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a b s t r a c t

The solution of Poisson’s equation is essential for many branches of science and engineer-
ing such as fluid-mechanics, geosciences, and electrostatics. Solution of two-dimensional
Poisson’s equations is carried out by BEM based on Galerkin Vector Method in which the
integrals that appear in the boundary element method are expressed by analytical integra-
tion. In this paper, the Galerkin vector method is developed for more general case than pre-
sented in the previous works. The integrals are computed for constant and linear elements
in BEM. By employing analytical integration in BEM computation, the numerical schemes
and coordinate transformations can be avoided. The presented method can also be used for
the multiple domain case. The results of the analytical integration are employed in BEM
code and the obtained analytical expression will be applied to several examples where
the exact solution exists. The produced results are in good agreement with the exact
solution.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Solution of Poisson’s equation by boundary element method (BEM) is investigated in many engineering studies. Some
authors have used dual reciprocity BEM for solving the Poisson’s equation [1,2]. The Monte Carlo method is also introduced
by other authors for solution of Poisson’s equation [3].

In this paper, the Galerkin Vector Method is employed for solving the poison equation. In Ref. [3], the authors have
focused on the Galerkin Vector Method which is applicable just for the particular case when the source term l satisfies
Laplace’s equation. Authors in Ref. [4] would extend this approach for another particular case when the source expression
satisfies the condition:
r2l ¼ e ¼ constant:
In the current work, a more general case is investigated where r2e = 0 which implies r4l = 0. The integrals that appear in
second green’s identity are calculated by analytical integration. To be more precise, this paper focuses on analytical evalu-
ation of the boundary element integrals for solving the problems governed by the Poisson’s equation.

Riccardella [5] were the first to provide the solution for the G matrix terms for the constant element with on-diagonal
element case for the two-dimensional Laplace’s equation. Brebbia and Dominguez [6] also presented the solution for the
G matrix terms based on the continuous linear element with the on-diagonal element. Almeida and Pina [7] offered solutions
for the G matrix terms for the constant and linear elements with the on-diagonal element. Fratantonio and Rencis [8] pre-
sented analytical solutions of the boundary element integral coefficients for the H and G influence matrices that appeared in
. All rights reserved.
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solution of two-dimensional Laplace’s equation using the constant, linear and quadratic elements. Zhang and Zhang [9] de-
rived the exact integration of the integrals in the boundary element analysis of two-dimensional elasto-static. They consid-
ered constant, discontinuous linear and discontinuous quadratic elements. In a different work, the exact integration of the
integrals of the discontinuous cubic and quadratic boundary element analysis of two-dimensional elasto-static problems
was also derived by Zhang and Zhang [10]. In that study, the derived exact integrations made the evaluation of the non-sin-
gular and singular integrals possible in the same way, making special treatment of the singular integrals unnecessary. A new
completely analytical integral algorithm was proposed and applied to evaluate the nearly singular integrals in the BEM for
two-dimensional orthotropic potential problems of thin bodies by Zhou et al. [11]. The completely analytical integral formu-
las were derived with integration by parts for the linear boundary interpolation. Their presented algorithm made use of the
obtained analytical formulas to deal with the nearly singular integrals. Fedotov and Spevak [12] proposed an approach to the
derivation of the analytical formulae for exact integration in the boundary element solution of two-dimensional elasticity
problems. In their approach, the integration over an arbitrary boundary element reduced to the integration over a specific
element. It is noteworthy that behavior of singular integrals is also a main issue in the BEM. Accordingly, these singular inte-
grals must be evaluated accurately. Much work has been performed in this regard to remove the singularities appearing in
the boundary element integrals [13–18].

Again, all of these latter works, with the exception of the work cited in Ref. [11], were related to the solution of the La-
place’s equation. However, the focus of the current study is the solution of Poisson’s equation and the adopted approach
combines the method implemented by Fratantonio et al. and the Galerkin Vector Method. As a result of implementing this
scheme, the expressions that appear in the solution of Poisson’s equation include six different integrals on the boundary
which must be solved. In obtaining the solutions, two different approaches can be applied. These approaches include manual
calculation with the help of Mathematical Tables [19] and/or the Matlab symbolic solver. Finally, the results of the analytical
integration are employed in BEM code and subsequently the computed analytical expression will be implemented for several
examples where the exact solution exists.

Once again, the aim of this work is to solve Poisson’s equation by expanding analytical integration of the integrals that
appear in BEM formulation in which the Galerkin Vector Method is extended for more general case wherer2e = 0 orr4l = 0.

2. Galerkin vector method

In view of a two-dimensional domain C with boundary oC, the discretized boundary-integral equation for the two-
dimensional Poisson’s equation may be readily written as follows:
ciui ¼
Xn

j¼1

Z
Cj

q�udC�
Xn

j¼1

Z
Cj

u�qdCþ
Z Z

C
lu� dC; ð1Þ
where u*, the fundamental solution of the Laplace equation in two dimensions, is
u� ¼ �1
2p

ln r: ð2Þ
Details of Galerkin Vector approach can be seen in Ref. [3]. Based on this very useful approach, for the mentioned general
case of r2e = 0 or r4l = 0, the last integral in Eq. (1) converts to:
ciui ¼
Xn

j¼1

Z
Cj

q�udC�
Xn

j¼1

Z
Cj

u�qdCþ
Xn

j¼1

Z
Cj

l @w
@n

dC�
Xn

j¼1

Z
Cj

w
@l
@n

dCþ
Xn

j¼1

Z
Cj

@w1

@n
dC
Xn

j¼1

Z
Cj

w1 @e
@n

dC; ð3Þ
where w and w1 may be calculated as follows:
w ¼ r2

8p
ln

1
r
þ 1

� �
; ð4Þ

w1 ¼ 1
256p

r4ð3� 2 ln rÞ: ð5Þ
3. Analytical solution of integrals

3.1. Basic definition

Eq. (3) is a set of six integrals. Each integral will be evaluated separately. The six boundary integrals associated with the G,
H, A, B, C, D matrices in Eq. (3) may be acquired from the following integrals:
G!
Z

Cj

u�qdC; ð6Þ

H!
Z

Cj

q�udC; ð7Þ
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A!
Z

Cj

w
@l
@n

dC; ð8Þ

B!
Z

Cj

l @w
@n

dC; ð9Þ

C !
Z

Cj

w1 @e
@n

dC; ð10Þ

D!
Z

Cj

e
@w1

@n
dC: ð11Þ
Here, constant and discontinuous linear elements are investigated. The element geometry is defined by linear shape function
because the geometry of each element is straight.
x ¼ 1
2
ð1� fÞx1 þ

1
2
ð1þ fÞx2; y ¼ 1

2
ð1� fÞy1 þ

1
2
ð1þ fÞy2: ð12Þ
The local coordinate system f is defined as shown in Fig. 1, and as a result we have
dC ¼ Lj
2

df;
where Lj is the length of jth element.
Distance between the field point and the source point is introduced as r. Since term r2 appears successively in the inte-

gration process, r2 may be written as a quadratic polynomial in terms of the local coordinate system f as follows:
r0 ¼ r2 ¼ ðx� x1Þ2 þ ðy� y1Þ2 ¼ aþ bfþ cf2: ð13Þ
Substituting Eq. (12) into Eq. (13) yields in
a ¼ 1
4
½ðx1 þ x2 � 2xiÞ2 þ ðy1 þ y2 � 2yiÞ

2�;

b ¼ 1
4
½ðx1 þ x2 � 2xiÞðx2 � x1Þ þ ðy1 þ y2 � 2yiÞðy2 � y1Þ�;

c ¼ ½ðx2 � x1Þ2 þ ðy2 � y1Þ
2� ¼ Lj2

4
:

ð14Þ
The polynomial form is used because the computation of the integrations 1
r2 and lnr2 will be possible easily.

Some terms that appear in Eqs. (6)–(11) may also be evaluated as
@r
@n
¼ rr � n ¼ @r

@x
nx þ

@r
@y

ny;

@r
@x
¼ x� xi

r
;
@r
@y
¼ y� yi

r
:

Also,
nx ¼
y2 � y1

Lj
; ny ¼ �

x2 � x1

Lj
:

Fig. 1. Element definition for analytical integration.
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Therefore, we conclude
@r
@n
¼ �d

rLj
; ð15Þ
where d = (x2y1 � x1y2 + xiy2 � xiy1 + x1yi � x2yi). The fundamental solution may be written as
u� ¼ �1
2p

ln r ¼ �1
4p

ln r2
which yields in the following equations:
@u�

@r
¼ �1

2pr
;

@u�

@n
¼ @u�

@r
@r
@n
¼ d

4pr2
ffiffiffi
c
p ;

@w
@r
¼ r

8p
ð1� ln r2Þ; @w

@n
¼ d

8pLj
ðln r2 � 1Þ;

@w1

@r
¼ 2r3

256p
ð5� 4 ln rÞ; @w1

@n
¼ @w1

@r
@r
@n
¼ 2r2d

256pLj
ð4 ln r � 5Þ:

ð16Þ
Now, the evaluation of integrations in Eqs. (6)–(11) may be performed for constant and linear element.

4. Constant element

First, the analytical boundary element integrations for constant element are found. The integrations are carried out using
manual integration and the symbolic solvers in Matlab software. In constant element definition, the boundary condition u
and q are considered to be constant along each element j.

Now the boundary element integration is carried out in two positions, off-diagonal and on-diagonal integrations (Fig. 2).
The boundary integrals in the G, H, A, B, C, D matrices, i.e. Eqs. (6)–(11), that are applied to calculate the nodal potentials and
fluxes are outlined for the constant element. The off-diagonal integrations will be determined first followed by the on-diag-
onal integrations.

4.1. Off-diagonal integrations

In this particular case, the source point lies outside the j-element which means that the distance r does not vanish and,
consequently, the integral is non-singular. The location of the source point is fixed and the field point is varying since the
element is being integrated. The integration is defined as off-diagonal because the source point is not located on element.
The G, H, A, B, C, and D matrices terms may be found by evaluating the following off-diagonal integrals that are raised from
Eqs. (6)–(11) as
Goff�cj
¼
Z

Cj

u� dC ¼ �Lj
8p

Z þ1

�1
ln r2 df; ð17Þ

Hoff�cj
¼
Z

Cj

q� dC ¼ d
4p

Z þ1

�1

1
r2 df; ð18Þ

Aoff�cj
¼
Z

Cj

wdC ¼ Lj
16p

Z þ1

�1
r2 1� 1

2
ln r2

� �� �
df; ð19Þ

Boff�cj
¼
Z

Cj

@w
@n

dC ¼ d
16p

Z þ1

�1
½ðln r2Þ � 1�df; ð20Þ

Coff�cj
¼
Z

Cj

w1 dC ¼ Lj
512p

Z þ1

�1
r4½3� ln r2�df; ð21Þ

Doff�cj
¼
Z

Cj

@w1

@n
dC ¼ d

256p

Z þ1

�1
r2½ð2 ln r2Þ � 5�df; ð22Þ
where off � cj expresses off-diagonal integrals over a constant element and j expresses element j, and the integration limits
are from �1 to +1 in the local coordinate systems.

As the roots of quadratic equation which are considered for r2 may have one of three solutions, they must be considered
when integrating Eqs. (17)–(22). The discriminant (D) of the quadratic is given as
D ¼ � d2

4
: ð23Þ
Obviously, the sign of D is always less than or equal to zero (Fig. 3). Thus, the off-diagonal integrals must be evaluated for
each case.



Fig. 2. Evaluation of the influence coefficient over (a) an off-diagonal and (b) on-diagonal straight element. The unit normal vector points into the solution
domain.

Fig. 3. (a) The value of D equals zero when elements are collinear and (b) the node point is collinear with the element, D vanishes.
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In the first case, D is less than zero. Therefore, the analytical solutions for off-diagonal integrals are obtained from Eqs.
(17)–(22) as follows:
Goff�cj
¼ �Lj

8p
½2 ln r2 � 4þ eðt � t0Þ�; ð24Þ

Hoff�cj
¼ d

2p
ffiffiffiffiffiffiffi
�D
p ðt � t0Þ; ð25Þ

Aoff�cj
¼ Lj

16p
gðt � t0Þ � aþ c

3

� �
ln r2 þ f

h i
; ð26Þ

Boff�cj
¼ d

16p
2 ln r2 � 6þ

ffiffiffiffiffiffiffi
�D
p

c
ðt � t0Þ

" #
; ð27Þ

Coff�cj
¼ Lj

512p
k ln r2 þ ðt � t0Þiffiffiffiffiffiffiffi

�D
p þ h

� �
; ð28Þ

Doff�cj
¼ d

256p
4c
3
þ 4a

� �
ln r2 þ ðt � t0Þmffiffiffiffiffiffiffi

�D
p þ n

� �
; ð29Þ
where the constants are defined as
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t ¼ tan�1 bþ 2cffiffiffiffiffiffiffi
�D
p

� �
; t0 ¼ tan�1 b� 2cffiffiffiffiffiffiffi

�D
p

� �
; e ¼ 4a� b2ffiffiffiffiffiffiffi

�D
p ; f ¼ 10a

3
� b2

6c
þ 8c

9

 !
;

f ¼ 10a
3
� b2

6c
þ 8c

9

 !
; i ¼ �32a3

15
þ 8a2b2

5c
� 2ab4

5c2 þ
b6

30c3

 !
;

k ¼ �2a2 � 2b2

3
� 2c2

5
� 4ca

3

 !
; h ¼ 208ac

45
þ 122a2

15
� 3ab2

5c
þ b4

15c2 þ
101b2

45
þ 34c2

25

 !
;

m ¼ 16a2

3
� 8ab2

3c
þ b4

3c2

 !
; n ¼ 2b2

3c
� 46a

3
� 38c

9

 !
:

ð30Þ
When the source point and the field element are located on the same line, the D is vanished and the analytical expressions
for off-diagonal integrals are given as
Goff�cj
¼ �Lj

8p
4 ln

c
2
þ ln

bþ 2c
b� 2c

� �2

þ b
c

ln
bþ 2c
b� 2c

� �
� 4

" #
; ð31Þ

Aoff�cj
¼ Ljc

16p
oþ pþ 2b2

3c2 þ
8
9

 !
þ b3

24c3 ðln
bþ 2c
b� 2c

� �" #
; ð32Þ

Coff�cj
¼ Ljc2

512p
qþ b3

12c3 ln
b� 2c
bþ 2c

� �" #
: ð33Þ
Also,

Hoff�cj

¼ Boff�cj
¼ Doff�cj

¼ 0; ð34Þ
where the constants are,
o ¼ �b2

8c2 �
b

4c
� 1

6

 !
ln

bþ 2c
c

� �2

� 2 ln 2

 !
; p ¼ �b2

8c2 þ
b

4c
� 1

6

 !
ln

b� 2c
c

� �2

� 2 ln 2

 !
;

q ¼ b2

4c
þ b

2c
þ 1

3

 !
11
3
� ln

bþ 2c
c

� �2

þ 2 ln 2

 !
þ b2

4c
� b

2c
þ 1

3

 !
11
3
� ln

b� 2c
c

� �2

þ 2 ln 2

 !
:

ð35Þ
4.2. On-diagonal element

In this case, the source point coincides with field point and r lies on the element. Consequently, we have:
Gon�cj
¼
Z

Cj

1
2p

ln r dCj ¼ 2
Z lj=2

0

1
2p

ln rdr ¼ 1
p

lj
2
½lnðlj=2Þ � 1�;

Hon�cj
¼
Z

Cj

q� dC ¼
Z

Cj

@u�

@r
@r
@n

dC ¼ 0;

Aon�cj
¼ Ljc

16p
8
9
� 1

3
ln c

� �
;

Bon�cj
¼ 0;

Con�cj
¼ Ljc2

768p
11
3
þ 2 ln 2� lnð4cÞ

� �� �
;

Don�cj
¼ 0;

ð36Þ
where on � cj indicates the on-diagonal integrals over a constant element and ‘‘j” indicates element j.

5. Linear element

For the case of linear element, the analytical boundary element integration is obtained. These boundary integrals will be
carried out for off-diagonal and on-diagonal integrations.

Linear element approximates the geometry of the boundary by straight lines and the boundary quantity by a linear func-
tion on each element, as follows (Fig. 4):
f ðnÞ ¼ w1ðnÞf1 þ w2ðnÞf2; ð37Þ

w1ðnÞ ¼
n2 � n
n2 � n1

� �
; w2ðnÞ ¼

n� n1

n2 � n1

� �
; ð38Þ



Fig. 4. General linear element definition.
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where subscripts 1 and 2 denote the local node numbers. The descretization of the integral is represented by
1
2
ui ¼

Xn

j¼1

n2

n2 � n1
H0

ij �
1

n2 � n1
H1

ij

� �
u1

j þ
1

n2 � n1
H1

ij �
n1

n2 � n1
H0

ij

� �
u2

j �
Xn

j¼1

n2

n2 � n1
G0

ij �
1

n2 � n1
G1

ij

� �
u1

nj

� 1
n2 � n1

G1
ij �

n1

n2 � n1
G0

ij

� �
u2

nj þ
Xn

j¼1

n2

n2 � n1
B0

ij �
1

n2 � n1
B1

ij

� �
b1

j þ
1

n2 � n1
B1

ij �
n1

n2 � n1
B0

ij

� �
b2

j

�
Xn

j¼1

n2

n2 � n1
A0

ij �
1

n2 � n1
A1

ij

� �
b1

nj þ
1

n2 � n1
A1

ij �
n1

n2 � n1
A0

ij

� �
b2

nj þ
Xn

j¼1

n2

n2 � n1
D0

ij �
1

n2 � n1
D1

ij

� �
a1

j

þ 1
n2 � n1

D1
ij �

n1

n2 � n1
D0

ij

� �
a2

j �
Xn

j¼1

n2

n2 � n1
C0

ij �
1

n2 � n1
C1

ij

� �
a1

nj þ
1

n2 � n1
C1

ij �
n1

n2 � n1
C0

ij

� �
a2

nj: ð39Þ
Here, H0
ij;G

0
ij;B

0
ij;A

0
ij;D

0
ij;C

0
ij are the same as those appearing in the constant element case.Z
G1
off�lj

¼
Cj

nu� dC; ð40Þ

H1
off�lj

¼
Z

Cj

nq� dC; ð41Þ

B1
off�lj

¼
Z

Cj

n
@w
@n

dC; ð42Þ

A1
off�lj

¼
Z

Cj

nwdC; ð43Þ

D1
off�lj

¼
Z

Cj

n
@w1

@n
dC; ð44Þ

C1
off�lj

¼
Z

Cj

nw1 dC: ð45Þ
5.1. Boundary integrations

The boundary integrals in the G, H, A, B, C, D matrices that are used to determine the nodal potentials and fluxes will be
developed for the general linear element. First, the outside integrations will be determined and then the inside integrations.

5.2. Outside integration

The integrals that exist in Eqs. (40)–(45) may be evaluated analytically for two cases. In the first case, D is less than zero
and for another case is zero. The integrals for the first case are as follows:
H1
off�lj

¼ d
4p

b

c
ffiffiffiffiffiffiffi
�D
p ðt0 � tÞ

� �
; ð46Þ

G1
off�lj

¼ �Lj

8p
b
ffiffiffiffiffiffiffi
�D
p

2c2 ðt
0 � tÞ þ b

c

" #
; ð47Þ

B1
off�lj

¼ d
16p

b
ffiffiffiffiffiffiffi
�D
p

2c2 ðt
0 � tÞ þ b

c

" #
; ð48Þ
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A1
off�lj

¼ Lj

16p sðt � t0Þ � b
c

ln r2 þ ss
� �

ð49Þ

D1
off�lj

¼ d
256p

4b
3

ln r2
� �

þ ff ðt � t0Þ þ ee
� �

; ð50Þ

C1
off�lj

¼ Lj

512p
�4ab

3
� 4bc

5

� �
ln r2 þ kkþ llðt � t0Þ

� �
: ð51Þ
The constants which appear in the above integrals are:
s ¼ 1ffiffiffiffiffiffiffi
�D
p 2ba2

3c
� ab3

3c2 þ
b5

24c3

 !
; ll ¼ 1ffiffiffiffiffiffiffi

�D
p 16ba3

15c
� 4a2b3

9c2 �
b7

60c4 þ
ab5

5c3

 !
;

ff ¼ 1ffiffiffiffiffiffiffi
�D
p �8ba2

3c
þ 4ab3

3c2 �
b5

6c3

 !
; ee ¼ 5ab

3c
� 35b

9
� b3

3c2 ;

kk ¼ 196ab
45

� b3

90c
� b5

30c3 þ
199bc

75
� 11ba2

15c
þ 3ab2

10c2

 !
; ss ¼ 29b

36
þ b3

12c2 �
5ab
12c

:

ð52Þ
For the second case where D is zero, the integrals may be computed as
G1
off�lj

¼ �Lj

8p
1
2

ln
bþ 2c
b� 2c

� �2

þ b
c
� b2

4c2 ln
bþ 2c
b� 2c

" #
; ð53Þ
A1
off�lj

¼ Ljc
16p

�1
8
� b

6c
� b2

16c2

 !
ln
ðbþ 2cÞ2

4c
þ b4

192c4 ln
bþ 2c
b� 2c

� �1
8
þ b

6c
� b2

16c2

 !
ln
ðb� 2cÞ2

4c
þ 29b

36c
þ b3

48c3

" #
; ð54Þ
C1
off�lj

¼ Ljc2

512p
gg þ b6

960c6 ln
bþ 2c
b� 2c

þ 199b
75c

þ 97b3

90c3 �
b5

240c5

" #
; ð55Þ

H1
off�lj

¼ B1
off�lj

¼ D1
off�lj

¼ 0 ð56Þ
and
gg ¼ �1
6
� 2b

5c
� 3b2

8c2 �
b3

6c3 �
b4

32c4

 !
ln
ðbþ 2cÞ2

4c
� �1

6
þ 2b

5c
� 3b2

8c2 þ
b3

6c3 �
b4

32c4

 !
ln
ðb� 2cÞ2

4c
: ð57Þ
5.3. Inside integration

In this case, the source lies on the element over which the integration is performed. As the integration point runs along
the whole element, it will coincide inevitably with the source point. Therefore, the distance r vanishes and the integrands of
Eqs. (40)–(45) exhibit a singular behavior. These integrals are known as singular integrals. Their values exist and are deter-
mined through special integration technique. Therefore in this case, we introduce
a ¼
n2

0L2
j

4
; b ¼

�n0L2
j

4
; c ¼

L2
j

4
ð58Þ
and as a result, we have
G1
on�lj
¼ �Lj

8p
�2n0 þ ð1� n2

0Þ ln
1� n0

�1� n0

� �2
" #

; ð59Þ

A1
on�lj
¼ Lj

16p
�2b

3
ln c þ

n2
0L3

j

24
�

29n0L2
j

72
þ aa

" #
; ð60Þ

C1
on�lj
¼ Lj

512p
L4

j n0

10
þ

L4
j n

3
0

6

 !
ln c �

199L4
j n0

600
þ

97L4
j n

3
0

180
�

L4
j n

5
0

120

 !
þ bb

" #
; ð61Þ

H1
on�lj
¼ B1

on�lj
¼ D1

on�lj
¼ 0: ð62Þ
Here the constants are:



Table 1
The com

Squa

Num

32
64
128
32
64
128
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aa ¼ að1� n2
0Þ

4
� bð1� n3

0Þ
6

� cð1� n4
0Þ

8

 !
lnð1� n2

0Þ þ
�að�1� n2

0Þ
4

þ bð�1� n3
0Þ

6
þ cð�1� n4

0Þ
8

 !
lnð�1� n0Þ2

bb ¼
L4

j n0ð1� n5
0Þ

20
þ

L4
j n

3
0ð1� n3

0Þ
12

 !
lnðk� 1Þ2 �

L4
j n0ð�1� n5

0Þ
20

þ
L4

j n
3
0ð�1� n3

0Þ
12

 !
lnðkþ 1Þ2:

ð63Þ
Next, we will apply the results of exact integration in the numerical computation of BEM.

6. Numerical examples

The mentioned computed integrals are applied to four different examples where the closed analytical solution exists for
the sake of comparison.

Example 1 (Poisson’s problem on a square domain). In this particular case, for simplicity, the domain was taken as a square
with a = b = 2.00 and the boundary may uniformly be divided into 32, 64, and 128 segments, as in Fig. 5. In order to
demonstrate the potential ability of the presented scheme, the Dirichlet boundary condition is employed on the
computational domain and as a result, flux will be determined. The accuracy of the computation is shown at a corner point
where the computational error may potentially occur and also at a point in the middle of one side of the square, as shown in
Table 1. The Dirichlet boundary condition is taken as,
u ¼ x4:
Therefore, the analytical solution for the flux may be calculated readily.
Example 2 (Poisson’s Problem on a circular domain). This example studies the influence of curved boundaries. A circle with
R = 2 is considered in Fig. 6. The boundary of the circle is divided into 32, 64 and 128 segments. The Dirichlet boundary con-
dition is used in the same manner as in Example 1 and the exact solution can be produced from it. The results of the com-
putation are shown in Table 2.
parisons of results of Example 1 by numerical and analytical integration in BEM solution and exact solution.

re domain with a = b = 2.00 Location of nodes (x,y) Flux

ber of nodes on square Analytical Numerical Exact

2.0000, 1.3700 31.77 31.76 32.00
2.0000, 1.0312 32.01 32.01 32.00
2.0000, 0.6718 32.00 32.00 32.00
2.0000, 1.8700 35.43 35.27 32.00
2.0000, 1.9375 35.51 35.53 32.00
2.0000, 1.9531 31.02 30.94 32.00

Fig. 5. Geometry of the computational domain.



Fig. 6. Geometry of the circular domain.
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Example 3 (Uniform incompressible viscous fluid). The equation of motion of a uniform incompressible viscous fluid in steady
state one-directional (in the z direction) flow may be written as [20]
Table 2
The com

Circu

Num

16
32
64
128
256
� @p
@z
þ l @2u

@x2 þ
@2u
@y2

 !
¼ 0;
where l is the viscosity of the fluid, @p
@z ¼ �G is a constant pressure gradient and u is the velocity component in the z direction.

This equation can be rewritten as
r2u ¼ �G
l
:

For an elliptical cross-section, the velocity distribution is of the form
u ¼ G

2lða�2 þ b�2Þ
1� x2

a2 �
y2

b2

� �
;

where a and bare the semi axes of ellipse. Taking the value of the constant G/l = 2 and the semi axes a = 2 and b = 2, the
problem that must be solved is
r2u ¼ �2
and the boundary condition is
u ¼ 0 on C:
The exact solution can be written in this case as follows:
u ¼ 2 1� x2

4
� y2

4

� �
:

parisons of results of Example 2 by numerical and analytical integration in BEM solution and exact solution.

lar domain with R = 2 Location of nodes (x,y) Flux

ber of nodes Constant Linear Exact

1.9238, �0.3826 28.42 29.65 29.61
1.9807, �0.1950 31.12 31.38 31.38
1.9951, �0.0980 31.78 31.84 31.84
1.9987, �0.0490 31.94 31.96 31.96
1.9996, �0.0245 31.99 31.99 31.99



Table 3
The comparisons of results of Example 3 by numerical and analytical integration in BEM solution and exact solution.

Elliptical (circle) domain with a = b = 2 (r = 2) Location of nodes (x,y) Flux

Number of nodes Presented Numerical Exact

16 1.9238, �0.3826 �1.95 �1.95 �2.00
64 1.9951, �0.0980 �1.9907 �1.9907 �2.00
256 1.9996, �0.0245 �1.9998 �1.9998 �2.00

Fig. 7. Geometry of multi-domain.

Table 4
The comparisons of results of Example 4 by numerical and analytical integration in BEM solution and exact solution.

Multiple domain with a = b = 20 and R = 5 Location of nodes (x,y) Flux

Number of nodes on square and circle Analytical Numerical Exact

32 8.7500, 10.0000 (square) �10.32 �10.31 �10.00
128 9.6875, 10.0000 (square) �10.38 �10.40 �10.00
256 �9.8437, �10.0000 (square) �10.44 �10.49 �10.00
32 �4.9519, 0.4877 (circle) 5.01 5.01 5.00
128 �4.9609, 0.6118 (circle) 5.00 5.00 5.00
256 2.5175, �4.3195 (circle) 5.00 5.00 5.00
32 1.2500, 10.0000 (square) �9.95 �9.95 �10.00
128 4.6875, 10.0000 (square) �10.00 �10.00 �10.00
256 3.2812, 10.0000 (square) �10.00 �10.00 �10.00
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Table 3 illustrates the results of this example. Good agreement is observed between the presented results and the numerical
and exact solutions, albeit the accuracy of the solution may be affected by the number of nodes on the boundary surface.
Example 4 (Poisson’s Problem on a multiple domain). The presented method can also be used for the multiple domain case
(Fig. 7). This is shown in Table 4 where it can clearly be seen that the accuracy of the presented solution is quite comparable
with the numerical computation.
7. Conclusion

The analytical boundary element integration was carried out in this paper for the solution of Poisson’s equation for the
first time, by considering constant and linear elements without any domain integration. This was done by extending the
Galerkin Vector Method. Six integrals were analytically determined and applied to solve the Poisson’s equation. The analyt-
ical integration reduces the resulted error where the computational domain has straight boundaries. By employing analytical
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integration in BEM computation, the numerical schemes and coordinate transformations can be avoided. In general, there are
three major concerns in solution of a problem by a numerical method which are accuracy, efficiency, and simplicity. The
authors believe that the application of the current analytical integration in BEM will be comparable with the numerical
method in simplicity and efficiency, but accuracy is only satisfied in some applications. Generally, the suitable application
of the analytical integrations for error reduction in BEM depends only on the shape of the boundary. However, the accuracy
of solution may be affected by the type of the boundary conditions. The presented formula can also be employed to solve
multi-domain problem which was demonstrated by an example. Comparison of the findings with the exact and numerical
values indicated good accuracy.

Based on the presented results achieved in this paper, the analytical integration may potentially be used in BEM formu-
lation of many other significant application problems in the future.
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