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ABSTRACT. A new constant displacement discontinuity method is presented for the numerical 
solution of cracks of the three fundamental deformation modes I, II and III lying either in the 
plane or in the half-plane. This method is based on the strain-gradient elasticity theory in its 
simplest possible Grade-2 (G2) variant for the solution of classical crack problems. The 
assumption of the G2 expression for the stresses results to a more accurate average stress 
value at the mid-point of the straight displacement discontinuity since it takes into account the 
stress-gradient effect and  gives considerably better predictions of the stress intensity factors 
compared to the compared to the classical elasticity solution. Moreover, the proposed method 
preserves the simplicity and hence the high speed of computations. For brevity of this paper 
we present here the specific case of mode-II cracks perpendicular to the free-surface of the 
half-plane. Validation of the method is made against analytical solution. 

RÉSUMÉ. On présente une nouvelle méthode de discontinuité en déplacement pour la solution 
numérique de fissures en modes I, II ou III dans un plan ou un demi-plan. Cette méthode est 
basée sur une théorie d’élasticité du second gradient pour la solution de problèmes  
de fissures classiques. L’hypothèse de second gradient conduit à une contrainte moyenne plus 
précise au point milieu d’une discontinuité en déplacement droite car l’effet de gradient  
de contraintes est pris en compte et permet d’obtenir des prédictions bien meilleures  
des facteurs d’intensité de contraintes si l’on compare à la solution élastique classique. De 
plus, la simplicité de l’approche permet des calculs numériques très rapides. Dans cet article, 
nous présentons le cas spécifique d’une fissure en mode II perpendiculaire à la surface libre 
d’un demi-plan. La méthode est validée par comparaison avec la solution analytique. 
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1. Introduction 

Even though much achievement has been made in Linear Elastic Fracture 
Mechanics (LEFM) modeling techniques, a simple, albeit fast, and practical crack 
modeling technique is still needed, in particular for complex multiple crack growth 
problems (e.g. Figure 1) and fatigue problems of brittle materials. Crouch and 
Starfield (1990) by employing the Neuber-Papkovich potential functions 
corresponding to point dislocations (i.e. displacement discontinuities) has developed 
such simple and practical technique the so-called Displacement Discontinuity 
Method (DDM) for solving crack and solid mechanics problems. It is worth 
mentioning here that DDM may be seen as a special case of the dual Boundary 
Element Method (BEM) (Chen and Hong, 1999). This method is attractive for 
researchers and practitioners in the field of LEFM, due to its simplicity as compared 
to cumbersome complex variables theory of Muskhelishvili, combined with singular 
integral equations and numerical integration rules.  

The assertion in DDM that the stress at the centre of a straight constant 
displacement discontinuity, as is calculated from first principles of the classical 
linear elasticity theory, represents the average stress over the element, leads to 
overestimation of displacements at the crack tips and consequently to large errors for 
the Stress Intensity Factors (SIFs). This is true if one considers the trapezoidal rule 
of integration and a constant or linearly varying stress σ  in the region of the 
element. However, for a “quadratically” varying stress this rule must be enhanced, 
so as to incorporate the effect of curvature, that is to say: 











−= 2

2
2

24
1

dx
dL σσσ  [1] 

Field theories, which are based on averaging rules that include the effect of higher 
gradients, are called higher gradient theories. In particular above rule [1] represents 
a 2nd gradient rule, and can be readily generalized in 2 and 3 dimensions by 
introducing the Laplacian operator instead of the second derivative. This has been 
done by assuming the constitutive relationship for the stresses: 
 

( )( ) 1,2,3ji, ,G ijkkijij =+∇−= εελδσ 21 22  [2] 

 
where ijδ  is the Kronecker delta, 2∇  is the Laplacian operator, λ and G are the 

usual Lamè constants, Einstein’s summation rule is assumed, 2  is the strain-
gradient term that has dimensions of length squared, and ijε  denotes the symmetric 

strain tensor.  

Based on the above approach the stress at the centre of a straight dislocation is 
derived from the strain-gradient elasticity theory in its simplest possible Grade-2 
(second gradient of strain or G2 theory) variant (Vardoulakis et al., 1996; 
Exadaktylos et al., 1996; Exadaktylos and Aifantis, 1996; Exadaktylos, 1998; 
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Exadaktylos, 1999; Exadaktylos and Vardoulakis, 2001). The value of the strain 
gradient coefficient or length-scale  that gives the exact agreement of the mid-point 
displacement of the uniformly pressurized straight displacement discontinuity with 
the analytical solution for the uniformly pressurized crack, assuming that the latter is 
discretized with only one element, may be easily found. Since the errors of the 
classical DDM are larger in the regions close to the tips where also the stress 
distribution along the crack elements display higher gradients, a simple parabolic 
dependence of the strain gradient coefficient on the x-coordinate of the centre of the 
i-th element lying along Ox-axis was assumed. This G2 formulation applies only on 
the crack elements and not outside them, where it is assumed that the classical 
stresses are valid; furthermore, it does not alter the nature of the classical elasticity 
problem of a cracked body we are aiming to solve. That is to say, no extra boundary 
conditions along the crack are imposed that are necessary for the solution of a strain-
gradient elasticity problem, apart from those prescribed by classical elasticity theory. 

In two previous papers (Exadaktylos and Xiroudakis, 2010a, 2010b), the G2 
constant displacement discontinuity (G2CDD) method was presented for the 
solution of mode I, II and III crack problems in an infinite plane isotropic elastic 
body as is illustrated in Figure 2. In this paper, the previous work is further 
elaborated to incorporate automatically traction-free boundary conditions for a semi-
infinite region. Herein, a specific problem is solved in the next Section that is a 
special case of the general problem of a Displacement Discontinuity (DD) over an 
arbitrarily oriented, finite line segment in a semi-infinite body. It is instructive, 
however, to treat this special case separately before considering the more 
complicated general problem. Hereafter, tensile stresses are considered as positive 
quantities and the unit length is chosen to be the half-width of the DD element since 
the sizes of the elements are taken to be equal. 

2. The half-plane G2 solution for a displacement discontinuity over a finite line 
segment normal to the free surface 

For the extension of the G2CDD method to situations in which the region to be 
analyzed is affected by the proximity of a traction-free plane surface, it is necessary 
to obtain the solution for a constant displacement discontinuity over an arbitrarily 
oriented, finite line segment in a semi-infinite body. This solution is constructed by 
superposition from the infinite body results using the classical method of images 
(Hirth and Lothe, 1982). It consists of two parts, namely, the actual solution already 
found for an infinite body with a constant displacement discontinuity over an 
arbitrarily oriented, finite line segment in y < 0, an “image discontinuity” in y > 0 
that cancels out the shear stresses on y = 0, and a continuous distribution of normal 
stress on y = 0 to make the cancel out the normal tractions on the surface of the 
semi-infinite region 0≤y . Hence, the complete solution is given by the sum of the 
three separate solutions. The stress tensor due to the actual DD will be denoted by 

)(Aijσ , those due to its image by )(Iijσ , and those resulting from the supplemental 
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solution by )(Sijσ , wherein indices i, j denote the Cartesian coordinates x, y. The 
complete solution for the half-plane 0≤y  then may be represented as follows: 
 

( ) yxjiSijIijAijij ,.)()( =++= σσσσ  [3] 

 

 
 
Figure 1. A plane isotropic elastic body containing isolated or mutually intersecting cracks 

kLLL ,...,, 21  and subjected to normal stresses yx σσ ,  and shear stress τ  at infinity 

 
Figure 2. Distribution of horizontal stress in a plane isotropic elastic body 
containing isolated or mutually intersecting cracks and subjected to far-field 
horizontal stress 
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As is illustrated in Figure 3, local coordinate systems attached on the actual and 
image finite linear segments are adopted in the following fashion, respectively, 
 

( ) ,; xyhyx AA −=+=  [4] 

( ) xyhyx II −=−= ;  [5] 
 
where h is the depth of the dislocation centre. We seek the solution referring to the 
global coordinate system Oxy for the stresses in plane strain conditions, produced by 
an arbitrarily oriented finite straight Mode II dislocation lying in the lower half-
plane at a depth h and occupying the line segment 0,11 =<<− AA y x , i.e. for 
a = 1, with no loading at infinity and displaying a constant DD of magnitude xD  in 
local coordinates (Figure 1). 
 

 

Figure 3. Half plane solution for a vertical crack with the method of images 

The local stresses in global coordinates read as follows 
 

( ) ( ) ( ) ( )AAxxyyAAyxAAxyAAyyxx yxyxyxyx ,,,,,, σσσσσσ =−==  [6] 

 
The solution for Mode II stresses by employing the Fourier transform technique are 
(Exadaktylos and Xiroudakis, 2010b): 
 

( )( ) ( ) ( ) ( ) ( )( )∫
∞

− ++
−
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On the other hand the image element solution may be easily found as follows: 
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The analytical expressions for the above semi-infinite integrals may be found 
analytically through formal integration rules (Exadaktylos and Xiroudakis, 2010b). 
Furthermore, for this problem the supplementary stresses may be found after certain 
mathematical manipulations as follows: 
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3. Validation example  

Problems involving an infinite body with cracks – even intersecting cracks – 
subjected to complex loading conditions, are solved almost trivially by the DD 
method. Each crack is divided into a series of segments over which stress boundary 
conditions are known, and the appropriate equations are solved for the discontinuity 
components at each segment. Stresses elsewhere in the body then can be computed 
by summing the contributions of all the individual discontinuities. One of the main 
objectives of many analyses of crack problems in the context of LEFM is to obtain 
values of the SIFs III KK ,  at the crack tips. A simple way of accomplishing this is 
to use the known LEFM relationships: 
 

( ) ( ) ( ) ( )
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where the negative sign is due to the adopted sign convention for the DD’s and 
stresses, ( ) ( )rDrD xy , are the normal, shear and anti-plane shear components of 

displacement discontinuity a distance r from the crack tip(s). For practical purposes, 
the limits in Equations [16] can be approximated by evaluating the expressions for a 
fixed value of r, small in relation to the size of the crack. The SIFs are simply 
calculated numerically by using the displacement discontinuity at the midpoints of 
the crack-tip cracks. Thus, accurate values of SIFs may be obtained if the DD 
distributions in the vicinity of the crack tip(s) are known accurately. 

 
Figure 4. Half plane with a vertical crack subjected to far-field uniform shear 
tractions 
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Next, the proposed method is validated against the vertical crack problem 
illustrated in Figure 4. This case refers to the straight crack normal to the free-
surface of the half-plane subjected to uniform in-plane shear stress at infinity. The 
closed form expressions for the mode II SIF at crack tips A and B are given by Tada 
et al. (1973). Figure 5 shows the variation of the dimensionless mode II SIF at the 
two crack tips A, B as is predicted by the two numerical methods, namely CDD and 
G2CDD, and by the semi-analytical solution, as the relative crack distance from the 
free surface increases and for a fixed number of discretization elements of the crack 
(N = 10). From this figure the very nice agreement of the G2CDD method and its 
superiority compared with the CDD method may be noticed.  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.0 1.5 2.0 2.5 3.0 3.5

h/a

D
im

en
si

on
le

ss
 m

od
e-

II 
S

IF

KIIA G2CDDA CDDA KIIB G2CDDB CDDB
 

Figure 5. Comparison of the dependence of mode II  SIF at the two tips A, B of the 
vertical crack discretized with N = 10 elements, on its relative distance from the free 
surface predicted by the semi-analytical solution (continuous and dashed lines) and 
the two numerical methods CDD and G2CDD 

4. Conclusions 

The innovation of the proposed method lies in the fact that this method is based 
on the strain-gradient elasticity theory in its simplest possible G2 variant for the 
solution of classical crack problems, i.e. cracks exhibiting inverse square root 
singularity. The assumption of the G2 expression [2] for the stresses results to a 
more accurate average stress value at the mid-point of the straight displacement 
discontinuity compared to the classical elasticity solution since it takes into account 
the stress-gradient effect. This new element with only one collocation point at 
element centre gives considerably better predictions of the stress intensity factors 
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compared to the constant displacement discontinuity element. Moreover, the new 
method preserves the simplicity and hence the high speed of computations. For 
brevity of this paper we have presented the solution for the specific case of mode-II 
cracks perpendicular to the free-surface of the half-plane. Validation of the method 
was successfully performed against analytical solution. 
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