linear system of differential equations [24,25].
It can be shown that in the case of harmonic variation (z ¼ z0 sinðotÞ or z ¼ z0 cosðotÞ), the

mean value, zm when t-N tends to the constant z0=
ffiffiffi
2

p
independently of n: For harmonic

motion

x ¼ x0 sinðotÞ ð15Þ

one obtains from Eq. (13) the relationship for steady state vibrations ðt-NÞ:

F ¼ kðx0=
ffiffiffi
2

p
Þ½sinðotÞ þ Zðx0=

ffiffiffi
2

p
Þ cosðotÞ�x0: ð16Þ

The energy loss per cycle will be

W ¼
Z t0þ2p=o

t0

FðtÞ ’xðtÞ dt ¼ pkðx0=
ffiffiffi
2

p
ÞZðx0=

ffiffiffi
2

p
Þx20: ð17Þ
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If the behaviour of stiffness and damping depends on the amplitude of vibration then the
functions kðxmÞ and ZðxmÞ should be determined in accordance with this behaviour using Eqs. (16)
and (17) (see Refs. [23–25]).
Further the case of constant values of k and Z will be considered. In this case the relation (16)

coincides with the relation following from the complex stiffness model (2) for steady vibration in
the form (15) ðx ¼ x0 expðiotÞ is substituted into (2) and the imaginary part of the result is taken).
Thus the quasi hysteretic model with constant k and Z is equivalent to the complex stiffness model
for the steady harmonic vibrations. Fig. 4a–c illustrate the process of approaching a limit elliptical
loop for several values of parameter n (identical values of n are taken for x and ’x). The
convergence becomes slower with increasing n: Note that a family of models is obtained, each
having the same steady behaviour in harmonic motion as the complex stiffness model. The values
n ¼ 0 or n ¼ 2 will be used both for displacements x and velocities ’x: According to Eqs. (17) and
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Fig. 4. Approaching the limit elliptic loop for quasi hysteretic model for D ¼ 0:2 and different values of n: n ¼ 0 (a),
n ¼ 2 (b), n ¼ 10 (c).
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(3) damping ratio for the model has the form

D ¼
Z
2
: ð18Þ

The above mentioned property of ‘‘linearity’’ holds also for quasi hysteretic model.

3. Vibration of one-degree-of-freedom system

Consider the vibrations of a mass M attached to a ‘‘spring’’ which reacts with the force
according to one of the three models described above; let an active force, PðtÞ; also act upon the
mass. Introduce the non-dimensional time

t ¼ t
ffiffiffiffiffiffiffiffiffiffiffi
k=M

p
ð19Þ

and divide both sides of the equation of motion by k: The equation can be written in the form:

x00 þ *F ¼ *PðtÞ; ð20Þ

where the designation of the second derivative of x by t is used, and the tilde denotes that the
corresponding forces are divided by k: For the hysteretic model and modified hysteretic model the
whole time interval is divided into subintervals at which the Eq. (20) is linear and therefore a
simple exact solution can be written for the subintervals (for an arbitrary function *PðtÞ the
Duhamel’s integral is needed). The moments of transition from one value of stiffness to another in
*F are the moments in which the displacement x or derivative ’x pass through zero changing its sign;
these moments are determined successively when going in time domain with a small step h (for t).
In the case of the hysteretic model value *F becomes discontinuous for moments when x0 becomes
zero and changes its sign and hence it is possible that x remains constant at some intervals of time
(at these intervals, F ¼ PðtÞ and the point ðx;FÞ in Fig. 1 lie at a vertical line between lines with
angle coefficients kð1� ZÞ and kð1þ ZÞ). Note that for the value *F stiffnesses in Fig. 1 will be 1þ Z
and 1� Z; and stiffnesses in Fig. 3 will be 1þ Z; 1� Z (instead of ka and kb; respectively), and b
(instead of k0). For a quasi hysteretic model it is appropriate to use Newmark’s method
(particularly, the method of mean accelerations) along with iterations executed at each time step.
Let x0; x0

0; x00
0 and xh; x0

h; x00
h are displacement, velocity and acceleration at the beginning (the

moment t0) and at the end (the moment t0 þ h) of a time step. They are related by the following
equations:

xh ¼ x0 þ x0
0h þ 0:25ðx00

0 þ x00
hÞh

2; ð21aÞ

x0
h ¼ x0

0 þ 0:5ðx
00
0 þ x00

hÞh; ð21bÞ

x00
h ¼ *Ph � xh � Zx0

h

xmh

x0
mh

; ð21cÞ

where xmh; x0
mh and

*Ph are the mean value of displacements, mean value of derivatives (by t) and
the active force (divided by k) for the moment t0 þ h: The values with the zero index may be
considered as known. In order to find the values with index h; it is supposed initially that x00

h ¼ x00
0

(the predicted value), xh and x0
h are found from (21a), (21b) and afterwards xmh and x0

mh from
definition (14). Doing so adds to the already known values of integrals in Eq. (14), corresponding
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to moment t; additional small values, which depend on x0; xh; x0
0; x0

h; for this trapezium rule or
Simpson’s rule (introducing the point at t0 þ 0:5h) are appropriate. Further the corrected value of
x00

h is found from (21c) and more accurate values of xh and x0
h can be determined from (21a), (21b).

This procedure, repeated two or three times, leads to sufficient accurate values of x00
h; x0

h; xh and of
integrals, appearing in the definition of mean values, for the moment t0 þ h: The accuracy is
controlled by calculations with different values of the step of integration h: For multi mass
systems such a method is also used; in this case, the forces acting upon masses from ‘‘springs’’ are
defined by relative displacements of adjacent masses.
The property of partial linearity inherent in the considered models allows prediction of the

response of the studied systems in proportionally changed conditions, that is if xðtÞ is a solution
corresponding to the initial values xð0Þ; ’xð0Þ and active force PðtÞ , then the function CxðtÞ (C is a
constant) will be the solution for the initial values Cxð0Þ; C ’xð0Þ and active force CPðtÞ: For the
hysteretic model (with the ‘‘Reid’s spring’’) this statement has been pointed out in Ref. [12]. Thus
calculations can be restricted in the case of free vibrations for xð0Þ ¼ 1 (x0ð0Þ ¼ 0; *PðtÞ ¼ 0Þ or for
x0ð0Þ ¼ 1 (xð0Þ ¼ 0; *PðtÞ ¼ 0Þ: In studying steady vibrations due to a periodic force *PðtÞ
calculations can be carried out for the unit value of the amplitude of *P; actually the dynamic
response factor is defined in such a way.
For the purpose of comparison, the complex stiffness model (2) is considered and the model of

viscous damping:

F ¼ kx þ m ’x: ð22Þ

The damping parameter

z ¼
m

2
ffiffiffiffiffiffiffiffi
kM

p ð23Þ

is equal to damping ratio D at the natural circular frequency of vibrations

on ¼

ffiffiffiffiffiffi
k

M

r
: ð24Þ

Taking z ¼ D; where D is the damping ratio defined above for the studied non-linear models, the
model of viscous damping is obtained, which is called the equivalent viscous damping model. The
models will have the same damping ratio at on; for which the dissipative forces are most
important.

3.1. Free vibrations

Results of calculation for the case xð0Þ ¼ 0; x0ð0Þ ¼ 1 are shown in Fig. 5a,b. For D ¼ 0:05 the
three models lead to results very close to that corresponding to the equivalent viscous damping
model, in the case D ¼ 0:2 discrepancies in the results are more significant; note an increase in the
period of free vibration (especially for the hysteretic model) compared to the viscous damping
model. An analogous behaviour also takes place in the case of free vibration when xð0Þ ¼ 1;
x0ð0Þ ¼ 0 (Fig. 6a,b). Changing parameter n does not influence noticeably the response for quasi
hysteretic models in the first case of motion, but effects significantly (for large values of D) this
response in the case of the non-zero initial displacement: for n ¼ 0; damping is more intensive
than for n ¼ 2 (see Fig. 6b). Fig. 7 illustrates the violation of the principle of superposition for
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hysteretic model: the sum of two solutions (the dashed line in Fig. 7) corresponding to the initial
conditions xð0Þ ¼ 0; x0ð0Þ ¼ 1 and xð0Þ ¼ 1; x0ð0Þ ¼ 0 differs from the solution for the initial
condition xð0Þ ¼ 1; x0ð0Þ ¼ 1 (the solid line). A similar behaviour is inherent in the remaining two
non-linear models. The illustration (Fig. 7) is presented in order to underline once again the non-
linearity of the model despite the opinion expressed in Ref. [22].

3.2. Action of constant force

Let a constant force *P ¼ 1 be suddenly applied to an one-degree-of-freedom system (xð0Þ ¼ 0;
x0ð0Þ ¼ 0). In this case, the hysteretic and modified hysteretic models exhibit a behaviour which

ARTICLE IN PRESS

(b)(a)
0 4 8 12 16 20

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

τ

x

0 4 8 12 16 20
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

τ

x

Fig. 5. Response of the models to initial velocity ðxð0Þ ¼ 0; x0ð0Þ ¼ 1Þ for D ¼ 0:05 (a) and D ¼ 0:2 (b). Keys: hysteretic
model —–, modified hysteretic ðb ¼ 50Þ —3—, viscous damping - - - - -, quasi hysteretic ðn ¼ 2Þ —
—.

(b)(a)

0 4 8 12 16 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

τ

x

0 4 8 12 16 20
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

τ

Fig. 6. Response of the models to initial displacement ðxð0Þ ¼ 1; x0ð0Þ ¼ 0Þ for D ¼ 0:05 (a) and D ¼ 0:2 (b). Keys:
hysteretic model —–, modified hysteretic ðb ¼ 50Þ—3—, viscous damping - - - - -, quasi hysteretic ðn ¼ 2Þ—
—, quasi
hysteretic ðn ¼ 0Þ —~— (for b).

G.B. Muravskii / Journal of Sound and Vibration 274 (2004) 653–668662



differs significantly from that for the quasi hysteretic model and viscous damping model even for
small damping (Fig. 8a,b). In the case of the hysteretic model, the motion stops at a time moment,
at which the velocity becomes zero and the force corresponding to the low stiffness (i.e., kð1� ZÞ)
is smaller than the active force or, alternatively, the active force is smaller than the force
corresponding to the high stiffness (i.e., kð1þ ZÞ). In the case of modified hysteretic model, high
frequency oscillations (corresponding to stiffness k0) take place instead of the stop; for smaller
values of b the amplitude of these oscillations increases. Results for the quasi hysteretic model are
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similar to that for the viscous damping model. Note that now damping is greater for n ¼ 2 due to
more weight being given to displacements at an interval of time when they are large, whereas for
n ¼ 0 small displacements at an initial period of motion have a noticeable influence (see Eq. (14)),
which leads to decreasing damping.

3.3. Steady vibration due to periodic force

Consider for the three studied models steady vibrations of one-degree-of-freedom system under
the action of the harmonic force:

PðtÞ ¼ P0 sinðotÞ ¼ P0 sinð *otÞ; ð25Þ

where P0 and o are the amplitude of the force and its circular frequency, *o is non-dimensional
frequency,

*o ¼
o
on

: ð26Þ

The amplitude of variation of *PðtÞ; i.e., P0=k (static deflection), will be taken equal to 1 in the
calculations, which means that dynamic response factor is determined. Remember that the quasi
hysteretic model is equivalent to the constant complex stiffness model for the considered motion.
For the hysteretic model and modified hysteretic model the steady state periodic motion with the
period 2p= *o (for t) is obtained after a number of periods of the acting force, controlling the
displacements and derivatives at the beginning and at the end of the periods. Displacements x
corresponding to steady vibrations are shown for two values of *o in Fig. 9a,b (for D ¼ 0:05) and
Fig. 10a,b (for D ¼ 0:2); t is non-dimensional time reckoning from the beginning of the period of
sinð *otÞ; for which the motion can be considered as steady state. Note that for the steady vibration
absolute values of maximum and minimum displacements are equal. It can be seen that for
hysteretic model at D ¼ 0:05; *o ¼ 0:25; the steady motion has two stops within the half-period; as
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calculations show for this value of damping, non-stop motion is realized if *o > 0:38: In the case
D ¼ 0:2; non-stop motion takes place for *o > 0:68 and one-stop motion is realized if
0:13o *op0:68: For these values of frequency, the modified hysteretic model leads for the chosen
value of b; to the results close to that for the hysteretic model. Even for a small enough value of D;
as 0.05, the behaviour of the hysteretic model and modified hysteretic model can differ
significantly from the remaining three models (Fig. 9a). The discrepancies become drastic for
greater values of damping (Fig. 10 a,b). This produces limitations on possibility of linearization
for the hysteretic and modified hysteretic models. Note some surprising results corresponding to
*o ¼ 0:5: for the hysteretic and modified hysteretic models the amplitude of steady state vibrations
at D ¼ 0:2 is noticeably greater than the amplitude at D ¼ 0:05 (Fig. 9b and Fig. 10b).
Fig. 11 a–c presents the dynamic response factor (i.e., the amplitude of vibration for unit value

of the static deflection P0=k) as a function of normalized frequency *o: For D ¼ 0:05; the results
are closely related (excluding an interval of small values of *o). For greater values of D; the
hysteretic model and modified hysteretic model lead to results which differ significantly from
those corresponding to the other three models.
Consider one example of a periodic non-harmonic excitation for a force equal P0 during the

first half of the period T0 and equal �P0 during the second half. The steady state periodic motion
in the case of the complex stiffness model and viscous damping model is determined by the
application of Fourier series, and in the case of the non-linear hysteretic models the above
mentioned numerical integration scheme in time domain is used until a periodic response is
achieved. Results of calculation for the unit value of P0=k and *o ¼ 0:25 are shown in Fig. 12a
(D ¼ 0:05) and 12b (D ¼ 0:2) (now *o ¼ 2p=ðT0onÞ). Again it can be seen that for the hysteretic
model and modified hysteretic model increasing damping can lead to an increase in response.
Note that in the case D ¼ 0:2 results for quasi hysteretic model and complex stiffness model are
noticeably different while solutions for a harmonic force are identical for these models. This is a
consequence of non-linearity of the quasi hysteretic model.
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4. Concluding remarks

The study of the three non-linear models, leading to the frequency independent damping, has
been performed in order to construct an alternative for the two popular models—equivalent
viscous damping model and constant complex stiffness model, which have some deficiencies when
an analysis of transient vibrations of large multi-degree-of-freedom mechanical systems is needed.
In most considered examples of motion, the behaviours of the models are closely related when
damping ratio D is small. For large values of damping the results corresponding to the hysteretic
model and modified hysteretic model can differ drastically from those corresponding to the quasi
hysteretic model, equivalent viscous damping model and constant complex stiffness model. This is
especially true for steady state vibrations under the action of a harmonic or periodic force, and for
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transient vibrations due to a constant force when the hysteretic model leads to the stop of motion,
and the modified hysteretic model leads to high frequency oscillations with displacements close to
the displacement corresponding to the stop in the hysteretic model. The quasi hysteretic model
dealing with mean values of displacements and velocities eliminates the deficiencies of the two
remaining non-linear models. An attractive property of this model is the same response on the
harmonic excitation as that for the constant stiffness model, which is considered to be acceptable
for pure harmonic vibrations. Thus the quasi hysteretic model represents a suitable extension of
the constant complex stiffness model to an arbitrary kind of motion.
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