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Abstract In addition to the usual integral kernel in BEEmodified one is introduced. The
formulation for modified one is based on a represt@m in the pure deformable form for the
fundamental solution of concentrated forces. foisd that the modified one can be used to any, case
even if the loadings on the contour are not in ldgpiiim in an exterior boundary value problem
(BVP). The influences of different integral kernt&ssolutions of BIE, particularly, in the Neumann
problem and the Dirichlet problem are addressednétical examples are presented to prove the
assertion proposed. Properties of solutions fragrugage of the modified integral kernel are studied
in detail. The influences of different integral kelsito the degenerate scale are discussed and
numerical results are provided. It is found that ithfluences of the constant involved in the inddgr
kernels are significant. For the cases of thetalignd the rectangular contour, the influencethéo
degenerate scale are studied with numerical results
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1. Introduction

The boundary integral equation (abbreviated as B widely used in elasticity, and the
fundamental for BIE could be found from [Rizzo 19€Fuse 1969; Brebbia et al 1984; Jaswon and
Symm 1977]. Recently, development of the boundiEment method was summarized [Cheng and
Cheng 2005].

There are still some problems in the studglgs. The first problem is the regularity conditio
in the exterior boundary value problem [Brebbialet984]. Generally, the Betti's reciprocal theorem
or the Somigliana’s identity is used for the foratidn of the BIE. In the exterior BVP, if a mutual

work difference integral (abbreviated as MWDI) osudficient large circle vanishes, the regularity
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condition is satisfied. However, this conditiorshit been studied clearly. Once the BIE in plane

elasticity is formulated for the exterior regiomeomust meet a term called the MWDI , or the terms
Dj(cr) (§) 0f Dieq, (§) in Egs. (8) and (18) used below. If the MWDI véais, the regularity
condition at infinity is satisfied. In fact, the MW s a difference of two works, which are defirad
the works done by the fundamental field to the ptalstress field each other. Therefore, the prgpert
of the MWDI depends on the representation of tmelfumental field and the property of the physical
stress field. A general expression for the MWDhfirtwo stress fields was obtained in [Chen 2003].
This will be a theoretical basis in the presentigtu

In fact, it has been proved if the loadiagglied on the contour in the exterior BVP areinot

equilibrium, instead of using the usual integraines U;Z(E,X) (see Eq. (15) below) one should use
the modified OndJ;l(E,X) (see Eqg. (6) below). Two integral kernels have fedifice of constant.

Clearly, two different integral kernels, thégl(E,x) and theUSz(E,x) , will influence the properties

of solutions obtained.

The second problem in this field is the degate scale problem [Chen et al. 2005; He et98l61
Vodicka and Mantic 2008; Chen et al. 2002; Chen%imein 2007]. In the degenerate scale problem,
an improper solution in the Dirichlet problem ofBéxists if the used size is near the critical value

Clearly, the degenerate scale for the individuabfm must depend on the used integral kernels, for

examplethe U;'(€,x) and theU;*(§,x) . This problem was also not investigated in detail
previously.

In this paper, in addition to the usual img¢dcernel U;Z(E,X) (see Eg. (15) below), the modified
one, orUi’}l(E,x) (see Eqg. (6)) is introduced. The formulation for nfiedi one is based on a
representation in the pure deformable form forftielamental solution of concentrated forces. The
two kernelsU;*(§,x) and U;*(€,x) have a difference of constant. It is found thatriodified one,
or U;}l(E,x) , can be used to any case, even if the loadingsenontour are not in equilibrium in an

exterior BVP. The influences of different integkaknels to solutions of BIE, particularly in the



Neumann problem and the Dirichlet problem, are esklrd. The properties of solution by using

Ui*jl(E,x) are discussed in detail. Numerical examples asgnted to prove the assertion proposed.

The influences from the used integral kernels &odbgenerate scale are discussed and numerical
results are provided. It is found that the influesiof the constant in the integral kernels to the
degenerate scale are significant. For the casellitfic and rectangular contour, the influences ar

studied with numerical results.

2. Influences of different kernelsto the solutions of exterior boundary integral equation
2.1 Formulation of two kernels U;*(€,x), U;*(§,x) and thereevant boundary integral
equations
The following analysis depends on the complex Wéeidunction method in plane elasticity
[Muskhelishvili 1953]. In the method, the stresgeg,0,,0,, ), the resultant forces (X, Y) and the
displacements (u, v) are expressed in terms ofctmaplex potentialgf(z) and Y(z) such that

o, +0, =4Req¢'(2)

0, -0, +2i0,, =2[7¢"(2) + '(2)] (1)
f=-Y+iX =@ +2¢ @) + V() 2)
2G(u+iv) =KkQ2) - 2¢ (2) - Y(2) 3)

where z=x+iy denotes complex variable, G is theash&dulus of elasticityk = (3—Vv)/(1+V) is

for the plane stress problents =3 — 4v is for the plane strain problems, andis the Poisson’s ratio.
In the present study, the plane strain conditicessumed thoroughly. In the following, we

occasionally rewrite the displacements “u”, “v"as, u,, 0,,0,,0,, a506;;,5,,0;,, and “x”,
‘y" as X;,X,, respectively.
It is emphasized here that we only constiderexterior BVP. Secondly, the remote tractiars

0, and 0}, are assumed to tend to zero in this studygpr— 0, 0 - Oanday, - 0.



The formulation of BIE is introduced beloditHe concentrated force®)(, R, ) is applied at the

point z=t (Fig. 1(a)) , the relevant complex poiglstare defined by [Muskhelishvili 1953]

E F
¢ (@) =FIn(z-1), Y, (2) = —KkFIn(z-1) _Z__tt 4
where
P +iP,
T2 (5)
21k +1)

In Eq. (4), the subscript(tr) ” denotes the fundamental solution initiated byammrated forces.

Note that the relevant complex potentials showiEy(4) are expressed in a pure deformable form
[Chen and Lin 2008].
A direct substitution from the complex patals shown by Eg. (4) in the proper place willdea

to the following kernel [Chen and Lin 2008]

- _ 1 o _
u; (E,x)—m{ (3-4v)In(n)3, +1,r, - 055} ©)

which is used in a BIE mentioned below.
Without losing generality, we can introdulke BIE for the region between the elliptic contour

“T""and a large circle “CR” (Fig. 1(b)). The observatipoint “£ “is assumed on the elliptic contour

ELIT . For the plane strain case, the suggested Blbearritten as follows [Brebbia et al 1984]
1 % * * .
S+ [P (€x)u; (00 = [ U(E.X)p; (XHS(X) + Dty (€) , (=1.260T) (7)

where Di*(lcm (&) is a mutual work difference integral (abbreviatsdVWVDI ) on a large circle “CR”
and is defined by

Diiery (8) = =, P (€, x)u; (xds(x) + [ UFHEx)p, (x)ds(x), (1,26 0T (8)
In Eqg. (8), “CR” denotes a sufficient large circléwa radius “R”.

In addition, the kernd® (§,x) is defined by [Brebbia et al 1984]
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P (€.x) =~



where Kronecker deltaéij is defined aséij =1 for i=j, 6“. =0 fori#j,and

X~ X, —
1 ‘:1:(:08(1, r,=22 &,

r:
. r : r

=sina (10)

n, =-sinB, n,=cos (11)
where the anglesd” and " " are indicated in Fig. 1.
Even the physical field is caused by a remuilibrium force on the elliptic contour, we have

proved thatD;(ce (§) = 0 (i=1,2) [Chen and Lin 2008]

Dy (8) = =[P (€. x)u; (xps(x) + [ UjH(E,%)p; (xs(x) =0, (=1,260T)  (12)

Therefore, Eq. (7) can be reduced into
%ui (&) + [ B (€. x)u; (xds(x) = [ UJ(E, x)p; (x)ds(x) , (=1,2600T) (13)

It is emphasized here that the displaceme[(tx) in the left hand side of Eq. (13) should be

expressed in the pure deformable form.

In addition, if the same concentrated fer@®, , P, ) is applied at the point z=t (Fig. 1(a)) , the

relevant complex potentials can be defined altaralytby [Muskhelishvili 1953]

G @ =FIn(z-1), Y, (2) =-KFIn(z 1) —% +F (14)

The complex potentials shown by Eq. (14) are d#ffemwith those shown by Eq. (4) by a constknt
in the functiony,, (2) -

Comparing Eq. (4) with Eq. (14), an additibpair of the complex potentia{(z) =0,
(P (2) = F is presented in Eq. (14). Clearly, this pair causestresses anywhere, and represents a

rigid translation. Therefore, it is said that thenpbex potentials shown by Eq. (14) are expressed in
an impure deformable form.
A direct substitution from the complex patals shown by Eq. (14) in the proper place wilde

to the following kernel [Chen and Lin 2008]



*2 _ 1 n
U; (E’X)_—Sn(l—v)G{ 3 4v)|n(r)6ij+pi(j} (15)

Note that, the two kernels have the following rielat

1

U (&, x) - U'(E,x) = méu

(16)

This kernelJ;*(&, x) was cited in any available textbook [Brebbia et@84]. Similarly, from

the kerneIUi*jz(E,x) shown by Eq. (15), the following BIE is obtained

%Ui (€) "‘L Py (€ X)u; (x)ds(x) = jr Ui?(€.x)p; (XHS(X) + Djcqy (€) |+ (=1,260T) (17)
where Dj{, (§) is @ MWDI on a large circle and is defined by

Dite)(€) = =] P (€.x)u; (x)s(x) + [ Uj?(&,x)p; (x)ds(x), (=1,2600T)  (18)
It was proved that when the physical fieldasised by a non- equilibrium force on the elliptic
contour, we haveDf(ZCR) (&) #0 (i=1,2) [Chen and Lin 2008]. Thus, in this cade, BIE (17) cannot

be reduced further.

It was also proved that when the physiieadifis caused by an equilibrium force on the &lip

contour, we haveD:(ZCR) (§) =0 (i=1,2) [Chen and Lin 2008]. Thus, in this case, iE (17) can be

reduced into the following form
%ui (&) + [ B (€.x)u; (xds(x) = [ UP(€,%)p; (x)ds(x) , (i=1,260T) (19)

In the exterior BVP, it is emphasized hibiat the BIE with usage of the kerrid(}l(E,x) shown

by Eq. (6) can be used to any case even the apgphedihgs on the elliptic contour are not in

equilibrium. However, in the exterior BVP, the Bhih usage of the kerndUSZ(E,x) shown by Eq.

(15) can only be used to case that the appliedrgadn the elliptic contour are in equilibrium.

2.2 General propertiesfor the solutionsfrom BIE

As claimed previously, the kernélgl(E,,x) can be used to any case without regarding therlgad
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condition on the elliptic contour. Therefore, foetlxterior boundary value problem the following

BIE is suggested
%ui (&) + [ B (€x)u; (xds(x) = [ UJEX)p, (xds(x) , (=1,260T)  (13)

The problem of equivalence of the soluti@nirBIE and an elasticity solution is studied below.

As stated previously, the physical stress fieldssumed in the pure deformable form. Therefore, if
the u;(€) , u;(x)and p;(x) in Eq. (13) are some boundary values of an elassoiution expressed
in the pure deformable form, those functiang¢) , u;(x)and p;(x) must satisfy the BIE shown by
Eq. (13).

In addition, if theu; (€) , u;(x) and p;(x) in Eq. (13) are some boundary values of an elgstic
solution expressed in the impure deformable folmase functionsu; (€) , u;(x) and p;(x) must not

satisfy the BIE shown by Eq. (13).
This situation can be seen from the followdx@gmple. It is known that, there are three padicu

elasticity solutions, which are as follows

uy’ by’ 1 ® ®
= = , 05=0and p~ =0 20
@ @
u”| _ b7 _ |0 @_ @ —
= = , 0%5=0and p” =0 21

(©) 3 -
b Hb [= {0 om0 52 =0 (1=x,+iy, o) @)

u@ [ 6@ [ x,
Clearly, the stress fields shown by Egs. (20), (£43), represent translations or rotation for theyb

It has been proved that, substituting those digpfents on the contour into left hand term of Eq.

(13) yields
3@+ [ R @0, (B} |, 0 =B %0 (123) ©3)
S - 1 (& X)U; 4 b = O =1.2,

In addition, substituting those tractiops(x) on the contour shown by Egs. (20),(21),(22) ingii

hand term of Eq. (13) yields



U Ui 0p, SO0} |, 0., =0 (24)

After comparing Eq. (23) with (24), which are th& knd right hand terms of Eq. (13) respectively,

the motioned assertion is proved.

In the Neumann problem, the boundary tracti'f)[(x) (7=1,2) are given beforehand. Therefore, in

the case of using the kernel!(€,x) , from Eq. (13) we can obtain the following BIE

%ui(a) + FEXU, (dsx) =g,(8) . (=1,2.£0T) (25)
where
g,(8) =] U ExP, (xds(x) . (=1,2,60T) (26)

In Eq. (26),5j (X) (5=1,2) are the boundary tractions which are gikeforehand.

It is known that BIE shown by Eq. (25) peeses the invertible property. Alternatively spegki
the BIE shown by Eq. (25) can be solved for any rigirtd termg, (§) . However, the obtained
U;(x) (7=1,2) belong to some boundary values of disptzets in an elasticity solution expressed in
the pure deformable form.

Similarly, in the Dirichlet problem, thetndary displacemenu?sj(x) (=1,2) are given

beforehand. Therefore, in the case of using thad{dﬂi*jl(é,x), from Eqg. (13) we can obtain the

following BIE

[ UTE 0P, (xBsx) =h,(§) , (=1,2,£0T) (27)
where

h,(€) =%“u} &)+ [ P (€T, (dsx) ,  (=1,2,£0T) (28)

In Eq. (28),U; (§) (i=1,2) andU,(x) (j=1,2) are the boundary displacements, whictgaren

beforehand.
It is known that BIE shown by Eq. (27) procesthe invertible property only if the degenerate

scale has not been reached [Vodicka and Mantic]280t@rnatively speaking, the BIE shown by Eq.
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(27) can be solved for any right hand telm{¢) only if the degenerate scale has not been reached.

However, the obtaine@, (x) (j=1,2) belong to some boundary values of tradtionan elasticity

solution. Generally, those tractions pjr(x) (7=1,2) may have a resultant force along the aanto

2.3 Numerical examinations for two kernels U*(€,x) and U;?(€,x)in the case of non-

equilibrium loadings on the contour
In order to examine the behavior of the kerng[s(€,x) and U;*(,x), the relevant BIEs are

written below

U@+ [P €U, (80 = [ UPE0p, (s . (=1£07) (19

U@+ [ €U, () = [ UP(E P, (), (=1.260T)  (19)

In all studied problems below, one knowsosed form solution beforehand. Substituting the

results from the known solution, for example, [:q(x) (j=1,2) into right hand term of Eq. (13) will
yield a BIE foru;(x) (j=1,2). The displacements far;(X) (j=1,2) can be solved from the BIE. In

addition, one compares the obtained displacemejr(ns) (j=1,2) with those from the closed form

solution. This will complete the process of companis In the solution of BIE, the used scale is
assumed to be sufficient large that can avoid éding of the used scale to the degenerate scale.

Example 1

The above-mentioned results from theoretinalysis can be examined by the following concrete
examples. In the examples, the ellipse has a rhajpiaxis “a” and minor half-axis “b” (Fig. 1(b))in
computation, the plane strain condition ard 0.3are assumed. The elliptic contour is divided into
120 intervals. For the BIE solution, the constaspliicement and traction are assumed for each
interval.

In the example, we propose the following ptar potentials



¢@2)=9g,AInz, Y@ =-kqAInz, whereA =A +iA, (29)
whereq, is a unit loading. From complex potentials showrEg. (29) and Eq. (2), it is seen that the

following resultant forces are applied
{X +iY},, = =2n(k + g A (30)

on the contour. In this case, the exact solutisritfe displacements and stresses on the boundary
contour can easily obtained from Egs. (1),(3) ar$J.(2

In the Example 1, the examination is perfedrfrom the viewpoint of the Neumann problem.

The loadings applied on the contour,mi(j=1,2) are computed from the complex potentiaksa

by Eq. (29), and the obtained tractiops (j=1,2) are substituted into the right hand tefriq. (13)
(or (19)). Standard numerical technique is usesbtee Eq. (13) (or (19)), and the boundary

displacementsy; (j=1,2) can be evaluated immediately. The cateadldoundary displacements by

using the kerneliJi*jl(E,x) or UEZ(E,X) , and those from the exact solution are expresged b

£,(0), u,= %fz(e) , (atthe pointx =acosd, y =bcosd ) (31)

u, = 9
2G(@L+v)

For the case of b/a=0.25, a=#Q =landA, = 05 , the calculated results using the kernels
U;*(€,x) and U;*(€,x), and the exact results from the closed form swiugire shown in Fig. 2,
where (a)f;(0) .f,(0) ., are from exact solution, or from the complex ptitds Eq. (29) directly,
(b) f,(0)., f,(8)., are from the usage of the kerné]é,l(é,x) and (c)f,(0) ., , f,(0)., are from
the usage of the kerneld;” (&, X) .

It is found from Fig. 2 that the computegults forf,(6) ., ,f,(0) ., from the usage of the
kernel Ual(E,x) are very accurate, which coincide with the resiatisn the exact solution (denoted
by f,(0) .,.f,(0) ) - However, the computed results ig(6)..,, f,(8)., from the usage of the
kernel Uaz (§,x) have much difference with those from the exaattsmh (denoted byf, (6)

ex’

f,(8) o)- Itis also found that the computed resultsfidf).,, f,(6)., have a constant difference
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from fl(e) ex? fz(e) ex”*
Similarly, in the case of b/a=0.25, a#4,=1andA, = 0.5 , the calculated results using the
kernels U;'(€,x) and U;*(€,x), and the exact results from the closed form smiutire shown in

Fig. 3. Similar phenomena as in the previous casebe found.
Figs. 2,3
Example 2
All the conditions used in the Example 1 dilkissed in the present example. However, in the

present example, the examination is performed fiwviewpoint of the Dirichlet problem. The

displacements on the contour, 0y(j=1,2) are computed from the complex potentiatsvat by Eq.
(29), and the obtained displacements(j=1,2) are substituted into the left hand terntgb. (13) (or

(19)). Standard numerical technique is used teesil. (13) (or (19)), and the boundary tractigns

(j=1,2) can be evaluated immediately. The caleddtoundary tractions are expressed by

p,=9,9,0), p,=0,9,(6), (atthe poinx =acosd, x =bcosd ) (32)

For the case of b/a=0.25, a=#Q =1and A, = 0.5 , the calculated results using the kernels
U;(€,x) and U{?(€,x), and the exact results from the closed form smiugire shown in Fig. 4,
where (a)g,(0) .,,9,(0) ., are from exact solution, or from the complex patds Eq. (29) directly,
(b) 9,(8) ., 9,(6) ., are from the usage of the kernél§'(§,x) and (c)g,(6)., , 9,(8)., are from
the usage the kerneld;” (&, X) .

It is found from Fig. 4 that the computeguilts forg, (6) ., 9,(6) ., from the usage of the
kernel U;l(E,X) are very accurate, which coincide with the redintisy the exact solution (denoted
by 0,(0) .. 9,(6) ., )- However, the computed results 19(6)., , 9,(6)., from the usage of the

ex’?

kernel U;Z (§,X) have much difference with those from the exaattsmh (denoted byg, (8)

g2(e) ex)'
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Similarly, in the case of b/a=0.25, a”4 =land A, = 0.5 , the calculated results using the
kernels U;*(&,x) and U;*(&,x), and the exact results from the closed form smiutire shown in
Fig. 5. Similar results as in previous case hawnlfeund. Particularly, in this case, the deviatén
the result by usage of the kerrldez(E,x) can reach a higher value. For example, in the chse
6 = we haveg, (8),,=-1.195 (from the exact solutiony, (6) ., =-1.200 (by using the kernel
Ui'(&,X) ) 9,(8).,=-2.842 (by using the kernel;*(§,X) ), respectively (Fig. 5).

Figs. 4,5
2.4 Numerical examinationsfor two kernels U;'(€,x) and U;*(€,x)in the case of
equilibrium loadings on the contour
As mentioned previously, in the case of equilibrilmadings on the contour, the solutions obtained
from two kinds of BIE shown by Egs. (13) and (19) siribe the same. This conclusion is also
examined by the following examples.

Example 3

In the example, we propose the following pter potentials
A B . .
®2=9,—, Y@=9,— whereA=A,+iA,, B=B,+iB, (33)
Z z

whereq, is a unit loading. From complex potentials showrEdg. (33) we see that the loadings

applied on the contour must be in equilibrium [Muskshvili 1953].

Similarly, in the Neumann problem, the cadtet boundary displacements by using the kernels

U;*(€,x)or U;*(&,x), and those from the exact solution are expresged b

q q .
u=—2=-—f(©, u=—>=22-£,0 t th tXx =aco, x =bcod) 31
1= oaay) @ Uz =gy () (atthe poin ) (31)

For the case of b/a=0.25,a=#0 =1,A, =05, B, =1andB, = 05 the calculated results
using the kernelsU;*(§,x) and U;*(€,x), and the exact results from the closed form smiugire
shown in Fig. 6, where (d)(0) .,.f,(0) ., are from exact solution, or from the complex ptitds
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Eq. (33) directly, (b)f,(0) ., f,(6)., are from the usage of the kernéls'(&,x) and (c)f,(6).,
f,(6) ., are from the usage of the kerndlg* (&, X) .
It is found from Fig. 6 that, the computedults from the usage of the kerr’tdz]l(E,x)or

U;Z (&,x), and those from the exact solution, are mergedthe same curves.

Example 4
All the conditions used in the Example 3 dileissed in the present example. However, in the

present example, the examination is performed fimnviewpoint of the Dirichlet problem. The

displacements on the contour, 0r(j=1,2) are computed from the complex potentialssah by Eq.

(33), and the obtained displacements(j=1,2) are substituted into the left hand terntgt. (13) (or

(19)). The calculated boundary tractions are exga@dy

P, =9,9,(0), p,=09,9,(0) (atthe pointx =acosh, x =bcosd ) (32)

For the case of b/a=0.25,a=4A0 =1,A, =05, B, =1andB, = 05 the calculated results
using the kernelsU;*(€,x) and U;*(€,x), and the exact results from the closed form smiugire
shown in Fig. 7, where (2,(0) .,.9,(6) ., are from exact solution, or from the complex ptitgs
Eq. (33) directly, (b)g,(6) ., 9,(8)., are from the usage of the kernél§'(&,x) and (c)g,(8).,
9,(8) ., are from the usage of the kern&lg* (&, ) .

It is found from Fig. 7 that, the computedults from the usage of the kerrg]'(g,x) or
U;Z (&, x), and those from the exact solution, are mergedthe same curves.

Figs. 6,7

3. Numerical evaluationsfor degenerate scale problemsfor different kernels Ui*jg(E,x)

Instead of two kernel&);'(€,x) and U;*(€,x), a kernelU;°(,X) in a more general form is

defined as
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{- @-av)n3, +1,7, -5} (34

j

rg _ 1
Ui&x)= 8n(l-v)G

where “s” can take any real value.

Clearly, a homogenous equation for the degea scale problem using the kerhéjP (&,x) can
be formulated
J. UP@00p; (xdsx) =0, (=12,600T) (35)

In the formulation, one want to find a particulaessuch that Eq. (35) has a non-trivial solution fo

P, (x), or P (x) # 0. By using relevant solutions in normal scale peahlthe degenerate scale

problem can be solved [Chen et al. 2005; VodicléMantic 2008].

In a recent publication [Chen et al. 20@8fer using two fundamental solutions in the ndrma
scale, the degenerate scale problem can be sdtveds paper, the method suggested in [Chen et al
2009] is used to solve the problems in Examples®bGaiClearly, the degenerate scale must depend on
the assumed constant “s” in Eq. (34).

Example 5

In the example, the ellipse has a major hel-&a” and minor half-axis “b” (Fig.1(b)). In
computation, the plane strain condition & 0.3 are assumed. The elliptic contour is divided into
120 intervals. For the BIE solution, the constaspliicement and traction are assumed for each
interval. For the cases of (1) s=-0.5, 0, 0.5,ah@ 1.5, (2) b/a=0.1, 0.2,...1.0, two degeneratescal

are expressed as
ay =1, 6b/a), a, =f, sb/a) (36)
The computed results fdy (sb/a) andf, (sb/a)are listed in Table 1. From the tabulated results
we see that if the value of “s” changes from —0,9).5, 1.0 to 1.5, the degenerate scale becomes
smaller and smaller.
Example 6
In the example, the rectangular notch hasdthwi2a” and a height “2b” ( Fig. 1(c)). Similarly,

for the cases of: (1) s=-0.5, 0, 0.5, 1.0 and (Bb/a=0.1, 0.2,...1.0, two degenerate scales are

14



expressed as
ay =9, Gb/a), a,, =g, sb/a) (37)
The computed results fa; (sb/a) andg, (sb/a)are listed in Table 2. Similar to the previous

example, if the value of “s” changes from —0.50®, 1.0 to 1.5, the degenerate scale becomesesmall

and smaller

4, Conclusions

From the above-mentioned theoretical analysis hadtimerical examinations we can get the

following conclusions. The kernéﬂ?}l(ﬁ,x) can be used to arbitrary loading on the contour.

However, theU{}Z(E, X) can only be used to the case that the loading®edhtour must be in

equilibrium. It is an effective way to examine @ygasted BIE by using a known solution, particularly
through a solution expressed in the complex pamntin this case, since the solution is known

beforehand, and one can easily judge whether tineulation used in computation is correct or not.

In the case of using the kerrtéfjl(E,x) , properties of solutions form BIE are clearly sadilf

the degenerate scale has not been reached, tichlBigproblem has a unigue solution. Generally, the
computed tractions on the boundary may resultsnltent forces along the contour. In the Neumann
problem, the computed displacements must belotigetboundary values of the displacement field

expressed in the pure deformable form.

In the degenerate scale problem, the congaimvolved in the integral kerndUi*jg(E,X) has a

significant influence to the final results of degeate scale.

References
[Brebbia et al 1984] C. A. Brebbia, J. C. F. TellesC. WrobelBoundary element techniques —
theory and applications in engineeringpringer, Heidelberg, 1984.
[Chen 2003] Y. Z. Chen, “ Analysis of L-integral atietory of the derivative stress field in plane

elasticity”, Inter. J Solids Struct0 (2003), 3589-3602.

15



[Chen et al. 2002] J. T. Chen, S. R. Kuo, J. H. LAmalytical study and numerical experiments for
degenerate scale problems in the boundary elemetiod of two-dimensional elasticityit.
J. Numer. Meth. Enda (2002), 1669-1681.

[Chen et al. 2005] J. T. Chen, S. R. Lin, K. H. Ch&begenerate Scale problem when solving
Laplace’s equation by BEM and its treatmemt, J. Numer. Meh. Eng2 (2005), 233-261.

[Chen and Shen 2007] J. T. Chen, W. C. Shen, “Dexgés scale for multiply connected Laplace
problems”,Mech. Res. Commug4 (2007), 69-77.

[Chen and Lin 2008] Y. Z. Chen, X. Y. Lin, “Regularitpndition and numerical examination for
degenerate scale problem of BIE for exterior probdémlane elasticity”"Eng. Anal. Bound.
Elem.32 (2008), 811-823.

[Chen et al. 2009] Y. Z. Chen, X. Y. Lin, Z. X. WantNumerical solution for degenerate scale
problem for exterior multiply connected regioEng. Anal. Bound. Elen33 (2009), 1316-
1321.

[Cheng and Cheng 2005] A. H. D. Cheng, D.S. Chéhtgritage and early history of the boundary
element method'Eng. Anal. Bound. Elen29 (2005), 286-302.

[Cruse 1969] T. A. Cruse, “Numerical solutionglinee-dimensional elastostatictiter. J. Solids
Struc.5 (1969), 1259-1274.

[He et al. 1996] W. J. He, H. J. Ding, H. C. Huefienerate scale and boundary element analysis of
two dimensional potential and elasticity problen@dmput. Struct60 (1996), 155-158.

[Jaswon and Symm 1977] M. A. Jaswon, G. T. Sytmtegral equation methods in potential theory
and elastostaticsAcademic Press, London, 1977.

[Muskhelishvili 1953] N. I. MuskhelishviliSome basic problems of mathematical theory ofieigst
Noordhoof, Netherlands, 1953.

[Rizzo 1967] F. J. Rizzo, “An integral equatigmpeoach to boundary value problems in classical
elastostatics"Quart. J. Appl. Math.25 (1967), 83-95.

[Vodicka and Mantic 2008] R. Vodicka, V. ManticOn solvability of a boundary integral equation

of the first kind for Dirichlet boundary value pileins in plane elasticity”Comput. Mech41

16



(2008), 817-826.

Table 1. The degenerate scalg =f, (Sb/a)anda,, =f, (5b/a) for an eclipse notch (see Eq. (36) and

Fig. 1(b))

a, =1, 6b/a)

b/a= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
s=
-0.5 2.52541 2.41447 2.30954 2.21105 2.11897 2H3301.95295 1.87824 1.80853 1.74340
0. 1.91291 1.82888 1.74940 1.67479 1.60504 1.53991.47929 1.42270 1.36990 1.32057
0.5 1.44896 1.38531 1.32511 1.26860 1.21577 1.16641.12051 1.07765 1.03765 1.00028
1 1.09754 1.04932 1.00372 0.96092 0.92090 0.88356.84805 0.81628 0.78598 0.75768
15 0.83135 0.79483 0.76029 0.72786 0.69755 0.6692D.64290 0.61830 0.59535 0.57392
a,, =f, Gb/a)

b/a= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
s=
-05 3.97868 3.49681 3.11489 2.80545 2.55005 2.33592.15411 1.99784 1.86219 1.74340
0 3.01371 2.64871 2.35942 2.12503 1.93158 1.76942 .63166 1.51329 1.41054 1.32057
0.5 2.28278 2.00631 1.78718 1.60963 1.46310 1.34027.23593 1.14627 1.06844 1.00028
1.0 1.72913 1.51971 1.35373 1.21924 1.10825 1.0152D0.93617 0.86826 0.80930 0.75768
15 1.30975 1.15112 1.02540 0.92353 0.83946 0.76899.70912 0.65767 0.61302 0.57392

17



Table 2. The degenerate scalg = 0, (d,b/a) anda,, =g, (d,b/a) for a rectangular notch (see Eq. (37)

and Fig. 1(c))

ay =g, Sb/a)

b/a= 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
.
-0.5 2.40472 2.22301 2.07631 1.95320 1.84796 1175521.67343 1.60015 1.53398 1.47394
0. 1.82149 1.68385 1.57273 1.47948 1.39977 1.32951.26756 1.21206 1.16194 1.11646
0.5 1.37971 1.27546 1.19129 1.12066 1.06028 1.00706.96014 0.91809 0.88013 0.84568
1 1.04508 0.96612 0.90236 0.84886 0.80312 0.76281.727Q7 0.69542 0.66666 0.64057
1.5 0.79162 0.73180 0.68351 0.64298 0.60834 0.57780.55088 0.52676 0.50498 0.48521
a,, =g, b/a)

b/a= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
.
-0.5 3.61122 3.04801 2.66064 2.37149 2.14534 13617 1.80951 1.68074 1.57017 1.47394
0. 2.73537 2.30876 2.01534 1.79632 1.62502 1.48593.37064 1.27310 1.18935 1.11646
0.5 2.07195 1.74881 1.52655 1.36065 1.23090 1.12554.03821 0.96433 0.90089 0.84568
1 1.56943 1.32466 1.15631 1.03065 0.93236 0.85256.786a1 0.73045 0.68239 0.64057
1.5 1.18879 1.00338 0.87587 0.78068 0.70623 0.64578.59568 0.55329 0.51689 0.48521
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Captions of Figures

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1 (a) A concentrated force applied at the po#t, or the loading condition for the—field, (b)
Some loadings having resultant forces applied eretliptic contour, or the loading condition for

the B —field or the physical stress field. (c) A rectarayubotch.
2 Non-dimensional displacements for an extgsioblem with the non-equilibrium loadings on

contour, (a)f,(6).,, f,(8)., from the exact solution, (), (6)., ,f,(68)., by using the kernel

Ui' (€. X) () f,(8)., .f,(B)., by usingU;?(§,x) in the case of b/a=0.25, a=48, =1
A, = 05in Eq. (29) (see Fig. 1(b) and Eq. (31))
3 Non-dimensional displacements for an extggioblem with the non-equilibrium loadings on

contour, (a)f,(0).,,, f,(6)., from the exact solution, (), (8).,,f,(6)., by using the kernel

Ui'(E.X) () f,(B)., .f,()., by usingU;*(§,x) in the case of b/a=0.25, a=A, =1

A, =05in Eq. (29) (see Fig. 1(b) and Eq. (31))

4 Non-dimensional tractions for an exterioolgem with the non-equilibrium loadings on
contour, (a)g,(0).,, 9,(8)., from the exact solution, (13, (6).,, 9,(B)., by using the kernel
Ui'(€.X) (¢) 9,(8).,, 9,(6)., by usingU;*(&,x) in the case of b/a=0.25, a=40, =1

A, =05in Eq. (29) (see Fig. 1(b) and Eq. (32)).

5 Non-dimensional tractions for an exteriookgem with the non-equilibrium loadings on
contour, (a)g,(0)., 9,(0)., from the exact solution, (19,(6)., 9,(6)., by using the kernel
Ui'(€,X) (c) 9,(8)., 9,(6)., by usingU;*(&,x) in the case of b/a=0.25, a=A, =1

A, =05in Eq. (29) (see Fig. 1(b) and Eq. (32)).
6 Non-dimensional displacements for an extgsioblem with the non-equilibrium loadings on

contour , (a)f,(0),, f,(6),, from the exact solution, (),(6)., f,(8)., by using the kernel

Ui'(E.X) (©) f,(8)., f,(B)., by usingU;*(&,x) in the case of b/a=0.25, a#4, =1,
A,=05,B,=1, B, =05 inEq. (33) (see Fig. 1(b) and Eq. (31)).
7 Non-dimensional tractions for an exterioolem with the non-equilibrium loadings on

contour , (2)9,(0),, ,9,(6),, from the exact solution, (g,(6)., 9,(B)., by using the kernel
Ui'(€,X) (c) 9,(8)., 9,(6)., by usingU;*(&,x) in the case of b/a=0.25, a=A, =1

A,=05,B,=1, B, =05 inEq. (33) (see Fig. 1(b) and Eq. (32)).
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Fig. 3

Fig. 4
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Fig. 5

Fig. 6
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Fig.7

Non-dimensional tractions
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