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ABSTRACT 

The scattering of plane SH-wave from a partially debonded shallow cylindrical elastic inclusion in half 
space is investigated in this paper by complex function method and expansion method of wave function.  
The debonding regions are considered as multiple arc-shaped interface cracks with non-contacting faces.  
Firstly, in the inclusion district, the standing wave function in the elastic inclusion with unknown coeffi-
cients which satisfies the boundary condition is constructed and generated into the Fourier series; in the half 
space, the stress and displacement boundary condition around the elastic inclusion can be modeled as the 
same as the standing wave function in the elastic inclusion.  Then, a set of infinite algebraic equations can 
be obtained around the same boundary and the solution of problem can be gained.  In the end, numerical 
examples of the surface displacement are provided and discussed.  It is found that the interface cracks can 
raise the surface displacement amplitudes to a certain degree. 

Keywords : Scattering of plane SH-wave, Multiple interface cracks, Complex function method, The 
surface displacement, Half space. 

1.  INTRODUCTION 

The problem of the scattering and diffraction of 
plane SH-wave by the underground structures has been 
attracted much research attention.  In the two-    
dimensional medium, the earlier reference to the ana-
lytic solution of the scattering of plane SH-wave by an 
underground inclusion existed in the article concerning 
an underground circular tunnel [1].  The analysis for 
cavities in the infinite space [2] and a cavity in a half 
space [3] were investigated.  Other analytic solutions 
have been developed and applied to cavities of circular 
shape [4-6].  Dravinski [7] applied a boundary integral 
approach for irregularly shaped inclusions based on 
Green’s functions.  Using the weighted residual 
method, M. E. Manoogian [8] approached the scattering 
of plane SH-wave by an underground elastic inclusion 
of arbitrary shape in half-space.  Lee [9] studied the 
three-dimensional spherical cavity in half-space.  Re-
cently, Chen [10,11] investigated the scattering of 
waves in a semi-analytical method. 

However, it is noted that partial debonding may oc-
cur at the interface due to the low adhesion strength.  
So, in recent years, many scholars mostly focused on 
the dynamic analysis of the debonded inclusions.  The 
wave scattering problems of a partially debonded cir-
cular cylinder were researched by Coussy [12,13], 
Belyaev [14], Yang and Norris [15-17] and Wang 
[18-20], including the cases of a circular liner partially 
debonded from a cavity [21] and a semi-cylindrical 

foundation embedded in a half-space [22].  Coussy [23] 

firstly studied the scattering of plane SH-wave by a 
partially debonded rigid elliptic inclusion using the 
conformal map technique and perturbation method and 
gave the far-field solution for the long-wavelength limit.  
In reference [24], the problem of an elliptic crack sub-
jected to SH-wave was solved by using wave function 
expansion method in conjunction with singular integral 
equation technique, and then with this method, the case 
of an elastic and rigid elliptic inclusion with material 
constants slightly different to those of the matrix [25].  
But few literatures have been found concerning 
debonded inclusions which perfectly buried in half 
space. 

In this paper, the scattering of plane SH-wave from a 
debonded cylindrical elastic inclusion in half space is 
investigated.  Some examples of the surface displace-
ment are given and the influences by the inclusion, the 
incident wave and the debonding regions are discussed. 

2.  THE ANALYTIC MODEL 

The local model to be studied is shown in the Fig. 1, 
which presents a partially debonded cylindrical elastic 
inclusion in half space impacted by the SH-wave with 
the angle α0.  The distance from the inclusion center to 
the horizontal interface is marked as h.  Several 
debonding regions exists around the interface of the 
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Fig. 1 The model of a partially debonded cylindrical 

elastic inclusion in half space 

inclusion.  Regarding the debonding parts as the non- 
contacting cracks, the cracks can be numbered from 1 
to t.  Accordingly, the starting and the end point can be 
noted θ2t−1, θ2t separately, in which, t is the number of 
the debonding region.  In this subject, the whole dis-
trict is divided into two parts.  Figure 2 presents for 
the partially debonded cylindrical elastic inclusion, just 
medium II, with the shear modulus of elasticity, μ2, the 
mass density ρ2.  Figure 3 shows a circular hole in half 
space, noted as medium I, the shear modulus of elastic-
ity and the mass density can be written as μ1, ρ1. 

3.  FUNDAMENTAL THEORIES 

3.1  Motion Equations 

The dependence of displacement function W on time 
is e−iωt and W satisfies the following governing equa-
tion: 

 
2 2

2 
2 2 0W W k W

x y
∂ ∂+ + =
∂ ∂

 (1) 

where / sk c= ω , /sc = μ ρ , ω is the circular fre-
quency of displacement W (x, y, t) and cs stands for the 
shear wave velocity, and ρ, μ are the mass density and 
the shear modulus of elasticity respectively.  The cor-
responding stresses are displayed as: 

  ,   xz yz
W W
x y

∂ ∂τ = μ τ = μ
∂ ∂

 (2) 

Used by the complex variables  ,  z x iy z x= + = −  
iy , Eqs. (1) and (2) can be expressed in the complex 
plain  ( , )z z as : 
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Fig. 2  The cylindrical elastic inclusion region 
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Fig. 3  The circular cavity in half space 

The stress expressions in Eq. (4) can also be written 
in polar coordinate system as: 
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3.2  Subordinate Problems 

According to reference [26], Figs. 2 and 3, in district 
II,standing wave function is constructed which satisfies 
the condition of stress free on the debonding regions, 
stress and displacement continuous with medium on the 
bonded region.  We take it as: 
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In which, Cm are unknown coefficients, W0 delegates 
the maximum value of the standing wave, which is 
given as 1.0 in this paper. 

In general, the standing wave can be written as: 
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Wherein, Dn are unknown coefficients. 
Then, we can generate the Eq. (6) into the Fourier 

series in [−π, π]: 
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Compared with the Eqs. (7) and (8), the related coef-
ficients can be expressed as: 
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According to the Eq. (8), the standing wave and the 
stress fields: 
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In district I, shown as Fig. 2, the scattering wave ex-
cited by the circular cavity W(s) can be constructed by 
the symmetry of the scattering wave, the related dis-
placement field and stress field ( )s

rzτ , ( )s
zθτ  can be writ-

ten as [27]: 
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In which, Am are unknown coefficients, which can be 
determined by the boundary condition. 

4.  SOLUTION OF PROBLEM 

In a complete elastic half space, the incident steady 
plane SH-wave W(i) would be reflected from the inter-
face.  Both angle of incidence and reflection have the 
same value α0, as shown in Fig. 1.  In the complex 
plane, W(i) and W(r) can be given by: 
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The scattering wave W(s) has been obtained in Eq. 
(14). 

Then, the total wave field in domain I is: 

 ( ) ( ) ( )i r sW W W W= + +  (19) 

The corresponding stress can be written as: 
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On the “C ” boundary (Fig. 3), we have: 

 ( ) ( ) ( ) ( )i r s stW W W W+ + =  (21) 

(8)
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 ( ) ( ) ( ) ( )i r s st
rz rz rz rzτ + τ + τ = τ  (22) 

On the “ C ” boundary (Fig. 3), we have: 

 ( ) ( ) ( ) ( )0i r s st
rz rz rz rzτ + τ + τ = = τ  (23) 

From Eqs. (21) and (23), we can summary that on the 
whole boundary (“C ” and C ):   

 ( ) ( ) ( ) ( )i r s st
rz rz rz rzτ + τ + τ = τ  (24)  

In which, the independent variable θ ranges from −π 
to π. 

According to the solution of reference [26], the un-
known coefficients Am and Cm can be determined by the 
Eqs. (21) and (24). 

5.  THE SURFACE DISPLACEMENT 
AMPLITUDES 

Impacted by incident steady-state plane SH-wave, it 
is significant to study the surface displacement in the 
geology and the underground engineering.  Effected 
by the incident SH-wave, the whole wave field in the 
half space can be expressed as: 

 ( ) ( ) ( ) ( )t i r sW W W W= + +  (25) 

The nondimensional frequency η can be defined as: 

 1 2 / /R k Rη = λ = π  (26) 

In which, λ is the length of wave, R is the character-
istic dimension of the elastic inclusion.  For the circu-
lar elastic inclusion, R is the radius of the circular in-
clusion.  Additionally, η is a dimensionless number. 

6.  NUMERICAL EXAMPLES AND 
DISCUSSIONS 

In this section, numerical examples for the surface 
displacement amplitudes are provided to show the dis-
ciplines of this subject.  In the practical engineering, 
two kinds of familiar inclusions are the steel inclusion 
in granite medium and the concrete inclusion in granite 
medium.  They present for two models of different 
characteristics. 

Figure 4 shows the displacement amplitudes plotted 
on the horizontal interface above an elastic inclusion 
without any debonding region.  The displacements are 
provided with the changes of the dimensionless x/a.  
The relate parameters are μ2 / μ1 = 1.0 / 6.0, η = 2.0,   
ρ2 / ρ1 = 2.0 / 3.0, h / R = 1.5.  Figure 5 represents for the 
surface displacement on the ground above an elastic 
inclusion used by the weighted residual method [8].  
The numerical results obtained in this paper (in Fig. 4) 

are consistent with the reference [8].  
Figure 6 expresses the displacement amplitudes on the 

horizontal ground above a circular cavity with the pa-
rameters h / R = 1.1, η = 1.25, μ2 / μ1 = 0.0, ρ2 / ρ1 = 1.0.  
Figure 7 stands for the surface displacement on the ground 
above a circular cavity [27].  The results in Fig. 6 are also 
close to the outcome of reference [27] in Fig. 7. 

In order to describe the effects by the debonding re-
gion, it is necessary to display the surface displacement 
amplitudes at two situations: With debonding region 
and without it. 

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

 /x R

 α
0
=0o

 α
0
=30o

 α
0
=60o

 α
0
=90o

W
(

t)

 

Fig. 4 The surface displacement amplitudes on the 
horizontal interface above a circular inclusion: 
h / R = 1.5, μ2 / μ1 = 1.0 / 6.0, ρ2 / ρ1 = 2.0 / 3.0, η 
= 2.0 

 

Fig. 5 The surface displacement amplitudes provided 
in reference [8] with the same parameters as 
Fig. 4 
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Fig. 6 The surface displacement amplitudes on the 

horizontal interface above a circular cavity:  
h / R = 1.1, μ2  / μ1 = 0.0, ρ2  / ρ1 = 1.0, η = 1.25 

 

Fig. 7 The surface displacement amplitudes provided 
in reference [27] with the same parameters as 
Fig. 6 

From Figs. 8 to 15, the ground surface displacements 
with a steel inclusion impacted by SH-wave are dem-
onstrated.  As shown in Figs. 16 to 19, the surface 
displacements with a concrete inclusion scattered by 
SH-wave are shown. 

In which, the Figs. 8 to 11 represent the surface dis-
placements in the low frequency (η = 0.25) with dif-
ferent angle α0 of incident SH-wave.  The angles of 
the debonding region are: θ1 = 0°, θ2 = 30°, θ3 = 150°, θ4 

= 180°.  From the numerical results, it is seen that the 
debonding region has slight influence to the surface 
ground in the low frequency compared with the situa-
tion without the debonding region.  The incident angle 
effects largely on the surface displacement.  For ex-
ample, with α0 = 0°, the surface displacement amplitude 
can get 3.0, which is larger than the result with α0 

= 90°.   
As the increasing of α0, the surface displacement ef-

fected by the SH-wave changes to some extent.  When 
the SH-wave attacks vertically, the value of displace-
ment changes in a small range around 2.0, which has 
slight effects on the surface ground.  The essential 
reason for this phenomenon is the energy distribution of 
the SH-wave.  With low α0, the wave energy could 

 
Fig. 8 The surface displacement amplitudes on the 

horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 3.23, ρ2 / ρ1 = 1.52, η = 0.25, α0 = 0° 
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Fig. 9 The surface displacement amplitudes on the 

horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 3.23, ρ2 / ρ1 = 1.52, η = 0.25, α0 = 
30° 

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

 /x R

 without debonded region
 with debonding region

( θ
1
=0o

,θ
2
=30o,θ

3
=150o

,θ
4
=180o

)
 

SH-wave 
α0

θ 1

θ 2θ 3

θ 4

W
(

t)

 

Fig. 10 The surface displacement amplitudes on the 
horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 3.23, ρ2 / ρ1 = 1.52, η = 0.25, α0 = 
60° 

assemble in the region of x/a < 0.0, due to the action of 
surface and the inclusion, the accumulated energy may 
act on the surface and enlarge the nearby displacement.  
So, the displacement in this region (x/a < 0.0), the dis-
placement could even reach 3.0.  On the account of the  

| W
(t)

 | 

x/R 

α0 = 0° 
α0 = 30° 
α0 = 60° 
α0 = 90° 

η = 1.25
h / R = 1.1



416 Journal of Mechanics, Vol. 25, No. 4, December 2009 

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

 /x R

 without debonded region
 with debonded region

( θ
1
=0o

,θ
2
=30o,θ

3
=150o

,θ
4
=180o

)
 

SH-wave 
α0

θ 1

θ 2θ 3

θ 4

W
(

t)

 

Fig. 11 The surface displacement amplitudes on the 
horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 3.23, ρ2 / ρ1 = 1.52, η = 0.25, α0 = 
90° 

 

Fig. 12 The surface displacement amplitudes on the 
horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 3.23, ρ2 / ρ1 = 1.52, η = 1.25, α0 = 0° 
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Fig. 13 The surface displacement amplitudes on the 
horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 3.23, ρ2 / ρ1 = 1.52, η = 1.25, α0 = 
30° 
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Fig. 14 The surface displacement amplitudes on the 
horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 3.23, ρ2 / ρ1 = 1.52, η = 1.25, α0 = 
60° 
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Fig. 15 The surface displacement amplitudes on the 
horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 3.23, ρ2 / ρ1 = 1.52, η = 1.25, α0 = 
90° 

release of much energy, in the region of x/a > 0.0, the 
displacement appears stable relatively with the value 
changing in the range of 2.0.  However, with α0 = 90°, 
the whole wave energy could allocate averagely on the 
surface neighboring the inclusion, therefore, the dis-
placement amplitudes linger around 2.0 in the two re-
gions (x/a < 0.0 and x/a > 0.0). 

The Figs. 12 to 15 display the surface displacement 
value in high frequency (η = 1.25).  The angles of the 
debonding region are also: θ1 = 0°, θ2 = 30°, θ3 = 150°, 
θ4 = 180°.  Relative to the low frequency state, the 
displacement gets larger and shaken.  The surface dis-
placement in the facing wave region (x/a < 0.0) appear 
vibrate seriously which shows an obvious dynamical 
feature.  With the debonding region, the maximal 
value can get 3.82 around the area x/a = 0.0 with α0 

= 0°, which is 27% larger than the value in low 
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Fig. 16 The surface displacement amplitudes on the 

horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 0.38, ρ2 / ρ1 = 0.77, η = 1.25, α0 = 0° 
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Fig. 17 The surface displacement amplitudes on the 

horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 0.38, ρ2 / ρ1 = 0.77, η = 1.25, α0 = 
30° 

frequency with the same incident angle.  It is sug-
gested that the wave might supply more energy to effect 
on the surface and promote the displacement in the 
facing region with high frequency.  However, when 
the wave arrives at the back wave region (x/a > 0.0), the 
energy has released a large part and effects weaker on 
this region.  Compared with the situation without the 
debonding region, in the high frequency, the numerical 
values with debonding region are distinctly larger than 
the ones without debonding region with low incident 
angle α0.  For instance, with α0 = 0°, the surface dis-
placements in the facing region are nearly 20% ∼ 30% 
larger than the values without debonding region, which 
suggesting that the debonding region participates the 
energy distribution and enhances the surface displace-
ments in high frequency.  Therefore, the influence by 
the debonding region in high frequency can not be ne-
glected in the practical engineering.   

As showed in Figs. 16 to 19, the displacement am-
plitudes with the concrete inclusion are listed in high 
frequency (η = 1.25).  Compared with the situation of 
the steel inclusion, with the debonding region, the dis-
placement value has a peak around the district 
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Fig. 18 The surface displacement amplitudes on the 
horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 0.38, ρ2 / ρ1 = 0.77, η = 1.25, α0 = 
60° 
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Fig. 19 The surface displacement amplitudes on the 
horizontal interface above an inclusion: h / R 

= 1.5, μ2 / μ1 = 0.38, ρ2 / ρ1 = 0.77, η = 1.25, α0 = 
90° 

x/a = −2.0 with the maximum 5.41 with α0 = 0°.  It is 
implied that the softer inclusion such as the concrete 
inclusion might act more roughly than the harder one 
represented by the steel inclusion. 

7.  CONCLUSIONS 

In this paper, the scattering of plane SH-wave from a 
partially debonded cylindrical elastic inclusion in half 
space is approached by complex function method and 
expansion method of wave function.  However, we 
mainly focus on the ground motion by the debonding 
districts.  But for the characteristic of the crack tips, 
such as the singularity and the concussive features, an-
other approach is needed.  From the above analysis, 
we can conclude that: 
 1. The frequency of the SH-wave takes an important 

part in the scattering problem in half space.  With 
the low frequency, the surface displacement is less 
than the situation in high frequency.  With the 
high frequency, the surface displacement could 
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appear shaken, this is an obvious dynamical fea-
ture. 

 2. The angle of the incident SH-wave α0 has distinct 
effects on the surface displacement.  With α0 = 0°, 
the value of the displacement could get the larger 
peak than the other incident angle.  The key rea-
son for this appearance is the energy distribution.  
Impacted by SH-wave tipsily, the main energy 
could gather on the facing wave region (x/a < 0.0) 
and result in the abrupt augment of the displace-
ment.  However, when the SH-wave attacks the 
medium vertically, the energy might distribute 
more averagely on the surface around the inclusion 
and the displacement value displays smaller. 

 3. The position of the debonding region has a sig-
nificant influence to the surface displacement.  
When the debonding region is in the facing wave 
region, the surface displacement could be enlarged 
distinctly with low α0.  But, when the debonding 
region is stated in the back wave region (x/a > 0.0), 
the influence by the debonding region appears 
much smaller. 

 4. The characteristic of the inclusion is also concern-
ful.  Compared with the hard inclusion, the softer 
one such as the concrete inclusion might enlarge 
the surface displacement more easily. 

 5. In this paper, only the surface displacement im-
pacted by the debonding region is researched.  
With regard to the dynamic stress intensity factor, 
it needs to be studied for another subject. 
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