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a b s t r a c t

This paper presents a semi-analytical approach to solve the eigenproblem of an acoustic

cavity with multiple elliptical boundaries. To satisfy the Helmholtz equation in the

elliptical coordinate system, the multipole expansion for the acoustic pressure is

formulated in terms of angular and radial Mathieu functions. The boundary conditions

each point is directly calculated in each elliptical coordinate system. In different

coordinate systems, the normal derivative of the acoustic pressure is calculated by

using the appropriate directional derivative, an alternative to the addition theorem. By

truncating the multipole expansion, a finite linear algebraic system is derived. The

direct searching approach is employed to determine the natural frequencies by using

the singular value decomposition (SVD). Numerical results are widely discussed for

several examples including an elliptical cavity, a confocal elliptical annulus cavity and

an elliptical cavity with two elliptical cylinders. The accuracy and numerical conver-

gence of the presented method is validated by comparison with available results from

the analytical method and the commercial finite-element code ABAQUS. No spurious

eigensolutions are found in the proposed formulation. Excellent accuracy and fast rate

of convergence are the key features of the present method thanks to its semi-analytical

feature.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The natural mode analysis of an acoustic cavity can provide important information in the design phase for the cavity
related to mechanical systems such as automobile mufflers and hermetic compressors [1]. Although the natural mode for
the cavities other than circular sections can be obtained by using the finite element method (FEM) or the boundary
element method (BEM) [2], analytical solutions, if available, usually result in accurate and fast rate convergence
methodologies and provide the physical insight to the considered problem. A semi-analytical approach to the
eigenproblem for an acoustic cavity with elliptical boundaries is presented in this paper.

Over the past few decades, most of the analytical solutions for natural modes have focused on the simple geometries such
as circular or annular cavities [3–6]. However, except Ref. [1], no attention has been focused on acoustic problems involving
elliptical boundaries, probably because its formulation involves the ill-familiar and complicated Mathieu functions [7–12].
Hong and Kim [1] analytically derived the characteristic equations of both hollow and annular elliptical cylindrical cavities in
terms of Mathieu functions and presented the circular cylinders as a special case of their results. Chen et al. [5–6] applied the
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null-field boundary integral equation method (BIEM) to solve the eigenproblems with circular boundaries. Recently, Chen
et al. extend the BIEM to deal with torsion problems containing multiple elliptical inclusions [13] and eigenproblems of a
confocal elliptical membrane [14], performing an analytical investigation of spurious eigenvalues and providing several
remedies to suppress them. It is well known that the BIEM (or BEM) belongs to the boundary-type method which can reduce
the dimension of the original problem by one. Consequently the number of the unknowns is much less than that of the
domain type methods such as the FEM. In addition, the domain mesh generation is not required, which is generally the most
difficult and time consuming task. However, the boundary integration is required in the BIEM and spurious eigenvalues
always occur for multiply-connected domain problems even though they can be suppressed by using complex kernel
functions for simply-connected domain problems. Hence a formulation with no integration and no spurious eigenvalues is
our concern. The spurious eigenvalues stem from the non uniquenss of solution. Specifically, spurious eigenvalues arise from
the incomplete solution representation such as the real-part BEM, multiple reciprocity method. In this paper, the even and
odd angular and radial Mathieu functions are employed to represent the acoustic field.

The concept of multipole method to solve multiply-connected domain problems was introduced by Z _avi�ska [15] and
used to deal with the interaction of waves with arrays of circular cylinders by Linton and Evans [16]. For applications of the
multipole method to acoustic problems, readers may consult with a recent monograph by Martin [17]. The addition
theorem is often employed to transform the multipole expansion into one of coordinate systems to satisfy the specified
boundary conditions. For the circular boundary, some applications can be seen in the water wave scattering problem [16],
the free vibration of circular membranes [18,19], the free vibration of circular plates [19,20] and the flexural wave
scattering [21]. Furthermore, Chatjigeorgiou and Mavrakos [22,23] proposed an analytical approach to the hydrodynamic
diffraction by multiple elliptical cylinders using the addition theorem of the Mathieu functions derived from Graf’s
addition theorem for the Bessel functions. In the view point of mathematics, the procedure is elegant. But we need to face
the complicated formulation and the accompanying numerical calculation due to the infinite series form of the addition
theorem for Mathieu functions so that its applications are limited.

This paper presents a semi-analytical approach to the eigenproblem for an acoustic cavity with multiple elliptical
boundaries. To satisfy the Helmholtz equation in the elliptical coordinate system, the proper Mathieu functions are chosen
to formulate the acoustic pressure caused by outer elliptical cavity and inner elliptical boundaries, respectively. By
uniformly collocating points on the boundaries, the normal derivative of acoustic pressure at the collocation point is
exactly calculated by using directional derivative in each coordinate system to satisfy the Neumann boundary condition
(or sound-hard conditions) as an alternative to the addition theorem. In this way, a coupled infinite system of
simultaneous linear algebraic equations is derived. Based on the direct searching approach [24], the nontrivial
eigensolutions can be determined by finding the zero determinant of the truncated finite system through the technique
of singular value decomposition (SVD). After determining the unknown coefficients of the multipole expansion, the
corresponding natural modes can be obtained. Several numerical examples are presented and the proposed results of an
elliptical cavity, a confocal elliptical annulus cavity and an elliptical cavity with two elliptical cylinders are compared with
those of the available analytical solutions and the ABAQUS FEM solver [25]. Since BIEM or BEM results in spurious
eigenvalues for multiply-connected domain problems, the appearance of spurious solution by using the present method
will be examined here.
2. Problem statement and the general solution in the elliptical coordinate system

A two-dimensional elliptical cavity with H nonoverlapping elliptical cylinders has a domain O which is enclosed with
boundary,

B¼ [
L

j ¼ 1
Bj, (1)

as shown in Fig. 1, where Oj and Bj denote the center of the jth ellipse and its boundary, the subscript j¼1, y, L (L¼1þH

and O1 is the center of the outer elliptical cavity). We will use Lþ1 observer coordinate systems: (z1, z2) is a global
Cartesian coordinate system centered at O; (xj, Zj), j¼1,y, L is the jth local elliptical coordinate system centered at Oj with
global Cartesian coordinates (z j

1, z j
2). The major and minor semi axes of jth ellipse are aj and bj, respectively, and its local

coordinate system makes an angle yj with respect to the global coordinate system. The governing equation for an acoustic
cavity is the Helmholtz equation:

ðr
2
þk2ÞPðxÞ ¼ 0, x 2 O, (2)

where r2 is the Laplace operator, P is the acoustic pressure, k¼o/c is the wavenumber, o is the radian frequency, c is the
speed of sound in the acoustic medium and x is a typical field point in the domain O.

To properly deal with the geometry considered in this paper, the elliptical coordinate system [7–12] as shown in Fig. 2
should be used. The elliptical coordinates (x, Z) are related to the rectangular coordinates (x, y) by the relation

xþ iy¼ f coshðxþ iZÞ, (3)

where i¼
ffiffiffiffiffiffiffi
�1
p

, x is a radial coordinate (xZ0), Z is an angular coordinate (0rZo2p) and 2f is the interfocal distance.



Fig. 1. Problem statement for an acoustic cavity with multiple elliptical boundaries.

Fig. 2. Elliptical coordinate system.
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Separating and equating real and imaginary parts of Eq. (3) give

x¼ f coshxcosZ, y¼ f sinhxsinZ: (4)

The coordinate curves constructed by orthogonally intersecting confocal ellipses (x¼constant) and hyperbolas
(Z¼constant) are illustrated in Fig. 2. In the elliptical coordinate system with the interfocal distance 2f, an ellipse can
be easily described by a fixed radial variable, for example x¼x0, where the half-lengths of major and minor axes,
respectively, are obtained by

a¼ f coshx0, b¼ f sinhx0: (5)

The eccentricity of an ellipse is given by

e¼ 1=coshx0 ¼ f=a: (6)

On the other hand, when the major and minor axes are given, the corresponding radial coordinate and the interfocal
distance can be obtained by

x0 ¼ tanh�1
ðb=aÞ, f ¼ a=coshx0: (7)

In the elliptical coordinate system, using the transformation of Eq. (4), the Helmholtz equation of Eq. (2) takes the form

1

h

@2Pðx,ZÞ
@x2

þ
@2Pðx,ZÞ
@Z2

 !
þk2Pðx,ZÞ ¼ 0, (8)

where the scaling factor h is given by one of the following expressions [9]:

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2xþsin2Z

q
, f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2x�cos2Z

q
and f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2x�cos2Z

q
=
ffiffiffi
2
p

:

By using the method of separation variables,

Pðx,ZÞ ¼ RðxÞFðZÞ: (9)
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Eq. (8) results in

@2FðZÞ
@Z2

þðs�2qcos2ZÞFðZÞ ¼ 0, (10)

@2RðxÞ
@x2

�ðs�2qcosh2xÞRðxÞ ¼ 0, (11)

where q¼(fk/2)2 and s are the separation constants. Eqs. (10) and (11) are known as the Mathieu equation and the modified
Mathieu equation, or the angular Mathieu equation and the radial Mathieu equation. For given no zero q, we can determine
the eigenvalues s and their solutions called the even and the odd angular Mathieu functions, respectively, denoted by

Fm ¼
cemðZ,qÞ, m¼ 0,1,2,. . .,

semðZ,qÞ, m¼ 1,2,. . .

(
(12)

and the even and the odd radial Mathieu functions of the first kind and the second kind, respectively, denoted by

Rm ¼
Mcð1Þm ðx,qÞ, Mcð2Þm ðx,qÞ, m¼ 0,1,2,. . .

Msð1Þm ðx,qÞ, Msð2Þm ðx,qÞ m¼ 1,2,. . .
:

(
(13)

Analogous to the Hankel functions in the case of the Bessel functions, the even and the odd radial Mathieu functions of
the third kind and the fourth kind, respectively, are defined by

Mcð3Þ,ð4Þm ðx,qÞ ¼Mcð1Þm ðx,qÞ7 iMcð2Þm ðx,qÞ, m¼ 0,1,2,. . .

Msð3Þ,ð4Þm ðx,qÞ ¼Msð1Þm ðx,qÞ7 iMsð2Þm ðx,qÞ, m¼ 1,2,. . .:
(14)

From Eqs. (12)–(14), in the elliptical coordinates, the Helmholtz equation has separated solutions of the form

McðiÞm ðx,qÞcemðZ,qÞ and MsðiÞm ðx,qÞsemðZ,qÞ, i¼ 1, 2, 3 and 4:

It is noted that the corresponding angular and radial Mathieu functions in each product have the same eigenvalue s.
Since the product Mcð2Þm ðx,qÞcemðZ,qÞ does not satisfy the continuity in gradient across the interfocal line and the product
Msð2Þm ðx,qÞsemðZ,qÞ does not satisfy the function continuity [9], the permissible solution of Eq. (2) is

PIðx,ZÞ ¼
X1

m ¼ 0

cmMcð1Þm ðx,qÞcemðZ,qÞþ
X1

m ¼ 1

smMsð1Þm ðx,qÞsemðZ,qÞ (15)

for the interior domain to the elliptical boundary, where the coefficients cm and sm are to be determined by the boundary
conditions, and

PEðx,ZÞ ¼
X1

m ¼ 0

cmMcð3Þm ðx,qÞcemðZ,qÞþ
X1

m ¼ 1

smMsð3Þm ðx,qÞsemðZ,qÞ (16)

for the exterior domain, which satisfies the radiation condition at infinity.

3. The multipole method

The problem of an elliptical cavity with H elliptical cylinders can be decomposed into one interior domain problem and
H exterior domain problems. For this multiply-connected domain problem, using Eqs. (15) and (16), the acoustic pressure
satisfying Eq. (2) can be explicitly expressed as an infinite sum of multipoles at the center of each ellipse

Pðx; x1,Z1,x2,Z2,. . .,xL,ZLÞ ¼ c1
0Mcð1Þ0 ðx1,qÞce0ðZ1,qÞ

þ
X1

m ¼ 1

c1
mMcð1Þm ðx1,qÞcemðZ1,qÞþs1

mMsð1Þm ðx1,qÞsemðZ1,qÞþ
XL

j ¼ 2

"
cj

0Mcð3Þ0 ðxj,qÞce0ðZj,qÞ

þ
X1

m ¼ 1

cj
mMcð3Þm ðxj,qÞcemðZj,qÞþsj

mMsð3Þm ðxj,qÞsemðZj,qÞ

#
(17)

and the normal derivative of the acoustic pressure, appearing in the sound-hard or Neumann boundary condition, is
expressed as

@

@n
Pðx; x1,Z1,x2,Z2,. . .,xL,ZLÞ ¼ c1

0

@

@n
ðMcð1Þ0 ðx1,qÞce0ðZ1,qÞÞ

þ
X1

m ¼ 1

c1
m

@

@n
ðMcð1Þm ðx1,qÞcemðZ1,qÞÞþs1

m

@

@n
ðMsð1Þm ðx1,qÞsemðZ1,qÞÞ

þ
XL

j ¼ 2

cj
0

@

@n
ðMcð3Þ0 ðxj,qÞce0ðZj,qÞÞþ

X1
m ¼ 1

cj
m

@

@n
ðMcð3Þm ðxj,qÞcemðZj,qÞÞþsj

m

@

@n
ðMsð3Þm ðxj,qÞsemðZj,qÞÞ

" #
, (18)
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where xj and Zj (j¼1, 2,y, L) denote the elliptical coordinates of the field point x with respect to the jth local elliptical
coordinate system. The coefficients cj

m and sj
m can be determined by the boundary conditions. The normal derivative can be

easily expressed by @=@x when the field point on the boundary of an ellipse is described by its local elliptical coordinate
system. In the next section, the more complex evaluation of the normal derivative on a boundary described by non-local
elliptical coordinates will be discussed.

To determine these unknown coefficients, the calculation of both Eqs. (17) and (18) is needed. But this procedure
involves the derivative of multivariable functions and this is not an easy task. It is well known that the addition theorem
can be employed to solve this problem [22,23]. However, the addition theorem of Mathieu functions will make the
formulation and the corresponding numerical calculation complicated due to its infinite series form. In this paper Eqs. (17)
and (18) are calculated without using the addition theorem of Mathieu functions. In order to achieve this, two difficulties
must be surmounted. One is the determination of elliptical coordinates with respect to different local coordinate systems.
The other is how to calculate the normal derivative of Mathieu functions with respect to different local coordinate systems.

4. The collocation multipole method

In order to avoid the complex application of the addition theorem, the collocation method is adopted to calculate
Eqs. (17) and (18) directly in each local elliptical coordinate system. Consider an elliptical cavity with H elliptical cylinders
subject to the sound-hard condition, as shown in Fig. 1. By uniformly collocating N (¼2Mþ1) points on each elliptical
boundary and truncating the infinite series of Eq. (18), we have

@

@n
Pðx;xgn

1 ,Zgn
1 ,xgn

2 ,Zgn
2 ,. . .,xgn

L ,Zgn
L Þ ¼ c1

0

@

@n
ðMcð1Þ0 ðx

gn
1 ,qÞce0ðZgn

1 ,qÞÞ

þ
XM

m ¼ 1

c1
m

@

@n
ðMcð1Þm ðx

gn
1 ,qÞcemðZgn

1 ,qÞÞþs1
m

@

@n
ðMsð1Þm ðx

gn
1 ,qÞsemðZgn

1 ,qÞÞ

þ
XL

j ¼ 2

cj
0

@

@n
ðMcð3Þ0 ðx

gn
j ,qÞce0ðZgn

j ,qÞÞþ
XM

m ¼ 1

cj
m

@

@n
ðMcð3Þm ðx

gn
j ,qÞcemðZgn

j ,qÞÞþsj
m

@

@n
ðMsð3Þm ðx

gn
j ,qÞsemðZgn

j ,qÞÞ

" #
(19)

for g¼1, 2, y, L and n¼1, 2, 3, y, N, where xgn
j and Zgn

j denote elliptical coordinates of the nth collocation point on the gth
elliptical boundary with respect to the jth local elliptical coordinate system. A linear algebraic system of LN equations in LN

unknowns can be written as follows:

A11 A12
� � � A1L

A21 A22
� � � A2L

^ ^ & ^

AL1 AL2
� � � ALL

2
66664

3
77775

b1

b2

^

bL

8>>>><
>>>>:

9>>>>=
>>>>;
¼

0

0

^

0

8>>><
>>>:

9>>>=
>>>;

(20)

The explicit expression for sub-vectors [bj] can be described as follows:

bj
¼

cj
0

cj
1

sj
1

^

cj
M

sj
M

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

, (21)

The explicit expression for the sub-matrices of Agj can be written in the following form:

@
@n Mcð1Þ0 ðx

g1
j ,qÞce0ðZg1

j ,qÞ
� �

@
@n Mcð1Þ1 ðx

g1
j ,qÞce1ðZg1

j ,qÞ
� �

� � � @
@n Msð1ÞM ðx

g1
j ,qÞseMðZg1

j ,qÞ
� �

@
@n Mcð1Þ0 ðx

g2
j ,qÞce0ðZg2

j ,qÞ
� �

@
@n Mcð1Þ1 ðx

g2
j ,qÞce1ðZg2

j ,qÞ
� �

� � � @
@n Msð1ÞM ðx

g2
j ,qÞseMðZg2

j ,qÞ
� �

^ ^ & ^
@
@n Mcð1Þ0 ðx

gN
j ,qÞce0ðZgN

j ,qÞ
� �

@
@n Mcð1Þ1 ðx

gN
j ,qÞce1ðZgN

j ,qÞ
� �

� � � @
@n Msð1ÞM ðx

gN
j ,qÞseMðZgN

j ,qÞ
� �

2
66666664

3
77777775

(22)

for the subscript j¼1 and the same expression as Eq. (22) has to be used with Mathieu functions of the third kind for the
subscript ja1.

To calculate Agj of Eq. (22), two tasks need to be done: one is the determination of elliptical coordinates (xgn
j , Zgn

j ),
n¼1,2,yN, of the collocation point with respect to each local elliptical coordinate system. When g¼ j, elliptical
coordinates, (xgn

g , Zgn
g ), can be easily determined, being uniformly distributed along the elliptical boundary. On the other

hand, when gaj, elliptical coordinates (xgn
j , Zgn

j ) can be determined from (xgn
g , Zgn

g ) through the transformation between
two local elliptical systems. First, as shown in Fig. 3, rectangular coordinates in the gth coordinate system are determined



Fig. 3. Collocation point and notation of coordinate transformation.
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from the elliptical ones by Eq. (3) as follows:

xgn
g þ iygn

g ¼ f coshðxgn
g þ iZgn

g Þ (23)

and then the rectangular coordinates in the jth local system can be transformed from the gth local system by

xgn
j

ygn
j

8<
:

9=
;¼Rð�yjÞ TðOj,OgÞþRðygÞ

xgn
g

ygn
g

( )( )
, (24)

where

RðyÞ ¼
cosðyÞ �sinðyÞ
sinðyÞ cosðyÞ

" #
and TðOj,OgÞ ¼

zg
1

zg
2

( )
�

zj
1

zj
2

8<
:

9=
;:

Finally, the elliptical coordinates with respect to the jth elliptical coordinate system are determined by

xgn
j þ iZgn

j ¼ cosh�1
xgn

j þ iygn
j

f

 !
: (25)

By this way, the elliptical coordinates of collocation points with respect to any local elliptical coordinate system can be
easily determined.

The other task is the gradient calculation in Agj. When g¼ j, the element of Agg can be easily determined, for example at
the nth collocation point on the gth boundary, by

@

@n
ðMcð1Þm ðx,qÞcemðZ,qÞÞ ¼ cemðZ,qÞ

@Mcð1Þm ðx,qÞ

hx@x x ¼ xgn
g ,Z ¼ Zgn

g
:

��� (26)

On the other hand, when gaj, it can be done by directional derivative. Before that, the angle of the vector normal to
elliptical boundary at collocation point with respect to each local coordinate system must be determined. When g¼ j, the
angle fgn

g (the definition of the subscript or superscript are same as xgn
g ), as shown in Fig. 3, can be determined by

fgn
g ¼ tan�1 tanZgn

g

tanhxgn
g

 !
: (27)

When gaj, the angle fgn
j , as shown in Fig. 3, is defined by

fgn
j ¼fgn

g þyg�yj, (28)

where yg and yj are orientation angles of the gth and the jth local coordinate system. When gaj, the derivative normal to
the gth boundary with respect to the jth local elliptical coordinate system is determined by

@B

@n
¼rBjUn¼

@B
hx@xj

@B
hZ@Zj

h i cosd
sind

� �
¼

@B

hx@xj

� 	
cosdþ

@B

hZ@Zj

 !
sind, (29)
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where B may be either one of Mcð1Þm ðx,qÞcemðZ,qÞ, Mcð3Þm ðx,qÞcemðZ,qÞ, Msð1Þm ðx,qÞsemðZ,qÞ and Msð3Þm ðx,qÞsemðZ,qÞ and hx¼hZ.
The parameter d in Eq. (29) is defined by

d¼fgn
j �c

gn
j , (30)

where cgn
j is the angle of the unit vector normal to the curves of x¼constant, uxj

, as shown in Fig. 3 (the definition of the
subscript or superscript are same as xgn

j ), defined by

cgn
j ¼ tan�1

tanZgn
j

tanhxgn
j

 !
: (31)

In general, @=@nðMcð1Þm ðx,qÞcemðZ,qÞÞ at (xgn
j , Zgn

j ) can be explicitly expressed as

cemðZ,qÞ
@Mcð1Þm ðx,qÞ

hx@x

 !
cosdþ Mcð1Þm ðx,qÞ

@cemðZ,qÞ

hZ@Z

� 	
sind x ¼ xgn

j
,Z ¼ Zgn

j
:

��� (32)

Finally, the normal derivative with respect to any local elliptical coordinate system can be exactly calculated without
any truncation problem which inevitably occurred in using the addition theorem. When g¼ j in Eq. (31), cgn

g equals to fgn
g ,

the parameter d becomes zero and then Eq. (32) reduces to Eq. (26).
After determining the element of the linear algebraic system, based on the direct-searching scheme [24], the natural

frequencies are determined by detecting the drop of the minimum singular value of Eq. (20) by performing a frequency
sweep. In our approach, two steps are employed. In the first step, a larger frequency interval Dk is taken. For example, the
value of 0.01 is chosen to sweep the frequency range of our concern. For the second step, a local sweep with a smaller
frequency step is applied depending on the precision requirement of the considered problem. For instance, the value of
0.0001 is adopted in this paper. That is to say that an adaptive Dk scheme is used. Once the eigenvalues are found, the
associated mode shapes can be obtained by substituting the corresponding eigenvectors (i.e. the coefficients of the
multipole expansion) into the multipole expansion for the acoustic pressure, Eq. (17).

5. Numerical results and discussions

To demonstrate the validity of the proposed method, a FORTRAN code was implemented to determine natural
frequencies and modes of an acoustic cavity with multiple elliptical boundaries, using the subroutines of the Mathieu
function provided by Zhang and Jin [10]. For the simple geometries such as an elliptical cavity or a confocal elliptical
annulus cavity, the analytical eigensolutions were derived and used to verify the proposed method. The same problem was
independently solved by using the commercial finite-element code ABAQUS [25] for comparison. The acoustic elements of
type AC2D3 were employed to model the acoustic cavity. In all cases, the boundaries are subject to the sound-hard or
Neumann boundary conditions and c is assumed to be one, that is, the wavenumber equals to the natural radian frequency
in the following numerical examples.

Case 1. An elliptical cavity

The sound-hard boundary condition of an elliptical cavity gives

@Pðx,qÞ

@x

����
x ¼ x1

¼ 0: (33)

Substituting Eq. (15) into Eq. (33) yields

X1
m ¼ 0

cmcemðZ,qÞ
@Mcð1Þm ðx,qÞ

@x
þsmsemðZ,qÞ

@Msð1Þm ðx,qÞ

@x

����
x ¼ x1

¼ 0
(34)

for 0rZo2p. To obtain the nontrivial solution for the coefficients cm and sm, we have

@Mcð1Þm ðx,qÞ

@x

����
x ¼ x1

¼ 0, m¼ 0,1,2,. . .
(35)

for even modes and

@Msð1Þm ðx,qÞ

@x

����
x ¼ x1

¼ 0, m¼ 1,2,. . .
(36)

for odd modes, which are the characteristic equations, their solutions giving the eigenvalues.
A numerical example of an elliptical cavity with a¼1.0 and b¼0.5 as shown in Fig. 4 is first considered where the radial

coordinate of its boundary x1 is constant, being 0.5493 and the interfocal distance 2f is 1.732. Figs. 5 and 6 are plots of the
left hand side functions of Eqs. (35) and (36). Since f and x1 are given, instead of the parameter q, the wavenumber k is used
as the x-axis and zeros of these functions, keij shown in Fig. 5 and koij in Fig. 6, indicate the even and the odd eigenvalues,
respectively. The subscript denotes the mode type defined as follows: the first parameters, e and o, denote the mode shape



Fig. 4. An elliptical cavity.
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Fig. 5. Zeros of the characteristic equation of even modes for an elliptical cavity.

W.M. Lee / Journal of Sound and Vibration 330 (2011) 4915–49294922
having symmetry and anti-symmetry with respect to the major axis, respectively, the second parameter denotes the order
of Mathieu functions, equaling to the number of nodal line, which can be seen from the following mode shapes, and the
third one, for example j, denotes the jth zero of the characteristic equation. The lower eight natural modes versus the
number of coefficients of the multipole expansion for this case are shown in Fig. 7 where the mode type is in parentheses.
From this convergence analysis, the required number of coefficients, M, just equals to the number of nodal line of the
corresponding natural mode due to its analytical nature. It demonstrates that the present method has a high rate of
convergence. Consequently, only four coefficients (M¼4) is sufficient to capture the lower eight modes. It can be seen from
numerical results that the number of coefficients used will only influence the number of mode appeared, but the value of
natural frequency of the captured mode can be well predicted. Fig. 8 shows the minimum singular values of the influence
matrix of Eq. (20) versus the wavenumber k. Since the direct-searching scheme is used, the drop location indicates possible
eigenvalues, for example 1.6736 being the first natural mode. From viewing Figs. 5, 6 and 8, the drop locations of Fig. 8
agree with zeros of the characteristic equations of Figs. 5 and 6. No spurious eigenvalues are found in the proposed results
since a complete basis is employed in our formulation, leading to a full-rank linear algebra system.

For this case, the 6604 elements and 3403 nodes were used to generate the FEM model and solved the same problem.
Fig. 9 shows the lower seven natural modes by using the present method, the FEM and the analytical method and indicates
good agreements. The dashed line denotes the nodal line and, as mentioned previously, its number equals to the order for
the Mathieu functions. Numerical results show that the natural frequencies of the present method match better with those
of the analytical method than those of the ABAQUS. After comparing with the mesh size of the FEM model, the
computational efficiency and convergence of the present method over the FEM is evident.

Case 2. A confocal elliptical annulus cavity

The sound-hard boundary condition of a confocal elliptical annulus cavity gives

@Pðx,qÞ

@x

����
x ¼ x1

¼ 0 and
@Pðx,qÞ

@x

����
x ¼ x2

¼ 0 (37)
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Substituting Eq. (17) with L¼2 into Eq. (37) and recollecting the terms yield

@
@x Mcð1Þm ðx1,qÞ @

@x Mcð3Þm ðx1,qÞ

@
@x Mcð1Þm ðx2,qÞ @

@x Mcð3Þm ðx2,qÞ

2
4

3
5 c1

m

c2
m

( )
¼

0

0


 �
, m¼ 0,1,2,. . . (38)

and

@
@x Msð1Þm ðx1,qÞ @

@x Msð3Þm ðx1,qÞ

@
@x Msð1Þm ðx2,qÞ @

@x Msð3Þm ðx2,qÞ

2
4

3
5 s1

m

s2
m

( )
¼

0

0


 �
, m¼ 1,2,. . . (39)

for 0rZo2p. To obtain the nontrivial solution for the coefficients c1
m, c2

m, s1
mand s2

m, separating real and imaginary parts of
Eqs. (38) and (39) gives

@

@x
Mcð1Þm ðx1,qÞ

@

@x
Mcð2Þm ðx2,qÞ�

@

@x
Mcð2Þm ðx1,qÞ

@

@x
Mcð1Þm ðx2,qÞ ¼ 0, m¼ 0,1,2,. . . (40)



1 2 3 4 5 6 7
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

 M
in

im
um

 S
in

gu
la

r V
al

ue

Wave number (k)

1.8736 

Fig. 8. The minimum singular value s1 versus k for an elliptical cavity.

Mode No. 1 2 3 4 5 6 7 
Mode 
type 

e11 e21 o11 o21 e31 o31 e41 

The present 
Method

1.8736 3.4190 3.5354 4.6412 4.9291 5.8352 6.4180 

ABAQUS  
(No. of  

elements =6604)

1.8737 3.4188 3.5347 4.6395 4.9275 5.8317 6.4139 

k (Analytical 
method)  

1.8736 3.4191 3.5355 4.6414 4.9292 5.8354 6.4182 

Fig. 9. The lower seven natural modes for an elliptical cavity by using the present method, the FEM and the analytical method.
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for even mode and

@

@x
Msð1Þm ðx1,qÞ

@

@x
Msð2Þm ðx2,qÞ�

@

@x
Msð2Þm ðx1,qÞ

@

@x
Msð1Þm ðx2,qÞ ¼ 0, m¼ 1,2,. . . (41)

for odd mode, which are the characteristic equations, zeros of these equations giving the eigenvalues.
A numerical example of a confocal elliptical annulus cavity with a1¼1.4434, b1¼1.1547, a2¼1.0 and b2¼0.5 as shown

in Fig. 10 is presented where the interfocal distance 2f is 1.732, and the radial coordinates of the outer and the inner
ellipse, x1 and x2, are 1.0986 and 0.5493, respectively. Figs. 11 and 12 are plots of the characteristic equations of Eqs. (40)
and (41) and zeros of these equations provide the analytical eigenvalues. Fig. 13 presents the lower eight natural modes
versus the number of coefficients and still shows fast-rate convergence for this case. It indicates that the appearance of the
predicted mode depends only on the number of coefficients, which equals to that of the nodal line or the order of the
Mathieu function. Fig. 14 shows the minimum singular values of the influence matrix of Eq. (20) versus the wavenumber k.
For this case, the 15 548 elements and 8045 nodes were used to generate the FEM model. Fig. 15 shows the lower seven
natural modes by using the present method, the FEM and the analytical method and indicates good agreements.

Case 3. An elliptical cavity with two elliptical cylinders

In order to demonstrate the generality of the present method, an elliptical cavity with two elliptical cylinders is
considered as shown in Fig. 16, where a1¼1.4, b1¼1.1, a2¼0.3, b2¼0.2, a3¼0.4 and b3¼0.2. The center coordinates of the
two elliptical cylinders are (0.7, 0) and (�0.4, 0.3), respectively, with respect to the center of outer ellipse. The angle of
orientation of the two elliptical cylinders are p/6 and 0, respectively. Unlike the previous cases, the closed-form
characteristic equation for this case is not available due to its complicated geometry. The same problem is also solved
by using the FEM (ABAQUS) and its model needs 18 903 elements in order to obtain acceptable results for comparison.
Fig. 17 shows the lower seven natural modes versus the number of coefficients of the multipole expansion where the
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Fig. 11. Zeros of the characteristic equation of even modes for a confocal elliptical annulus cavity.
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Fig. 12. Zeros of the characteristic equation of odd modes for a confocal elliptical annulus cavity.
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dashed line denotes the results provided by the FEM. Not only the accuracy of predicted eigenvalues but also the
appearance of their corresponding modes depends on the number of coefficients used. Specifically, the more the number of
coefficients is, the more accurate the natural frequency is. From the convergence analysis, five coefficients are enough to
capture the lower seven natural modes. It shows that the convergence of the present method is still fast even for this
complicated configuration. Due to the complicated form of the addition theorem for the Mathieu functions, the
corresponding convergence results for this case are not available in the literature. But the convergence results for those
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Fig. 14. The minimum singular value s1 versus k for a confocal elliptical annulus cavity.

Mode No. 1 2 3 4 5 6 7 
Mode 
type 

o11 e11 o21 e21 o31 e31 o41 

The present 
Method

0.8926 1.0643 1.9216 1.9809 2.8947 2.9135 3.8345 

ABAQUS 
(No. of   

elements =15548)

0.8928 1.0643 1.9218 1.9809 2.8946 2.9133 3.8339 

k (Analytical  
method ) 

0.8926 1.0644 1.9216 1.9810 2.8948 2.9136 3.8347 

Fig. 15. The lower seven natural modes for a confocal elliptical annulus cavity by using the present method, the FEM and the analytical method.
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Fig. 17. The lower seven natural modes versus the number of coefficients of the multipole expansion for an elliptical cavity with two elliptical cylinders.
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Fig. 18. The minimum singular value s1 versus k for an elliptical cavity with two elliptical cylinders.
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with circular boundaries, using the addition theorem of the Bessel functions, can be found in Ref. [20]. It shows that the
two approaches have fast rate of convergence. However, the present method is clear in formulation and applicable in
practice. By using six coefficients (M¼6), the minimum singular values of the influence matrix of Eq. (20) versus the
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Fig. 19. The lower seven natural modes for an elliptical cavity with two elliptical cylinders by using the present method and the FEM.
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Fig. 20. The minimum singular value s1 of the higher modes versus k for an elliptical cavity with two elliptical cylinders.

Table 1
The higher eigenvalues of an elliptical cavity with two elliptical cylinders by using the present method and FEM.

Eigenvalue Present method FEM(ABAQUS)

19 739 nodes 9689 nodes 4337 nodes

K8 4.0681 4.0678 4.0675 4.0666

K9 4.1328 4.1324 4.1320 4.1310

K10 4.1563 4.1559 4.1555 4.1546

K11 4.7378 4.7372 4.7366 4.7349

K12 5.0216 5.0207 5.0198 5.0175

K13 5.0249 5.0240 5.0231 5.0206

K14 5.4355 5.4343 5.4331 5.4301

K15 5.7744 5.7732 5.7720 5.7690

K16 5.8077 5.8060 5.8041 5.7999

K17 5.9118 5.9101 5.9085 5.9038
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wavenumber k is shown in Fig. 18. Fig. 19 shows the lower seven natural modes by using the present method and the FEM.
Excellent agreement between the results of the present method and those of the ABAQUS is observed.

To further illustrate the performance of the present method in the high frequency range, the next ten, the 8th–17th,
natural frequencies are determined by using the proposed method and FEM for comparison. To calculate the higher natural
frequencies, more coefficients (M¼10) should be used to obtain accurate results. Fig. 20 shows the minimum singular
values of the higher modes versus the wavenumber k, where the troughs indicate eigenvalues such as the 8th natural
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frequency 4.0681. Table 1 summarizes the 8th–17th natural frequencies of the present method and FEM. In comparison to
the results provided by various finite element meshes, the present results show excellent accuracy.

6. Conclusions

A semi-analytical approach has been proposed and successfully applied to solve the eigenproblem of an acoustic cavity
with multiple elliptical boundaries. Natural frequencies and modes are determined by using the multipole method, the
coordinate transformation, the directional derivative and the singular value decomposition (SVD). Instead of using the
addition theorem, the calculation of the multipole expansion is directly calculated in each coordinate system when
considering problems with a multiply-connected domain. The proposed algorithm is easily applicable to the problem with
multiple elliptical boundaries free of the complicated formulation and associated numerical calculation caused by the
addition theorem of Mathieu functions. For the simple geometries such as an elliptical cavity and a confocal elliptical
annulus cavity, the results from the proposed methodology agree with those of the analytical method. For the complicated
case of an elliptical cavity with two elliptical cylinders, the proposed results match well with those of the finite element
method by using the ABAQUS code where a lot of elements were required to obtain acceptable solutions for comparison. It
follows from several numerical experiments that the proposed formulation does not yield spurious eigenvalues. Numerical
results demonstrate that the present method has good accuracy and fast rate of convergence. It may be worth mentioning
that the proposed method can be extended to the 3D cavities or exterior (or scattering) problems without any difficulties.
They are among our further research goals.
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