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Abstract   In addition to the usual integral kernel in BIE, a modified one is introduced. The 

formulation for modified one is based on a representation in the pure deformable form for the 

fundamental solution of concentrated forces. It is found that the modified one can be used to any case, 

even if the loadings on the contour are not in equilibrium in an exterior boundary value problem 

(BVP).  The influences of different integral kernels to solutions of BIE, particularly, in the Neumann 

problem and the Dirichlet problem are addressed. Numerical examples are presented to prove the 

assertion proposed. Properties of solutions from the usage of the modified integral kernel are studied 

in detail. The influences of different integral kernels to the degenerate scale are discussed and 

numerical results are provided. It is found that the influences of the constant involved in the integral 

kernels are significant. For the cases of the elliptic and the rectangular contour, the influences to the 

degenerate scale are studied with numerical results.  

Keywords: Boundary integral equation. Exterior boundary value problem. Regularity condition. 

Numerical method. Degenerate scale problem.  

 

1. Introduction 

The boundary integral equation (abbreviated as BIE) was widely used in elasticity, and the 

fundamental for BIE could be found from [Rizzo 1967; Cruse 1969; Brebbia et al 1984; Jaswon and 

Symm 1977]. Recently, development of the boundary element method was summarized [Cheng and 

Cheng 2005].  

        There are still some problems in the study of BIEs. The first problem is the regularity condition 

in the exterior boundary value problem [Brebbia et al 1984]. Generally, the Betti’s reciprocal theorem 

or the Somigliana’s identity is used for the formulation of the BIE. In the exterior BVP, if a mutual 

work difference integral (abbreviated as MWDI) on a sufficient large circle vanishes, the regularity 
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condition is satisfied.  However, this condition has not been studied clearly.  Once the BIE in plane 

elasticity is formulated for the exterior region, one must meet a term called the MWDI , or the terms 

)(D 1*
)CR(i ξ  or )(D 2*

)CR(i ξ  in Eqs. (8) and (18) used below. If the MWDI vanishes, the regularity 

condition at infinity is satisfied. In fact, the MWDI is a difference of two works, which are defined by 

the works done by the fundamental field to the physical stress field each other. Therefore, the property 

of the MWDI depends on the representation of the fundamental field and the property of the physical 

stress field. A general expression for the MWDI from two stress fields was obtained in [Chen 2003]. 

This will be a theoretical basis in the present study. 

       In fact, it has been proved if the loadings applied on the contour in the exterior BVP are not in 

equilibrium, instead of using the usual integral kernel )x,(U 2*
ij ξ  (see Eq. (15) below) one should use 

the modified one )x,(U 1*
ij ξ  (see Eq. (6) below). Two integral kernels have a difference of constant. 

Clearly, two different integral kernels, the )x,(U 1*
ij ξ  and the )x,(U 2*

ij ξ , will influence the properties 

of solutions obtained.  

       The second problem in this field is the degenerate scale problem [Chen et al. 2005; He et al. 1996; 

Vodicka and Mantic 2008; Chen et al. 2002; Chen and Shen 2007]. In the degenerate scale problem, 

an improper solution in the Dirichlet problem of BIE exists if the used size is near the critical value. 

Clearly, the degenerate scale for the individual problem must depend on the used integral kernels, for 

example the )x,(U 1*
ij ξ  and the )x,(U 2*

ij ξ . This problem was also not investigated in detail 

previously. 

      In this paper, in addition to the usual integral kernel )x,(U 2*
ij ξ (see Eq. (15) below), the modified 

one, or )x,(U 1*
ij ξ (see Eq. (6)) is introduced. The formulation for modified one is based on a 

representation in the pure deformable form for the fundamental solution of concentrated forces. The 

two kernels )x,(U 1*
ij ξ  and )x,(U 2*

ij ξ  have a difference of constant. It is found that the modified one, 

or )x,(U 1*
ij ξ , can be used to any case, even if the loadings on the contour are not in equilibrium in an 

exterior BVP.  The influences of different integral kernels to solutions of BIE, particularly in the 
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Neumann problem and the Dirichlet problem, are addressed. The properties of solution by using 

)x,(U 1*
ij ξ  are discussed in detail. Numerical examples are presented to prove the assertion proposed. 

The influences from the used integral kernels to the degenerate scale are discussed and numerical 

results are provided. It is found that the influences of the constant in the integral kernels to the 

degenerate scale are significant. For the cases of elliptic and rectangular contour, the influences are 

studied with numerical results. 

 

2. Influences of different kernels to the solutions of exterior boundary integral equation 

2.1 Formulation of two kernels )x,(U 1*
ij ξ , )x,(U 2*

ij ξ  and the relevant boundary integral 

equations 

The following analysis depends on the complex variable function method in plane elasticity  

[Muskhelishvili 1953]. In the method, the stresses ( xyyx ,, σσσ ), the resultant forces (X, Y) and the 

displacements (u, v) are expressed in terms of two complex potentials )z(φ and )z(ψ such that 

            )z('Re4yx φ=σ+σ                                                                   

            )]z()z(z[2i2 xyxy ψ′+φ ′′=σ+σ−σ                                                                     (1) 

            )z()z(z)z(iXYf ψ+φ′+φ=+−=                                                                        (2) 

            )z()z(z)z()ivu(G2 ψ−φ′−κφ=+                                                                        (3) 

where z=x+iy denotes complex variable, G is the shear modulus of elasticity, )1/()3( ν+ν−=κ  is 

for the plane stress problems, ν−=κ 43  is for the plane strain problems, and ν  is the Poisson’s ratio. 

In the present study, the plane strain condition is assumed thoroughly. In the following, we 

occasionally rewrite the displacements  “u”, “v” as 1u , 2u , xyyx ,, σσσ  as 122211 σ,σ,σ , and “x”, 

“y” as 21 x,x , respectively.  

        It is emphasized here that we only consider the exterior BVP. Secondly, the remote tractions ∞σx , 

∞σy  and ∞σxy  are assumed to tend to zero in this study, or 0x →σ∞  , 0y →σ∞ and 0xy →σ∞ . 
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        The formulation of BIE is introduced below. If the concentrated forces (xP , yP  ) is applied at the 

point z=t (Fig. 1(a)) , the relevant complex potentials are defined by [Muskhelishvili 1953]  

         )tzln(F)z()( −=φ α , 
tz

tF
)tz(lnF)z()( −

−−κ−=ψ α                                           (4) 

where 

       
)1(2

iPP
F yx

+κπ
+

−=                                                                                                          (5) 

In Eq. (4), the subscript “ )(α ” denotes the fundamental solution initiated by concentrated forces. 

Note that the relevant complex potentials shown by Eq. (4) are expressed in a pure deformable form 

[Chen and Lin 2008]. 

        A direct substitution from the complex potentials shown by Eq. (4) in the proper place will lead 

to the following kernel [Chen and Lin 2008] 

      { }ijj,i,ij
1*

ij 5.0rr)rln()43(
G)v1(8

1
)x,(U δ−+δν−−

−π
=ξ                                       (6) 

which is used in a BIE mentioned below. 

        Without losing generality, we can introduce the BIE for the region between the elliptic contour 

“ Γ ”and a large circle “CR” (Fig. 1(b)). The observation point “ξ  “is assumed on the elliptic contour 

Γξ∈ . For the plane strain case, the suggested BIE can be written as follows [Brebbia et al 1984]  

  )(D)x(ds)x(p)x,(U)x(ds)x(u)x,(P)(u
2
1 1*

)CR(ij
1*

ijj
*
iji ξ+ξ=ξ+ξ ∫∫ ΓΓ

 , (i=1,2 Γξ∈ ) (7) 

where )(D 1*
)CR(i ξ is a mutual work difference integral (abbreviated as MWDI ) on a large circle “CR” 

and is defined by  

       )x(ds)x(p)x,(U)x(ds)x(u)x,(P)(D j
1*

ijCRj
*
ijCR

1*
)CR(i ξ+ξ−=ξ ∫∫ , (i=1,2 Γξ∈ )       (8) 

In Eq. (8), “CR” denotes a sufficient large circle with a radius “R”. 

        In addition, the kernel )x,(P*
ij ξ is defined by [Brebbia et al 1984]  

 { })rnrn)(v()rrδ)ν)((nrnr(
r)v(π

)x,ξ(P i,jj,ij,i,ij,,
*
ij −2−1+2+2−1+1

−14
1−= 2211    (9) 
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where Kronecker deltas ijδ  is defined as, 1ij =δ  for i=j, 0ij =δ  for ji ≠ , and  

     αcos
r
ξx

r, =−= 11
1 ,       αsin

r
ξx

r, =−= 22
2                                                             (10) 

      β−= sinn1 ,    β= cosn2                                                                                              (11) 

where the angles “α ” and ”β ” are indicated in Fig. 1. 

        Even the physical field is caused by a non- equilibrium force on the elliptic contour, we have 

proved that 0)(D 1*
)CR(i =ξ  (i=1,2) [Chen and Lin 2008] 

       0)x(ds)x(p)x,(U)x(ds)x(u)x,(P)(D j
1*

ijCRj
*
ijCR

1*
)CR(i =ξ+ξ−=ξ ∫∫ , (i=1,2 Γξ∈ )       (12) 

Therefore, Eq. (7) can be reduced into 

        )x(ds)x(p)x,(U)x(ds)x(u)x,(P)(u
2

1
j

1*
ijj

*
iji ξ=ξ+ξ ∫∫ ΓΓ

 ,  (i=1,2 Γξ∈ )                (13) 

It is emphasized here that the displacements)x(u j in the left hand side of  Eq. (13) should be 

expressed in the pure deformable form. 

        In addition, if the same concentrated forces ( xP , yP  ) is applied at the point z=t (Fig. 1(a)) , the 

relevant complex potentials can be defined alternatively by [Muskhelishvili 1953]  

        )tzln(F)z()( −=φ α , F
tz

tF
)tz(lnF)z()( +

−
−−κ−=ψ α                                      (14) 

The complex potentials shown by Eq. (14) are different with those shown by Eq. (4) by a constant F  

in the function )z()(αψ .  

        Comparing Eq. (4) with Eq. (14), an additional pair of the complex potentials 0)z( =φ , 

F)z( =ψ  is presented in Eq. (14). Clearly, this pair causes no stresses anywhere, and represents a 

rigid translation. Therefore, it is said that the complex potentials shown by Eq. (14) are expressed in 

an impure deformable form. 

        A direct substitution from the complex potentials shown by Eq. (14) in the proper place will lead 

to the following kernel [Chen and Lin 2008] 
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      { }j,i,ij
2*

ij rr)rln()43(
G)v1(8

1
)x,(U +δν−−

−π
=ξ                                                     (15) 

Note that, the two kernels have the following relation 

      ij
1*

ij
2*

ij G)v1(16

1
)x,(U)x,(U δ

−π
=ξ−ξ                                                                      (16) 

        This kernel )x,(U 2*
ij ξ was cited in any available textbook [Brebbia et al 1984].  Similarly, from 

the kernel )x,(U 2*
ij ξ  shown by Eq. (15), the following BIE is obtained   

   )(D)x(ds)x(p)x,(U)x(ds)x(u)x,(P)(u
2
1 2*

)CR(ij
2*

ijj
*
iji ξ+ξ=ξ+ξ ∫∫ ΓΓ

 , (i=1,2 Γξ∈ )   (17) 

where )(D 2*
)CR(i ξ is a MWDI on a large circle and is defined by  

       )x(ds)x(p)x,(U)x(ds)x(u)x,(P)(D j
2*

ijCRj
*
ijCR

2*
)CR(i ξ+ξ−=ξ ∫∫ , (i=1,2 Γξ∈ )       (18) 

      It was proved that when the physical field is caused by a non- equilibrium force on the elliptic 

contour, we have 0)(D 2*
)CR(i ≠ξ  ( i=1,2) [Chen and Lin 2008]. Thus, in this case, the BIE (17) cannot 

be reduced further.  

        It was also proved that when the physical field is caused by an equilibrium force on the elliptic 

contour, we have 0)(D 2*
)CR(i =ξ  ( i=1,2) [Chen and Lin 2008]. Thus, in this case, the BIE (17) can be 

reduced into the following form 

       )x(ds)x(p)x,(U)x(ds)x(u)x,(P)(u
2
1

j
2*

ijj
*
iji ξ=ξ+ξ ∫∫ ΓΓ

 , (i=1,2 Γξ∈ )                    (19) 

        In the exterior BVP, it is emphasized here that the BIE with usage of the kernel )x,(U 1*
ij ξ shown 

by Eq. (6) can be used to any case even the applied loadings on the elliptic contour are not in 

equilibrium. However, in the exterior BVP,  the BIE with usage of the kernel )x,(U 2*
ij ξ shown by Eq. 

(15) can only be used to case that the applied loadings on the elliptic contour are in equilibrium. 

 

2.2 General properties for the solutions from BIE 

As claimed previously, the kernel )x,(U 1*
ij ξ  can be used to any case without regarding the loading 
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condition on the elliptic contour. Therefore, for the exterior boundary value problem the following 

BIE is suggested 

        )x(ds)x(p)x,(U)x(ds)x(u)x,(P)(u
2
1

j
1*

ijj
*
iji ξ=ξ+ξ ∫∫ ΓΓ

 ,  (i=1,2 Γξ∈ )        (13) 

      The problem of equivalence of the solution from BIE and an elasticity solution is studied below. 

As stated previously, the physical stress field is assumed in the pure deformable form. Therefore, if 

the )(ui ξ , )x(u j and )x(p j  in Eq. (13) are some boundary values of an elasticity solution expressed 

in the pure deformable form, those functions )(ui ξ , )x(u j and )x(p j  must satisfy the BIE shown by 

Eq. (13). 

      In addition, if the )(ui ξ , )x(u j and )x(p j  in Eq. (13) are some boundary values of an elasticity 

solution expressed in the impure deformable form, those functions )(ui ξ , )x(u j and )x(p j  must not 

satisfy the BIE shown by Eq. (13). 

      This situation can be seen from the following example. It is known that, there are three particular 

elasticity solutions, which are as follows 
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ij =σ  and   0p )3(
i =    ( Γ∈+= tt iyxt )                       (22) 

Clearly, the stress fields shown by Eqs. (20), (21), (22), represent translations or rotation for the body.  

It has been proved that, substituting those displacements on the contour into left hand term   of Eq. 

(13) yields  

       0b)x(ds)x(u)x,(P)(u
2
1 )k(

ibuj
*
iji )k(

ii
≠=







 ξ+ξ

→Γ∫    (k=1,2,3)                                  (23) 

In addition, substituting those tractions )x(p j  on the contour shown by Eqs. (20),(21),(22) into right 

hand term of Eq. (13) yields  
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               { } 0)x(ds)x(p)x,(U
0ppj

1*
ij )k(

jj
=ξ

=→Γ∫                                                           (24) 

After comparing Eq. (23) with (24), which are the left and right hand terms of Eq. (13) respectively, 

the motioned assertion is proved. 

     In the Neumann problem, the boundary tractions )x(p~j (j=1,2) are given beforehand. Therefore, in 

the case of using the kernel )x,(U 1*
ij ξ , from Eq. (13) we can obtain the following BIE 

        )(g)x(ds)x(u)x,(P)(u
2
1

ij
*
iji ξ=ξ+ξ ∫Γ  ,    (i=1,2, Γξ∈ )                                              (25) 

where 

        )x(ds)x(p~)x,(U)(g j
1*

iji ξ=ξ ∫Γ  ,    (i=1,2, Γξ∈ )                                                              (26) 

In Eq. (26), )x(p~ j (j=1,2) are the boundary tractions which are given beforehand.  

        It is known that BIE shown by Eq. (25) processes the invertible property. Alternatively speaking, 

the BIE shown by Eq. (25) can be solved for any right hand term )(gi ξ .  However, the obtained 

)x(u j  (j=1,2) belong to some boundary values of displacements in an elasticity solution expressed in 

the pure deformable form. 

         Similarly, in the Dirichlet problem, the boundary displacements )x(u~ j  (j=1,2) are given 

beforehand. Therefore, in the case of using the kernel )x,(U 1*
ij ξ , from Eq. (13) we can obtain the 

following BIE 

        )(h)x(ds)x(p)x,(U ij
1*

ij ξ=ξ∫Γ  ,    (i=1,2, Γξ∈ )                                                       (27) 

where  

        )x(ds)x(u~)x,(P)(u~
2
1

)(h j
*
ijii ξ+ξ=ξ ∫Γ  ,    (i=1,2, Γξ∈ )                                         (28) 

In Eq. (28), )(u~i ξ  (i=1,2) and )x(u~ j  (j=1,2) are the boundary displacements, which are given 

beforehand. 

        It is known that BIE shown by Eq. (27) processes the invertible property only if the degenerate 

scale has not been reached [Vodicka and Mantic 2008]. Alternatively speaking, the BIE shown by Eq. 
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(27) can be solved for any right hand term )(hi ξ  only if the degenerate scale has not been reached.  

However, the obtained )x(p j  (j=1,2) belong to some boundary values of tractions in an elasticity 

solution. Generally, those tractions or )x(p j  (j=1,2) may have a resultant force along the contour. 

 

2.3 Numerical examinations for two kernels )x,(U 1*
ij ξ  and )x,(U 2*

ij ξ in the case of non-

equilibrium loadings on the contour 

In order to examine the behavior of the kernels )x,(U 1*
ij ξ  and )x,(U 2*

ij ξ , the relevant BIEs are 

written below 

        )x(ds)x(p)x,(U)x(ds)x(u)x,(P)(u
2
1

j
1*

ijj
*
iji ξ=ξ+ξ ∫∫ ΓΓ

 ,    (i=1,2 Γξ∈ )           (13) 

       )x(ds)x(p)x,(U)x(ds)x(u)x,(P)(u
2
1

j
2*

ijj
*
iji ξ=ξ+ξ ∫∫ ΓΓ

,    (i=1,2 Γξ∈ )            (19) 

       In all studied problems below, one knows a closed form solution beforehand. Substituting the 

results from the known solution, for example, for )x(p j  (j=1,2) into right hand term of Eq. (13) will 

yield a BIE for )x(u j  (j=1,2). The displacements for )x(u j  (j=1,2) can be solved from the BIE.  In 

addition, one compares the obtained displacements )x(u j  (j=1,2) with those from the closed form 

solution. This will complete the process of comparison.  In the solution of BIE, the used scale is 

assumed to be sufficient large that can avoid coinciding of the used scale to the degenerate scale. 

       Example 1   

      The above-mentioned results from theoretical analysis can be examined by the following concrete 

examples. In the examples, the ellipse has a major half-axis “a” and minor half-axis “b” (Fig. 1(b)).  In 

computation, the plane strain condition and 3.0=ν are assumed. The elliptic contour is divided into 

120 intervals. For the BIE solution, the constant displacement and traction are assumed for each 

interval.  

       In the example, we propose the following complex potentials 
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           zlnAq)z( o=φ  ,   zlnAq)z( oκ−=ψ ,   where 21 iAAA +=                             (29) 

where oq  is a unit loading. From complex potentials shown by Eq. (29) and Eq. (2), it is seen that the 

following resultant forces are applied   

          Aq)1(2}iYX{ ore +κπ−=+                                                                                      (30) 

on the contour.  In this case, the exact solution for the displacements and stresses on the boundary 

contour can easily obtained from Eqs. (1),(3) and (29).  

        In the Example 1, the examination is performed from the viewpoint of the Neumann problem.         

The loadings applied on the contour, or jp (j=1,2) are computed from the complex potentials shown 

by Eq. (29), and the obtained tractions jp  (j=1,2) are substituted into the right hand term of Eq. (13) 

(or (19)).  Standard numerical technique is used to solve Eq. (13) (or (19)), and the boundary 

displacements ju  (j=1,2)  can be evaluated immediately. The calculated boundary displacements by 

using the kernels )x,(U 1*
ij ξ or )x,(U 2*

ij ξ , and those from the exact solution are expressed by 

       )(f
)1(G2

q
u 1

o
1 θ

ν+
= ,    )(f

)1(G2

q
u 2

o
2 θ

ν+
= ,  ( at the point θcosax = , θ= cosby  )   (31) 

        For the case of  b/a=0.25 , a=40 , 1A1 = and 5.0A 2 =  , the calculated results using the kernels  

)x,(U 1*
ij ξ  and )x,(U 2*

ij ξ , and the exact results from the closed form solution are shown in Fig. 2, 

where  (a) ex)θ(f1 , ex)θ(f 2  are  from exact solution, or from the complex potentials Eq. (29) directly, 

(b) 11 *)θ(f  12 *)θ(f  are from the usage of  the kernels )x,ξ(U*
ij
1 and (c) 21 *)θ(f  , 22 *)θ(f  are from 

the usage of the kernels )x,ξ(U*
ij
2 .  

        It is found from Fig. 2 that the computed results for 11 *)θ(f  , 12 *)θ(f  from the usage of the 

kernel )x,(U 1*
ij ξ  are very accurate, which coincide with the results from the exact solution (denoted 

by ex)θ(f1 , ex)θ(f 2 ) . However, the computed results for 2*1 )(f θ , 2*2 )(f θ  from the usage of the 

kernel )x,(U 2*
ij ξ  have much difference with those from the exact solution (denoted by ex)θ(f1 , 

ex)θ(f 2 ). It is also found that the computed results for 2*1 )(f θ , 2*2 )(f θ  have a constant difference 
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from ex)θ(f1 , ex)θ(f 2 . 

       Similarly, in the case of  b/a=0.25 , a=4, 1A1 = and 5.0A 2 =  , the calculated results using the 

kernels  )x,(U 1*
ij ξ  and )x,(U 2*

ij ξ , and the exact results from the closed form solution are shown in 

Fig. 3. Similar phenomena as in the previous case can be found. 

      Figs. 2,3 

     Example 2   

      All the conditions used in the Example 1 are still used in the present example. However, in the 

present example, the examination is performed from the viewpoint of the Dirichlet problem. The 

displacements on the contour, or ju (j=1,2) are computed from the complex potentials shown by Eq. 

(29), and the obtained displacements ju  (j=1,2) are substituted into the left hand term of Eqs. (13) (or 

(19)).  Standard numerical technique is used to solve Eq. (13) (or (19)), and the boundary tractions jp  

(j=1,2)  can be evaluated immediately. The calculated boundary tractions are expressed by 

       )(gqp 1o1 θ= ,    )(gqp 2o2 θ= ,  ( at the point θcosax = , θcosbx =  )               (32) 

       For  the case of  b/a=0.25 , a=40 , 1A1 = and 5.0A 2 =  , the calculated results using the kernels  

)x,(U 1*
ij ξ  and )x,(U 2*

ij ξ , and the exact results from the closed form solution are shown in Fig. 4, 

where  (a) ex1 )(g θ , ex2 )(g θ  are  from exact solution, or from the complex potentials Eq. (29) directly, 

(b) 1*1 )(g θ  1*2 )(g θ  are from the usage of  the kernels )x,ξ(U*
ij
1  and (c) 2*1 )(g θ  , 2*2 )(g θ  are from 

the usage the kernels )x,ξ(U*
ij
2 .  

        It is found from Fig. 4 that the computed results for 1*1 )(g θ  1*2 )(g θ  from the usage of the 

kernel )x,(U 1*
ij ξ  are very accurate, which coincide with the results from the exact solution (denoted 

by ex1 )(g θ , ex2 )(g θ ). However, the computed results for 2*1 )(g θ  , 2*2 )(g θ   from the usage of the 

kernel )x,(U 2*
ij ξ  have much difference with those from the exact solution (denoted by ex1 )(g θ , 

ex2 )(g θ ).  
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        Similarly, in the case of  b/a=0.25 , a=4 , 1A1 = and 5.0A 2 =  , the calculated results using the 

kernels  )x,(U 1*
ij ξ  and )x,(U 2*

ij ξ , and the exact results from the closed form solution are shown in 

Fig. 5. Similar results as in previous case have been found. Particularly, in this case, the deviation of 

the result by usage of the kernel )x,(U 2*
ij ξ  can reach a higher value. For example, in the case of 

π=θ  we have ex1 )(g θ =-1.195 (from the exact solution), 1*1 )(g θ =-1.200 (by using the kernel 

)x,ξ(U*
ij
1 ) 2*1 )(g θ =-2.842 (by using the kernel )x,(U 2*

ij ξ ), respectively (Fig. 5). 

      Figs. 4,5 

2.4 Numerical examinations for two kernels )x,(U 1*
ij ξ  and )x,(U 2*

ij ξ in the case of 

equilibrium loadings on the contour 

As mentioned previously, in the case of equilibrium loadings on the contour, the solutions obtained 

from two kinds of BIE shown by Eqs. (13) and (19)  must be the same. This conclusion is also 

examined by the following examples. 

      Example 3  

       In the example, we propose the following complex potentials 

           
z

A
q)z( o=φ  ,    

z

B
q)z( o=ψ    where 21 iAAA +=  ,  21 iBBB +=                          (33) 

where oq  is a unit loading. From complex potentials shown by Eq. (33) we see that the loadings 

applied on the contour must be in equilibrium [Muskhelishvili 1953]. 

      Similarly, in the Neumann problem, the calculated boundary displacements by using the kernels 

)x,(U 1*
ij ξ or )x,(U 2*

ij ξ , and those from the exact solution are expressed by 

       )(f
)1(G2

q
u 1

o
1 θ

ν+
= ,    )(f

)1(G2

q
u 2

o
2 θ

ν+
=   ( at the point θcosax = , θcosbx =  )   (31) 

        For the case of  b/a=0.25 , a=40 , 1A1 = , 5.0A 2 =  , 1B1 =  and 5.0B2 =   the calculated results 

using the kernels  )x,(U 1*
ij ξ  and )x,(U 2*

ij ξ , and the exact results from the closed form solution are 

shown in Fig. 6, where  (a) ex)θ(f1 , ex)θ(f 2  are  from exact solution, or from the complex potentials 
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Eq. (33) directly, (b) 11 *)θ(f  12 *)θ(f  are from the usage of  the kernels )x,ξ(U*
ij
1  and (c) 21 *)θ(f  , 

22 *)θ(f  are from the usage of the kernels )x,ξ(U*
ij
2 .  

        It is found from Fig. 6 that, the computed results from the usage of the kernel )x,(U 1*
ij ξ or 

)x,(U 2*
ij ξ , and those from the exact solution, are merged into the same curves. 

      Example 4  

      All the conditions used in the Example 3 are still used in the present example. However, in the 

present example, the examination is performed from the viewpoint of the Dirichlet problem. The 

displacements on the contour, or ju (j=1,2) are computed from the complex potentials shown by Eq. 

(33), and the obtained displacements ju  (j=1,2) are substituted into the left hand term of Eqs. (13) (or 

(19)). The calculated boundary tractions are expressed by 

       )(gqp 1o1 θ= ,    )(gqp 2o2 θ=   ( at the point θcosax = , θcosbx =  )                 (32) 

       For  the case of  b/a=0.25 , a=40 , 1A1 = , 5.0A 2 =  , 1B1 =  and 5.0B2 =   the calculated results 

using the kernels  )x,(U 1*
ij ξ  and )x,(U 2*

ij ξ , and the exact results from the closed form solution are 

shown in Fig. 7,  where  (a) ex1 )(g θ , ex2 )(g θ  are  from exact solution, or from the complex potentials 

Eq. (33) directly, (b) 1*1 )(g θ  1*2 )(g θ  are from the usage of  the kernels )x,ξ(U*
ij
1  and (c) 2*1 )(g θ  , 

2*2 )(g θ  are from the usage of the kernels )x,ξ(U*
ij
2 .  

        It is found from Fig. 7 that, the computed results from the usage of the kernel )x,(U 1*
ij ξ or 

)x,(U 2*
ij ξ , and those from the exact solution, are merged into the same curves.  

      Figs. 6,7 

3. Numerical evaluations for degenerate scale problems for different kernels )x,(U g*
ij ξ  

Instead of  two kernels )x,(U 1*
ij ξ  and )x,(U 2*

ij ξ , a kernel )x,(U g*
ij ξ  in a more general form is 

defined as 
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       { }ijj,i,ij
g*

ij srr)rln()43(
G)v1(8

1
)x,(U δ−+δν−−

−π
=ξ                                      (34) 

where “s” can take any real value. 

       Clearly, a homogenous equation for the degenerate scale problem using the kernel )x,(U g*
ij ξ  can 

be formulated   

        0)x(ds)x(p)x,(U j
g*

ij
d

=ξ∫Γ  ,    (i=1,2, Γξ∈ )                                                       (35) 

In the formulation, one want to find a particular size such that Eq. (35) has a non-trivial solution for 

)x(p j , or 0)x(p j ≠ . By using relevant solutions in normal scale problem, the degenerate scale 

problem can be solved [Chen et al. 2005; Vodicka and Mantic 2008].  

        In a recent publication [Chen et al. 2009], after using two fundamental solutions in the normal 

scale, the degenerate scale problem can be solved. In this paper, the method suggested in  [Chen et al. 

2009] is used to solve the problems in Examples 5 and 6. Clearly, the degenerate scale must depend on 

the assumed constant “s” in Eq. (34).  

     Example 5 

     In the example, the ellipse has a major half-axis “a” and minor half-axis “b” (Fig.1(b)).  In 

computation, the plane strain condition and 3.0=ν are assumed. The elliptic contour is divided into 

120 intervals. For the BIE solution, the constant displacement and traction are assumed for each 

interval. For the cases of (1) s=-0.5, 0, 0.5, 1.0 and 1.5, (2) b/a=0.1, 0.2,…1.0, two degenerate scales 

are expressed as  

        )a/b,s(fa 11d = ,  )a/b,s(fa 22d =                                                                             (36) 

The computed results for )a/b,s(f1  and )a/b,s(f 2 are listed in Table 1. From the tabulated results 

we see that if the value of “s” changes from –0.5, 0, 0.5, 1.0 to 1.5, the degenerate scale becomes 

smaller and smaller. 

     Example 6 

     In the example, the rectangular notch has a width “2a” and a height “2b” ( Fig. 1(c)). Similarly,  

for the cases of: (1) s=-0.5, 0, 0.5, 1.0 and 1.5, (2) b/a=0.1, 0.2,…1.0, two degenerate scales are 
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expressed as  

        )a/b,s(ga 11d = ,  )a/b,s(ga 22d =                                                                             (37) 

The computed results for )a/b,s(g1  and )a/b,s(g2 are listed in Table 2. Similar to the previous 

example, if the value of “s” changes from –0.5, 0, 0.5, 1.0 to 1.5, the degenerate scale becomes smaller 

and smaller 

 

4. Conclusions 

From the above-mentioned theoretical analysis and the numerical examinations we can get the 

following conclusions. The kernel )x,(U 1*
ij ξ  can be used to arbitrary loading on the contour. 

However, the )x,(U 2*
ij ξ can only be used to the case that the loading on the contour must be in 

equilibrium. It is an effective way to examine a suggested BIE by using a known solution, particularly, 

through a solution expressed in the complex potentials. In this case, since the solution is known 

beforehand, and one can easily judge whether the formulation used in computation is correct or not. 

     In the case of using the kernel )x,(U 1*
ij ξ , properties of solutions form BIE are clearly studied. If 

the degenerate scale has not been reached, the Dirichlet problem has a unique solution. Generally, the 

computed tractions on the boundary may result in resultant forces along the contour. In the Neumann 

problem, the computed displacements must belong to the boundary values of the displacement field 

expressed in the pure deformable form. 

      In the degenerate scale problem, the constant “s” involved in the integral kernel )x,(U g*
ij ξ  has a 

significant influence to the final results of degenerate scale.  
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Table 1. The degenerate scale )a/b,s(fa 11d = and )a/b,s(fa 22d = for an eclipse notch (see Eq. (36) and 

Fig. 1(b))           
 

)a/b,s(fa 11d =  
 

b/a= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

s=           

-0.5 2.52541 2.41447 2.30954 2.21105 2.11897 2.03305 1.95295 1.87824 1.80853 1.74340 

0. 1.91291 1.82888 1.74940 1.67479 1.60504 1.53997 1.47929 1.42270 1.36990 1.32057 

0.5 1.44896 1.38531 1.32511 1.26860 1.21577 1.16647 1.12051 1.07765 1.03765 1.00028 

1 1.09754 1.04932 1.00372 0.96092 0.92090 0.88356 0.84875 0.81628 0.78598 0.75768 

1.5 0.83135 0.79483 0.76029 0.72786 0.69755 0.66927 0.64290 0.61830 0.59535 0.57392 

 

 
)a/b,s(fa 22d =  

 
b/a= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

s=           

-05 3.97868 3.49681 3.11489 2.80545 2.55005 2.33597 2.15411 1.99784 1.86219 1.74340 

0 3.01371 2.64871 2.35942 2.12503 1.93158 1.76942 1.63166 1.51329 1.41054 1.32057 

0.5 2.28278 2.00631 1.78718 1.60963 1.46310 1.34027 1.23593 1.14627 1.06844 1.00028 

1.0 1.72913 1.51971 1.35373 1.21924 1.10825 1.01521 0.93617 0.86826 0.80930 0.75768 

1.5 1.30975 1.15112 1.02540 0.92353 0.83946 0.76899 0.70912 0.65767 0.61302 0.57392 
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Table 2. The degenerate scale )a/b,d(ga 11d = and )a/b,d(ga 22d = for a rectangular notch (see Eq. (37) 

and Fig. 1(c))           
 

)a/b,s(ga 11d =  

 

b/a= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

s=           

-0.5 2.40472 2.22301 2.07631 1.95320 1.84796 1.75521 1.67343 1.60015 1.53398 1.47394 

0. 1.82149 1.68385 1.57273 1.47948 1.39977 1.32951 1.26756 1.21206 1.16194 1.11646 

0.5 1.37971 1.27546 1.19129 1.12066 1.06028 1.00706 0.96014 0.91809 0.88013 0.84568 

1 1.04508 0.96612 0.90236 0.84886 0.80312 0.76281 0.72727 0.69542 0.66666 0.64057 

1.5 0.79162 0.73180 0.68351 0.64298 0.60834 0.57780 0.55088 0.52676 0.50498 0.48521 

 

)a/b,s(ga 22d =  

b/a= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

s=           

-0.5 3.61122 3.04801 2.66064 2.37149 2.14534 1.96172 1.80951 1.68074 1.57017 1.47394 

0. 2.73537 2.30876 2.01534 1.79632 1.62502 1.48593 1.37064 1.27310 1.18935 1.11646 

0.5 2.07195 1.74881 1.52655 1.36065 1.23090 1.12554 1.03821 0.96433 0.90089 0.84568 

1 1.56943 1.32466 1.15631 1.03065 0.93236 0.85256 0.78641 0.73045 0.68239 0.64057 

1.5 1.18879 1.00338 0.87587 0.78068 0.70623 0.64578 0.59568 0.55329 0.51689 0.48521 

 

 

 

 

 

 

 

 

 

 

 

 



 19

            

Captions of Figures 

Fig. 1 (a) A concentrated force applied at the point z=t, or the loading condition for the −α field, (b) 

Some loadings having resultant forces applied on the elliptic contour, or the loading condition for 

the −β field or the physical stress field. (c) A rectangular notch. 

Fig. 2 Non-dimensional displacements for an exterior problem with the non-equilibrium loadings on 

contour, (a) ex1 )(f θ , ex2 )(f θ  from the exact solution, (b) 1*1 )(f θ  , 1*2 )(f θ  by using the kernel 

)x,(U 1*
ij ξ  (c) 2*1 )(f θ  , 2*2 )(f θ  by using )x,(U 2*

ij ξ  in the case of b/a=0.25, a=40 , 1A1 =  

5.0A 2 = in Eq. (29) (see Fig. 1(b) and Eq. (31)) 

Fig. 3 Non-dimensional displacements for an exterior problem with the non-equilibrium loadings on 

contour, (a) ex1 )(f θ , ex2 )(f θ  from the exact solution, (b) 1*1 )(f θ , 1*2 )(f θ  by using the kernel 

)x,(U 1*
ij ξ  (c) 2*1 )(f θ  , 2*2 )(f θ  by using )x,(U 2*

ij ξ  in the case of b/a=0.25, a=4 , 1A1 =  

5.0A 2 = in Eq. (29)  (see Fig. 1(b) and Eq. (31)) 

Fig. 4 Non-dimensional tractions for an exterior problem with the non-equilibrium loadings on 

contour, (a) ex1 )(g θ , ex2 )(g θ  from the exact solution, (b) 1*1 )(g θ , 1*2 )(g θ  by using the kernel 

)x,(U 1*
ij ξ  (c) 2*1 )(g θ , 2*2 )(g θ  by using )x,(U 2*

ij ξ  in the case of b/a=0.25, a=40, 1A1 =  

5.0A 2 = in Eq. (29)  (see Fig. 1(b) and Eq. (32)). 

Fig. 5 Non-dimensional tractions for an exterior problem with the non-equilibrium loadings on 

contour, (a) ex1 )(g θ  ex2 )(g θ  from the exact solution, (b) 1*1 )(g θ  1*2 )(g θ  by using the kernel 

)x,(U 1*
ij ξ  (c) 2*1 )(g θ  2*2 )(g θ  by using )x,(U 2*

ij ξ  in the case of b/a=0.25, a=4 , 1A1 =  

5.0A 2 = in Eq. (29)  (see Fig. 1(b) and Eq. (32)). 

Fig. 6 Non-dimensional displacements for an exterior problem with the non-equilibrium loadings on 

contour , (a) ex1 )(f θ , ex2 )(f θ  from the exact solution, (b) 1*1 )(f θ  1*2 )(f θ  by using the kernel 

)x,(U 1*
ij ξ  (c) 2*1 )(f θ  2*2 )(f θ  by using )x,(U 2*

ij ξ  in the case of b/a=0.25, a=4, 1A1 = , 

5.0A 2 = , 1B1 = , 5.0B2 =  in Eq. (33)  (see Fig. 1(b) and Eq. (31)). 

Fig. 7 Non-dimensional tractions for an exterior problem with the non-equilibrium loadings on 

contour , (a) ex1 )(g θ  , ex2 )(g θ  from the exact solution, (b) 1*1 )(g θ  1*2 )(g θ  by using the kernel 

)x,(U 1*
ij ξ  (c) 2*1 )(g θ  2*2 )(g θ  by using )x,(U 2*

ij ξ  in the case of b/a=0.25, a=4 , 1A1 =  

5.0A 2 = , 1B1 = , 5.0B2 =  in Eq. (33)  (see Fig. 1(b) and Eq. (32)). 
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Fig. 3 
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Fig. 5 
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