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X-ray lithography is an important technigue in microfabrication used to obtain structures
and devices with a high aspect ratio. In this study, we develop a three-dimensional
numerical method for obtaining the steady state temperature profile in an X-ray irradiation
process by using a hybrid finite element—finite difference scheme and a preconditioned
Richardson method for the Poisson equation at the microscale. A domain decomposition
algorithm is then obtained based on a parallel Gaussian elimination for solving block
tridiagonal linear systems. Numerical results show that such a method is efficient.

INTRODUCTION

X-ray lithography is an important technique in microfabrication used to
obtain structures and devices with a high aspect ratio [1-18]. The process consists
of a mask and a photoresist, such as polymethylmethacrylate (PMMA) deposited
on a substrate. The mask layer creates a desired pattern on the photoresist by
selectively allowing the transmission of irradiation from an X-ray beam. After
exposure, the photoresist is developed to remove the irradiated area, leaving
behind an imprint of the pattern in the form of exposed substrate and photoresist
walls. The pattern can now be used as a micromold. Electroplating can then be
used to fill the mold with a metal. The remaining unexposed part of the photoresist
can then be removed by an etchant, leaving the free standing microstructure on the
substrate.

For rapid manufacturing of microdevices needed for commercialization,
exposure times in minutes from high-flux synchrotron sources may be needed.
However, with the higher flux, heating of the photoresist may develop. Hence
prediction of the temperature distributions in three dimensions in the different
layers (mask, gap, photoresist, and substrate, as shown in Figure 1) and of the
potential temperature rise in the resist are essential for determining the effect of
high-flux X-ray exposure on distortions in the photoresist due to thermal expan-
sion. Analytic solutions to the system of these differential equations describing the
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NOMENCLATURE
h, convective heat transfer coefficient W, irradiance
ki ko, thermal conductivity Ly z Cartesian coordinates
ki ky Az grid size in the z direction
r radius © absorption coefficient
T,,T5, Ty, temperature
T

process are not easy to obtain due to the complication of the three-dimensional
case and the fact that the value at the interfacial boundary between layers is
unknown. Only a few studies have considered these kinds of problems in the
literature [1, 2, 6, 9, 10]. Recently, Dai and Nassar [19, 20] have developed
numerical heat transfer models for thermal analysis in X-ray irradiated photore-
sists. The steady state temperature distribution in the resist has been obtained by
solving the unsteady state differential equations in the case of two layers, resist and
substrate, with rectangular or cylindrical geometry. In this article, we develop a
preconditioned Richardson method to investigate the steady state temperature
distribution in a commercially applicable X-ray irradiation process with cylindrical
geometry, where the target consists of a mask, a resist, and a substrate (with a gap
between mask and resist). In this method, a hybrid finite element—finite difference
scheme combined with a preconditioned Richardson method will be applied for
solving the Poisson equation at the microscale to obtain the steady state tempera-
ture. A domain decomposition algorithm is then developed based on a parallel
Gaussian elimination for solving block tridiagonal linear systems, which overcomes
the problem with the unknown value at the interface. Such a method is simple and
fast, as compared with previous methods.

X-RAY IRRADIATION PROCESS

We now consider a commercially applicable X-ray irradiation process with
cylindrical geometry, where the target consists of a mask, a resist, and a substrate
(with a gap between mask and resist), as shown in Figure 1 (mask, resist, and
substrate are held in place through a special clamping mechanism not shown in the
figure). A gap exists between mask and resist through which air circulates to
prevent overheating on the exposed area of the resist. The resist such as PMMA is
placed on a substrate such as silicon. The cylindrical mask, resist, and substrate are
very thin, of the order of 300, 300, and 500 wm, respectively, with a radius of 5 mm.
The gap is also very thin, of the order of 50 pwm. To study the effect of the
high-flux X-ray exposure on distortions in the resist, it is important to predict the
temperature distribution in the resist and the substrate. Heat from the X-ray beam
is first transferred by conduction through the mask. Due to the very thin gap and
the relatively low temperature, radiation can be neglected. Also, convection in the
gap is small relative to conduction. Hence, without loss of generality, we assume
that heat is mainly transferred by conduction through the gap. Heat is then
transferred by conduction through the resist and substrate. As such, the governing
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equations for temperatures at steady state in the mask, gap, resist, and substrate
are given by the elliptic equations [1, 21, 22]:

Mask
a9, a,
_kl axz + ayz * 5Z2 =gl(x1y:Z) (1)
Gap
a*T, 9*T, 3°T,
—k, o) + 3y + =3 =g,(x,y,2) (2)
Resist
a*T, ¢'T, T,
k|9 * o T o | T &
Substrate

8*T, 9T, 9T, ( 3 o
—K #* i ~ = s ¥
i ax? r?y2 az” B s ®
where T,,7,,T;, T, are temperatures, and k,, k,, ks, k, are conductivities. The
source term g,(x, y, zXi = 1,2,3,4) depends on the mode of the system and can be
determined by experiments. The boundary conditions are described as follows.
On the top surface of the mask, z = 0, where heat convection occurs,

aT,
ky— =h (T, - T.) (5)
dz

where T, is the temperature of the surroundings and h_. is the convection
coefficient.

On the bottom surface of the mask, z = H,, we assume that the flux across
the interface does not change:

A(?T‘ 97, T - B (6)
TR T TR g 1= 2

Similarly, on the top surface of the resist, z = H, + H,,

aT. aT.
—ky— = — :

Jz 372- T3 = TZ (7)

On the bottom surface of the resist, z = H, + H, + H,,

_kaﬁ_z = _kd'r;_z' T3 =T, (8)
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Figure 1. Three-dimensional configura-
z tion of mask, gap, resist and substrate.

Under experimental conditions, the side walls of the mask, resist, and
substrate (Figure 1) and the bottom surface of the substrate are kept at a constant
temperature or open to the surroundings, so as to prevent heat from building up.
As such, it is realistic to assume 7, =T, i = 1,2,3,4, on the side walls, and

T, = T, on the bottom surface of the substrate.

NUMERICAL MODEL

The numerical model is developed based on a hybrid finite element—finite
difference scheme, and a precondition Richardson method for the Poisson equa-
tion at the microscale. A domain decomposition algorithm is then obtained based
on a parallel Gaussian elimination technique for solving block tridiagonal systems.
To this end, we first apply the finite element method for the xy cross section.

Consider
d*T  *T  a°T ( y ©
= + + = V5
ax? ay? dz? g% s s
with T = () when the point (x, y, z) is on the side wall. Let
3 a*T  9*T i
+ S -
.U;, &x ay? dz? g 4
aT av aT dv kf? T
= —_— + —_— — — —
[f(; dx dx ay dy dz> v—gy|ddy
=10 S 1"[0i (10)
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Ay

Figure 2. Part of the finite element mesh in the xy cross
section.

where »(x, y) is a function in the Sobolev space H; [23]. A finite element mesh is
constructed in the xy cross section, as shown in Figure 2. In each element, as
shown in Figure 3, we choose a linear basis function

1
¢p=Lp=§-§:(ap+bpx+cpy) (11)

where a, =x,y, —x.y,, b, =y, — ¥, ¢, =X, — x,, and

1
2SA = E[X;J(yq —yr) +xq(_)’, Hyp) ¥ xr(y,, _y'q)] (iZ)

T (xp ¥r)

p = L q
(xp: yp) (g ¥e)  Figure 3. A triangular element A.
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Then a test function for 7T'(x, y, z) can be written as

N
T(x,y,2) = ¥ T,(2)eg,(x,y) (13)
p=1

where N is the number of grid points in the xy cross section. Also, we consider
N
8n = z gpqpp(x’ y)
p=1

as an interpolant of g. Substituting 7,(x, y, z) and g, into Eq. (10), we obtain
dg, v (?rp v a*T
k L —2 — | dxdy —k—% d
[ Tff (ﬁx ax  dy c?_y) 4 9z? fquopudfx y]
N
_ vdxdy =0 (14)
E] & fG @, v drdy

If we choose v = ¢,, then Eq. (14) becomes

N dp, dg g, I d*T
kT, P24 22 dxdy — k—i dx
IE, ”UG( dx dx dy dy 4 dz* ff(;%% e

N
~ Yol ¢ ddy=0 g=1,25=N (15)
,E,g’ffa“pf @, drdy q

Introducing the vector notations 7(z) = [T\(2), -, Ty(2)V, f(z) = (g,.» gn)"
and the matrices M, , and K, , with the two respective entries,

d 6 d
[t b [+ 22

we can express system Eq. (15) in matrix form as follows:

T .
KKT — kM—— = Mf (16)

For simplification, we apply the lumped mass technique [23, 24] to obtain a
diagonal matrix D and then replace M by D in Eq. (16) to give

—»

T = .
(17)

where each entry d; at the diagonal of D is %EASA (i.e., one-third of the sum of all
elements with node i as one vertex).
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We now develop a hybrid finite element-finite differcnce scheme. Let
T,, = T(mAz), where Az is the grid size in the z direction, m = 1,--, N,. Using a
second order standard finite difference to approximate ° T/3dz% we obtain a
discretized equation for Eq. (17) as follows:

kKT, — AD(T,,,, - 2T, + T,_,| =Df, m=1,-N, (18)
m+1 i z

where A = k/Az* Since K is a sparse matrix making the above system complex,
the computation will be more complicated if Egs. (1)-(4) are discretized using
Eq. (18) with their discrete boundary and interfacial conditions. To simplify the sys-
tem, we apply a preconditioned Richardson iteration based on the idea in Refs. [25,
26] with regard to Eq. (18). This gives

leT;(:rFH _ ‘\D(T:}ln-++|” _ 21?-"('"“) 4 T":fz"fl”]

= kD, T — AD(Ti, — 2740 + T, )

n

- B[RKT — AD(Ti2, - 270 + T, - Dﬁ;]

m+1

m=1,N, n=123, (19)

where D, is a diagonal matrix with a diagonal entry, d;, = 2k;;, k,; is the entry on
the main diagonal line of the matrix K, and i = 1,2,--+, N. Here, ,B is a relaxation
parameter. The advantage of the above preconditioned Richardson iteration is that
it converges much faster in the microscale case (see discussion in Appendix A).
We now apply the precondition Richardson iteration in Eq. (19) to solve Egs.

(1)—(4) and write the scheme as follows:
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where i =1,2,3,4. At each iteration step, (T)"*" is assumed to satisfy the
discrete boundary and interfacial conditions as follows:

o+ 1) S lnl)
k, (T1)1 A:]( l)(] _ }IC’(T;);H-'-” B T_,;:l 720 21a)
B o R A M 1
' Az, : Az, z=H, (21b)
(F)ar = (),
» (']_";)(;;:i — (fz]:;l) . (f"s)(l"+“ B (7_1.;):;:+l)
’ Az, ’ Az, z=H, +H, (2lc)
(T - ()
By (@) - ()
e Az, ) Az, z=H, +Hy + H,
(= @)
(21d)
On the other boundaries,
(7)""" =1 i=1,234 (21e)

The {((T)* )i = 1,2,3,4) are computed by Eq. (20). As such, we express
these equations as four block tridiagonal linear systems:
(n+1) _.(ﬂ+]) _nm+1) —a(m
-AD(T)  +@aD+kD)(T) - AD(T) ., = (c).
m=1,,N!' (22)
where i = 1,2,3,4. Since {(7::)(”,‘” UWi=1,2,3,4) is unknown at the interface
between layers, the above four block tridiagonal linear systems cannot be solved.
To overcome this difficulty, we apply a parallel Gaussian elimination (described in
Appendix B) for solving block tridiagonal linear systems. As such, a domain

decomposition algorithm for thermal analysis in the X-ray irradiation process can
be described as follows.
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Step 1: calculate the coefficients as listed in step 1 of the parallel Gaussian

elimination (Appendix B).
Step 2: substitute the following six equations:

(T;](,:;“ A l(T.l)rmﬂ) 39

(;)‘;;“ =A‘§,}(ﬂ):: 9@ +w@(r) "
0 NA+1

(fz)(!n+1} =}i.(12)(ﬁ)(rr+l " {-EZ’ (T__‘.z}(n-)—l)

(T = AT s, + 580 + 99T,

(n+1) (n+1)
(n+1) i =(3) e
(1)) 7 =APT, + 97+ Wi T5)
—y(n+1) = s+ 1)
(7" = A (E), "

into the discrete boundary equations, Egs. (216)—(21d), to obtain (T ) ok A
(T )(n+ 1) (Tz)%lztll), (T )(n+ 1) (TJ)}\?B:-II)’ and (T )(n+ 1}

Step 3: solve for the rest of the unknowns in (T ) = 1,2,3,4) by step 3 of
the parallel Gaussian elimination.

The above iterations are continued until a criterion for convergence is
satisfied.

NUMERICAL RESULTS

To demonstrate the applicability of the present numerical method, we investi-
gate the maximum temperature rise in the resist. Two examples are illustrated
below.

The first example is to compare the present method with our previous
method for obtaining the steady state temperature by solving the unsteady state
differential equations (see [20]). In this example, we only considered the resist and
substrate case and assumed that the thickness of each resist and substrate was 100
pm, as shown in Figure 4. PMMA and silicon were used as the resist and substrate,
respectively. We followed the assumption in Ref. [1] that the resist and substrate
have a linear absorption coefficient px and are uniformly exposed with an irradi-
ance W,. A commonly used model for heat absorption is the exponential expres-
sion [1]

Wope™* 0 : (23)

BLE 12 = {0 a
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Figure 4. Three-dimensional configura-
tion of resist and substrate.

where the coefficients W, and p were chosen to be 3.4 W/cm? and (1/106) X
10° /cm, respectively. This expression shows that heat absorbed from the syn-
chrotron X-ray irradiating the surface decreases exponentially with depth. A
convection coefficient i, = 0.006 W /em?*/K was chosen for the top of the resist.
Conductivities of PMMA and silicon used in the analysis are listed in Table 1. We
considered the same finite element mesh as that in Ref. [20] with 97 grid points in
the xy cross section (Figure 2) and chose 50 grid points in the z direction for each
layer. The convergent solution was obtained when max|7T"" " — T™)| < 0.5 x 10~*
was satisfied in the resist, which is the same as that in Ref. [20].

Based on the above parameters, the solution obtained gave a maximum
temperature rise within the resist of 5.736 K at the center when n = 8 and
B = 0.95. This result is very close to 5.728 K obtained in Ref. [20].

More details of the temperature field can be obtained from the three-dimen-
sional model. Figure 5 shows the temperature profile along the central line in the z
direction. This profile agreed well with the temperature profile in Ref. [20].
Further, Figure 6 shows contours of the temperature distributions in the rz cross
section in the resist, which is similar to that obtained in Ref. [20].

The CPU times for the present method and for the splitting method in Ref.
[20] were compared using a SUN workstation. It took about 10 s to obtain the
steady state solution with the present method. On the other hand, 7.5 min were
required using the splitting method.

We tested the efficiency with regard to the relaxation parameter 8, as listed
in Table 2. Results show that the iteration number n becomes small as S
approaches 1. This result coincides with the theoretical analysis in Appendix A.

The second example deals with an implementation of the present method to a
commercially applicable X-ray irradiation process, where the target consists of a
mask, a resist, and a substrate (with a gap between mask and resist), as shown in
Figure 1. In this example, beryllium, He gas, PMMA, and silicon were used for the
mask, gap, resist, and substrate, respectively. The heat absorption in each layer is
the exponential expression

o)z
(Wl g™ O<r i=1,2,3,4 (9
<r

Ax,y,z) =
e = {§ ’

VAN

a
b
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Table 1. Parameters used for the different layers

Beryllium He gas (100 mbar) PMMA Silicon
Properties [27] [28] [29] [27]
k, W fem/K 20 0.00152 0.00198 1.5
W, W /cm? 2.042 0.0 1.823 1.424
wycm ! 40.81 0.0 50.26 99.42
6
s -

Temperature rise (K)
)

21— Present method

2 Splitting method [20]

0 Ty T T
0.000  0.002 0.004 0.006 0.008 0.010

Z (cm)

Figure 5. Temperature profiles along the z axis where
the maximum temperature rise occurs in the resist,

r=1mm

0

& Z =100 pm
1

Z

Figure 6. Contour of the temperature distribution for the resist in the rz cross section.

Table 2. Number of iterations as a function of the relaxation
parameter 3 for the first example

B n
0.95 8
0.90 9

0.80 10

609
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’ |

Mask  0-0.03 (cm)

Gap  0.03 - 0.035 (cm)
= 4 Resist 0035 - 0.065 (cm)
o Substrate 0,065 - 0.115 (cm)
£
&

& 21
G
=
l -
0 - -
0.00 0.02 0.04 0.06 0.08 0.10 0.12

Z (cm)

Figure 7. Temperature profiles along the z axis where the maximum
temperature rise occurs in the resist.

where the coefficients W, and p for the mask, gap, resist, and substrate were
chosen as listed in Table 1 [27-29]. For convenience, we take the exposed area to
be circular (with radius r = @) and in the center of the mask (Figure 1). However, it
should be noted that in general, this area may not be in the center. Hence it is
necessary to consider a three-dimensional model. Furthermore, we chose a convec-
tion coefficient h_ = 0.006 W /cm?/K for the top of the mask. We considered a
finite element mesh with the same 97 grid points in the xy cross section, as shown
in Figure 2, for each layer, and chose 50 grid points in the z direction for mask,
gap, resist, and substrate, respectively. The convergent solution was obtained when
max (7" D — T /7" D] < 1.0% was satisfied in the resist.

Based on the above parameters, the solution obtained gave a maximum
temperature rise within the resist of 4.36 K at the center when n = 93 and
B = 0.95 with a CPU time of about 3 min in a SUN workstation. Figure 7 shows
the temperature profile along the central line in the z direction. Figure 8 shows
contours of the temperature distributions on the rz cross section.

r=5mm

R«

Z=1.15mm

1
FA

Figure 8. Contour of the temperature distribution in the 7z cross section.
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Table 3. Number of iterations as a function of the relaxation
parameter B for the second example

B n
0.95 93
0.90 95
0.80 100

We also tested the efficiency with regard to the relaxation parameter B, as
listed in Table 3. Again, results show that the iteration number n becomes small
as B approaches 1. This result also coincides with the theoretical analysis in
Appendix A.

CONCLUSION

The temperature distribution in an X-ray lithography with cylindrical geome-
try is modeled with the three-dimensional steady state heat equations. A numerical
solution is obtained using a hybrid finite element—finite difference scheme, and a
preconditioned Richardson method for solving the Poisson equation at the mi-
croscale. A domain decomposition algorithm is obtained by implementing a paral-
lel Gaussian elimination technique. Results reflected accurately the temperature
profiles as well as the maximum temperature rise in the photoresist. The numerical
procedure is simple and fast and overcomes the unknown at the interface between
layers. The present numerical model is suitable for three-dimensional multilayer
investigations in X-ray lithography where an analytic solution is difficult to obtain.
It can be applied to experimental situations in multilayers (mask, resist, substrate,
and gap between mask and resist) with arbitrary geometry and source conditions. It
is known that scan length and speed affect the temperature rise in the resist. In
future work, we will consider arbitrary geometry and continuous scanning of the
wafer /mask assembly across the synchrotron radiation beam.
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APPENDIX A

Introduce the following notations for matrices and vectors,

K D -Dl
K = : D= ' D, =
K D D,
2D -D L .
=p 2D ~D fi T,
U= F=| : T=|
R % I fre Ty.

k k
Lpr2=kD]+A—22U A=kK+FU

we can rewrite Eq. (19) in matrix form as follows:

L,,,e’f‘“*” = L,,,e'i"‘"‘ - B(AT‘“’ - Dﬁ) (A1)

It is well known from numerical linear algebra [30] that the iteration process
converges if the iteration operator B = I — BL_ A has a spectral radius p(B) < 1.
Further, the smaller p(B) is, the faster the iteration converges. Let ¢ be an
eigenvalue of L;,‘EA and X be an eigenvector corresponding to ¢ such that
AX = £L, X Thus, £ can be obtained as follows:

: XAX XTKY + (1/AZ)RTUR -
XL, X X'DX + (1/A22)X"UX

Since K is symmetric and positive definite, D, and K are symmetric and positive
definite. Further, from the entry
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we obtain by the Gerschgorin theorem [30] that the eigenvalue o, of K satisfies

N

loy —kyl < X lkyl <k or 2k;— 0,20
i=1
i#]

Thus we conclude from linear algebra [31] that D, — K and hence D, — K are
symmetric and positive semidefinite. This results in X" KX < X"D,X. Furthermore,
since the size in the z direction is considered to be microscale, the dominating
term in Eq. (A2) will be (1/Az*)XTUX if Az is very small as compared to the grid
size in the xy cross section. Hence we obtain from Eq. (A2) that ¢ < 1 and is close
to 1. If the relaxation parameter B is chosen to be less than but close to 1, then the
spectral radius p(B) will be close to zero. We conclude that the preconditioned
Richardson iteration, Eq. (A1), will converge very quickly.

APPENDIX B

We consider a block tridiagonal linear system, which comes from the precon-
ditioned Richardson iteration in Eq. (18) as follows:

—ADT,_, + 2AD + kDT, — ADT,,,, =&, m=1

(B1)

==l

Ty = TN__+1 =

The Gaussian elimination for solving the block tridiagonal system results in a
procedure called the “divide and conquer” procedure, shown as follows [20, 30]:

A, =[2AD + kD, — ADA,,_,]17'AD  A4,=0 (B2a)

i":""’=[2’\£)+k[)| _ADA,,"_[]_](E:" +ADVm—l) v{):a m=1‘).-.yNy

(B2b)

T,=A,T, . +Y, Ty, =0 m=N,1 (B2¢)

Z

In the above procedure, A,,,v,, are calculated from m = 1to m = N,, while T:,, is
computed from m = N, to m = 1. A similar procedure that is opposite in direction
can be expressed as

A, =[2AD + kD, = ADA,, ;] 'AD Ay, =0 (B3a)

Vo = [2AD + kD, — ADA,, | (G + ADV,1)) V=0 m=Nel
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=y -
Further, if T, and T, ,, are not zero, we have

=[2AD + kD, — ADA,,_,]7'AD  A,=0 (B4a)
V,, = [2AD + kD, = ADA,,_\17'(&,, + ADN,,_,)  ¥,=0 (B4b)
= [2AD — kD, — ADA,, 1 'ADW,, , w,=1 m=1,-,N. (B4c)
T,=A,T, .+, +w,T, m=N,"1 (B4d)
and

= [2AD + kD, - ADA,,,\] 'AD A, =0 (BSa)
= [2AD + kD, = ADA,,,\| (&, + AD¥,,,) ¥y, =0 (B5b)

= [2AD + kD, = ADA,,.,| 'ADW,,, W, =T m=N,-1
(B5¢)
T, =A, T, + %, +%, Ty, m=1:N, (B5d)

It should be pointed out that the above procedures involve many matrix
inverse calculations. However, the computation is rather simple, since D and D,
are diagonal matrices.

Let N, = 4M + 3 for convenience. We divide the system Eq. (B1) into four
subsystems, which consist of the first M equations, the second M equations, the
third M equations, and the last M equations. The (M + Dth, (2M + 2)th, and
(3M + 3)th equations designate the interfacial equations. If the above four proce-
dures are combined together, then a parallel Gaussian elimination can be obtained
based on the idea of the domain decomposition method [20, 32] as follows.

Step 1: calculate
AP VD m = 1,---, M, for the first M equations by (B2ab)
AD VP WS m = 1,---, M, for the second M equations by (B4abc)
A® 7@ §@ m = M, 1, for the second M equations by (B5abc)
AD VI WS m = 1,---, M, for the third M equations by (B4abc)
AD D WS g = M, 1, for the third M equations by (BSabc)
AD §® m = M-, 1, for the last M equations by (B3ab)

in parallel.
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Step 2: substitute

7 AT (1) M = AT 2) o DT

Ty = A% Ty iy + Vi Topir = AQRTap 0 + VP + WPTy,
T — AT @ 4 )T 7 — AT 03) L @@T
Tz =APTy g + P + WPy, Tippio = Ay Tapiy + N W' Topsn

=5 =

7:'2M+3 =APT oo+ VP 4 ﬁ§3)ﬂM+3 Tipysa =A(14)T;M+3 + ¥
into
—ADT,, + QAD + kD)Ty,, — ADTyy 5 = &y 4
_ADT2M+I + (2AD + le)T2M+2 - /\DT2M+3 = —.EM+2

_)‘Dfamn + (2AD + le)faMm = ’\DT;M+4 = €3M+3
then solve fM+ % f2M+2, and ]‘_";M+3.
Step 3: solve
Ty = ADTp o 4T m= ML

=

T = 2 2 H‘Z 7 — e
TM+m+1_A(m)TMerJrz"'i';s,)'i'W,{")TMH m=M,-,1

=3

= ADT 70 L ROT = M.
Tomemer = A Toppsmes + V) + W Topysy m=M,or,1

= =4 =y =4
Tonsmses =AS g imuns + ¥ m=1,-M

in parallel.



