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a b s t r a c t

This paper presents a way of using He’s variational iteration method to solve free vibration
problems for an Euler–Bernoulli beam under various supporting conditions. By employing
this technique, the beam’s natural frequencies and mode shapes can be obtained and a
rapidly convergent sequence is obtained during the solution. The results obtained are the
same as the results obtained by the Adomian decomposition method. It is verified that
the present method is accurate and it provides a simple and efficient approach for solving
vibration problems for uniform Euler–Bernoulli beams. A robust and efficient algorithm is
also programmed using Matlab based on the present method, which can be easily used to
solve Euler Bernoulli beam problems.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration problems for uniform Euler–Bernoulli beams have been solved by different approaches. Smith et al. [1]
presented a fully Sinc–Galerkinmethod in both space and time for solving the Euler–Bernoulli beamproblemswith fixed and
cantilever boundary conditions. The authors proved that the Sinc discretizations were especially suited for such problems
and goodnumerical resultswere yielded from thismethod. Yeih et al. [2] obtained the natural frequencies and naturalmodes
for an Euler–Bernoulli beam using a dualmultiple reciprocitymethod (MRM) and the singular value decompositionmethod.
Yeih’smethodwas able to avoid the spurious eigenvalue problem andmodes resulted from applying the conventionalMRM.
Naguleswaran [3–6] obtained an approximate solution for the transverse vibration of the uniform Euler–Bernoulli beam
under linearly varying axial force. The author also extended this approach to find the natural frequencies, sensitivity and
mode shapes of an Euler–Bernoulli beam with up to three step changes in cross-section.
A recent innovative method in solving these problems is presented by Lai et al. [7]. In this method, the Adomian

decomposition method (ADM) is applied to solve the Euler–Bernoulli beam vibration problem. On employing the ADM, the
governing differential equation becomes a recursive algebraic equation and boundary conditions become simple algebraic
frequency equations. It was shown by the researchers that after some simple mathematical operations, any ith natural
frequency and any ith mode shape can be obtained. Compared to the aforementioned approaches, Lai’s method is simpler
and more straightforward.
In this paper, He’s variational iteration method is employed to solve the Euler–Bernoulli beam problem. This method

was developed by the Chinese mathematician Ji-Huan He as a modification of a general Lagrange multiplier method [8–12].
Thismethod has been extensively applied as a powerful tool for solving various kinds of problems, such as the Fokker–Planck
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equation [13], the quadratic Riccati differential equation [14], nonlinear equations in heat transfer problems [15,16], non-
linear ordinary differential equations [17], nonlinear Jaulent–Miodek equations [18], nonlinear equations with Riemann–
Liouville fractional derivatives [19], the Cauchy reaction–diffusion problem [20], the semi-linear inverse parabolic equation
[21], and the differential-difference equation [22], etc.

2. He’s variational iteration method (HVIM)

In this section, the concept of He’s variational iteration method is briefly introduced. Consider the general nonlinear
differential equation given in the form

Lu(t)+ Nu(t) = g(t) (1)

where L is a linear operator,N is a nonlinear operator, and g(t) is a known function. By using the variational iterationmethod,
a correction functional can be constructed as

un+1(t) = un(t)+
∫ t

0
λ(Lun(ξ)+ Nũn(ξ)− g(ξ))dξ (2)

where λ is a general Lagrange multiplier, which can be determined optimally via variational theory; the subscript nmeans
the nth approximation; ũn is a restricted variation and δũn = 0.

3. Using the HVIM to analyze the free vibration problem for a uniform Euler–Bernoulli beam

Ignoring shear deformation and rotary inertia effect, the equation of motion for lateral vibrations of a uniform Euler–
Bernoulli beam can be written as

EI
∂4y(x, t)
∂x4

+ ρA
∂2y(x, t)
∂t2

= 0, 0 < x < l (3)

and the boundary conditions are given as[
cr3
∂3y(x, t)
∂x3

+ cr2
∂2y(x, t)
∂x2

+ cr1
∂y(x, t)
∂x

+ cr0y(x, t)
]∣∣∣∣
x=0
= 0, r = 1, 2 (4)[

dr3
∂3y(x, t)
∂x3

+ dr2
∂2y(x, t)
∂x2

+ dr1
∂y(x, t)
∂x

+ dr0y(x, t)
]∣∣∣∣
x=1
= 0, r = 1, 2 (5)

where y(x, t) is the lateral deflection at distance x along the length of the beam and time t , EI, ρ, and A are the flexural
rigidity, the density, and the cross-sectional area of the beam, respectively. cr0, cr1, cr2, cr3, dr0, dr1, dr2, dr3 are constants
coming from different boundary conditions for Euler–Bernoulli beams, where r = 1 and 2. For any mode of vibration, the
lateral deflection y(x, t) can be written in the form

y(x, t) = Y (x)h(t) (6)

where Y (x) is the model deflection and h(t) is a harmonic function of time. If ω denotes the frequency of h(t), then

∂2y(x, t)
∂t2

= −ω2Y (x)h(t). (7)

Eq. (3) is thus reduced to a differential equation

EI
d4Y (x)
dx4

− ∂Aω2Y (x) = 0, 0 < x < l. (8)

Without loss of generality the following dimensionless quantities can be introduced:

X =
x
l
, Y (X) =

Y (x)
l
, P =

ρAω2l4

EI
(9)

where P is the eigenvalue for this problem. Then Eq. (8) can be written in a dimensionless form as

d4Y (X)
dX4

− PY (X) = 0, 0 < X < 1. (10)

Similarly, the boundary conditions (Eqs. (4) and (5)) can also be expressed in the dimensionless form[
αr3
d3Y (X)
dX3

+ αr2
d2Y (X)
dX2

+ αr1
dY (X)
dX
+ αr0Y (X)

]∣∣∣∣
X=0
= 0, r = 1, 2 (11)[

βr3
d3Y (X)
dX3

+ βr2
d2Y (X)
dX2

+ βr1
dY (X)
dX
+ βr0Y (X)

]∣∣∣∣
X=1
= 0, r = 1, 2. (12)
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By comparing Eq. (10) with Eq. (1) the correctional function can be obtained as

Yn+1(X) = Yn(X)+
∫ X

0
λ

(
d4Yn(t)
dt4

− PYn(t)
)
dt. (13)

Integrating the integral by parts, Eq. (13) becomes

Yn+1(X) = Yn(X)+ λY (3)n (X)− λ(1)Y (2)n (X)+ λ(2)Y (1)n (X)− λ(3)Yn(x)+
∫ X

0
[λ(4) − Pλ]Yn(t)dt. (14)

By taking the variation on both sides of Eq. (14) with respect to Yn, one can obtain

δY n+1(X) = δY n(X)+ λδY (3)n (X)− λ
(1)δY (2)n (X)+ λ

(2)δY (1)n (X)− λ
(3)δY n(X)+

∫ X

0

[
λ(4) − Pλ

]
δY n(t)dt. (15)

The stationary conditions obtained from Eq. (15) are as follows:

λ|t=X = 0. (16)

λ(1)|t=X = 0. (17)

λ(2)|t=X = 0. (18)

1− λ(3)|t=X = 0. (19)

λ(4) − Pλ = 0. (20)

From Eqs. (16)–(20), the Lagrange multiplier λ can be derived as

λ =
(t − x)3

6
. (21)

Next, by substituting Eq. (21) into Eq. (13) the correctional function can be represented as

Yn+1(X) = Yn(X)+
∫ X

0

(t − X)3

6

(
d4Yn(t)
dt4

− PYn(t)
)
dt. (22)

In order to start the iterations using Eq. (22), Y0(X) is needed, which is represented as a Maclaurin series with the first four
terms

Y0(X) =
3∑
m=0

Xm

m!
Y (m)(0) = Y (0)+ Y (1)(0)X +

Y (2)(0)
2!

X2 +
Y (3)(0)
3!

X3. (23)

From Eq. (22) one can obtain

Y1(X) = Y0(X)+
∫ X

0

(t − X)3

6

(
d4Y0(t)
dt4

− PY0(t)
)
dt

Y2(X) = Y1(X)+
∫ X

0

(t − X)3

6

(
d4Y1(t)
dt4

− PY1(t)
)
dt

. . .

Yk(X) = Yk−1(X)+
∫ X

0

(t − X)3

6

(
d4Yk−1(t)
dt4

− PYk−1(t)
)
dt. (24)

After obtaining Yk(X), the solution for Eq. (10) then can be expressed as

Y (X) = lim
k→∞

Yk. (25)

Since it is not possible to set k as infinity, a large number n is therefore selected and substituted into Eq. (25) instead of∞,
where n is decided on the basis of the accuracy required;

Y (X) = Yn(X). (26)

FromEqs. (23) and (24) it is known that Y0(X) is a function of Y (0) andX , and Yk(X) is a function of Y (0), P, t , andX . Similarly,
Yk(X)(1), Yk(X)(2), Yk(X)(3) are also the functions of Y (0), P, t , and X . Hence Eq. (12), one of the boundary conditions, can be
rewritten as

3∑
j=0

f [k]rj (P)Y
(j)(0) = 0, r = 1, 2 (27)
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where f [k]rj are polynomials of P with respect to k. By solving Eqs. (11) and (27) simultaneously for the nontrivial solutions
Y (j)(0) (j = 0, 1, 2, 3), the ith estimated eigenvalue Pki corresponding to k can be obtained, and the number of iterations n
is decided by the following equation:

|P [n]i − P
[n−1]
i | ≤ ε (28)

where εis a small value preset according to the accuracy required. If Eq. (28) is satisfied, then P [n]i will become the ith
eigenvalue Pi. By substituting Pi into Eq. (24), Yn(X) can be found. However, finding P

[n]
i from Eqs. (11) and (27) is very

complicated and tedious; therefore a simplified method [7] is applied here to find P [n]i . This method reduces the number of
terms in Eqs. (11) and (27) by applying the given boundary conditions of the beam at its left end X = 0. One can choose any
two values of Y (j)(0) (j = 0, 1, 2, 3), as the arbitrary constants, and the remaining two quantities are functions of these two
arbitrary constants. Then the two equations can be easily solved and the nontrivial solutions as well as the eigenvalue can
be found. The following sections discuss different boundary conditions at the left end X = 0 for this problem.
Case 1: Free end at left end X = 0 (x = 0; see Eq. (9)).
In this case, the shear force and bendingmoment are zero at X = 0, that is Y (2)(0) = 0, Y (3)(0) = 0, and both Y (1)(0) and

Y (0) are considered as arbitrary constants which depend on the given boundary conditions at the right end X = 1 (x = l
according to Eq. (9)). Hence Eq. (27) can be simplified as

f [k]r0 (P)Y
(0)(0)+ f [k]r1 (P)Y

(1)(0) = 0, r = 1, 2. (29)

For nontrivial solutions (x, y 6= 0), the equation is given as∣∣∣∣∣f [k]10 (P) f [k]11 (P)

f [k]20 (P) f [k]21 (P)

∣∣∣∣∣ = 0. (30)

The ith estimated eigenvalue P [k]i corresponding to k can then be obtained from Eq. (30). Without loss of any generality, the
beam can be considered as connected to a translational spring and a rotational spring at its right end X = 1 (x = 1). The
boundary conditions at X = 1 can then be presented as[

EI
d2Y (x)
dx2

+ kRR
dY
dx

]∣∣∣∣
x=l
= 0 (31)[

EI
d3Y (x)
dx3

+ kTRY (x)
]∣∣∣∣
x=l
= 0 (32)

where kRR is the rotational spring constant and kTR is the translational spring constant. The above equations can also be
expressed in a dimensionless form as

Y (2)(1)+ βRRY (1)(1) = 0 (33)

Y (3)(1)+ βTRY (1) = 0 (34)

where βRR = kRR/EI and βTR = kTR/EI . Starting from k = 1, assuming Yk(X) as Y (X) and substituting Yk(1) from Eq. (24)
into Eqs. (31) and (32), one can obtain

Y (2)k (1)+ βRRY
(1)
k (1) = 0 (35)

Y (3)k (1)− βTRYk(1) = 0. (36)

Comparing Eqs. (33) and (34) to Eq. (29), the values of f10(P), f11(P), f20(P), f21(P) can be determined. Next, one substitutes
these values into Eq. (30) and the ith estimated eigenvalue Pi[k] can be obtained with respect to k. If this P

[k]
i satisfies Eq. (28)

then k becomes n and P [k]i is Pi. Otherwise if Eq. (28) is not satisfiedwith the current P
[k]
i , the same procedure is to be repeated

with increasing k until Eq. (28) is satisfied. Finally, Y (X) is determined from Eq. (26) on the basis of the n found.
Case 2: Clamped at the left end X = 0 (x = 0).
In this case, the deflection and slope are zero at X = 0, that is Y (0) = 0 and Y (1)(0) = 0. Y (2)(0) and Y (3)(0) are arbitrary

constants which depend on the given boundary conditions at the right end X = 1 (x = l). Eq. (27) then can be simplified as

f [k]r2 (P)Y
(2)(0)+ f [k]r3 (P)Y

(3)(0) = 0, r = 1, 2. (37)

For nontrivial solutions, the equation is given as∣∣∣∣∣f [k]12 (P) f [k]13 (P)

f [k]22 (P) f [k]23 (P)

∣∣∣∣∣ = 0. (38)
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The ith estimated eigenvalue P [k]i corresponding to k can be obtained from Eq. (38). Without loss of any generality, the beam
is considered as connected to a translational spring and a rotational spring at its right end X = 1 (x = l). The boundary
conditions at X = 1 are given as Eqs. (33) and (34).
Starting from k = 1, assuming Yk(X) as Y (X) and substituting Yk(1) from Eq. (24) into Eqs. (33) and (34), we can obtain

Y (2)k (1)+ βRRY
(1)
k (1) = 0 (39)

Y (3)k (1)− βTRYk(1) = 0. (40)

f12(P), f13(P), f22(P), f23(P) in Eq. (37) can be determined for this case by comparing Eqs. (39) and (40) to that equation. The
ith estimated eigenvalue P [k]i with respect to k is obtained by substituting these values into Eq. (38). Similarly, if Eq. (28) is
satisfied with the P [k]i obtained, the corresponding kwill be n and this P

[k]
i will be Pi. Otherwise another iteration step needs

to be performed until an ideal P [k]i is found which satisfies Eq. (28). Y (X) is therefore obtained.
Case 3: Hinged at left end X = 0 (x = 0).
In this case, the deflection and bending moment are zero at the left end X = 0, that is Y (0) = 0, Y (2)(0) = 0, and Y (1)(0),

Y (3)(0) are arbitrary constants that depend on the given boundary conditions at the right end X = 1 (x = l). Hence Eq. (26)
can be simplified as

f [n]r0 (P)Y (0)+ f
[n]
r2 (P)Y

(2)(0) = 0, r = 1, 2. (41)

For nontrivial solutions, the equation is given as∣∣∣∣f [n]10 (P) f [n]12 (P)
f [n]20 (P) f [n]22 (P)

∣∣∣∣ = 0. (42)

From Eq. (42), the ith estimated eigenvalue P [k]i corresponding to k is obtained for this case. Similarly, this beam can be
considered as connected to a translational spring and a rotational spring at its right end X = 1 (x = l). Then the boundary
conditions at the right end are specified in Eqs. (33) and (34).
Starting from k = 1 and still assuming Yk(X) as Y (X), we can obtain the following equations by substituting Yk(1) from

Eq. (24) into Eqs. (33) and (34):

Y (2)k (1)+ βRRY
(1)
k (1) = 0 (43)

Y (3)k (1)− βTRYk(1) = 0. (44)

By comparing Eqs. (43) and (44) to Eq. (41), the values of f10, f11, f21, f22 can be determined. Next, one substitutes these values
into Eq. (42) and the ith estimated eigenvalue P [k]i can be obtained along with its corresponding k. Like in the previous cases,
if this P [k]i satisfies Eq. (28) the current k is considered as n and P

[k]
i is considered as Pi. Otherwise the same process needs to

be repeated with increasing k until Eq. (28) is satisfied, and then Y (X) can be obtained from Eq. (26).

4. Numerical examples

In this section the feasibility and the efficiency of He’s variational iteration method is illustrated with two examples
of the above cases. By following the procedures described in case 2 and case 3 the ith estimated eigenvalues P [k]i for
i = 1, 2, 3, 4, 5, 6 are calculated. The values obtained here are compared to those yielded from the ADM method [7] to
validate He’s variational iteration method.

Example 1. A clamped–free beam with elastic spring restraints at X = 1 (x = l).

Consider a clamped–free beam as discussed in case 2, whose right end X = 1 is connected to a translational spring and
a rotational spring. It is assumed that βRR = 1, βTR = 1, and the small preset value ε = 0.0001; then Eq. (28) becomes

|P [n]i − P
[n−1]
i | ≤ 0.0001. (45)

The algorithm introduced in case 2 is implemented into a Matlab program (Appendix A) to find the eigenvalue Pi. The
calculated values of Pi are given in Table 1.
Here the first estimated eigenvalue P1 is obtained in the fifth iteration and the second eigenvalue P2 is obtained in the

eighth iteration. The remaining eigenvalues are found in the same way, and these are listed in Table 1. These results are
exactly the same as the results obtained by using the ADM method (see Table 1 of Ref. [7]). On the basis of the calculated
eigenvalues, the natural frequencies and mode shapes for this clamped–free beam can be correctly obtained by using He’s
variational iteration method, as illustrated in [7].

Example 2. A pinned–free beam with elastic spring restraints at X = 1 (x = l).
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Table 1
Results for the ith eigenvalue P [k]i for k up to 18 approximate terms — Example 1.

k P [k]1 P [k]2 P [k]3 P [k]4 P [k]5 P [k]6
2 22.3736 231.5189
3 21.3335 472.0628
4 21.3305 562.1272
5 21.3305 565.6123
6 21.3305 565.6379 4049.8336 9339.5961
7 21.3305 565.6380 4030.2659 13572.9073
8 21.3305 565.6380 4030.0576 14998.4559
9 21.3305 565.6380 4030.0563 15064.5559
10 21.3305 565.6380 4030.0563 15065.4757 40917.1710 62059.3503
11 21.3305 565.6380 4030.0563 15065.4834 40698.4889 81698.4012
12 21.3305 565.6380 4030.0563 15065.4834 40695.3486 89737.9000
13 21.3305 565.6380 4030.0563 15065.4834 40695.3164 90259.8484
14 21.3305 565.6380 4030.0563 15065.4834 40695.3161 90269.0215
15 21.3305 565.6380 4030.0563 15065.4834 40695.3161 90269.1302
16 21.3305 565.6380 4030.0563 15065.4834 40695.3161 90269.1311
17 21.3305 565.6380 4030.0563 15065.4834 40695.3161 90269.1311
18 21.3305 565.6380 4030.0563 15065.4834 40695.3161 90269.1311

Table 2
Results for the ith eigenvalue P [k]i for k up to 18 approximate terms — Example 2.

k P [k]1 P [k]2 P [k]3 P [k]4 P [k]5 P [k]6
2 73.5340 92.2059
3 47.5095 298.9577
4 47.4140 353.6648
5 47.4138 355.1710 3130.0422 3437.2527
6 47.4138 355.1791 2605.7908 7663.6966
7 47.4138 355.1791 2602.0470 10423.4768
8 47.4138 355.1791 2602.0176 10955.5542
9 47.4138 355.1791 2602.0174 10969.4425
10 47.4138 355.1791 2602.0174 10969.5922 31928.3732 55908.0995
11 47.4138 355.1791 2602.0174 10969.5931 31881.6235 70289.5517
12 47.4138 355.1791 2602.0174 10969.5931 31881.0367 73969.0165
13 47.4138 355.1791 2602.0174 10969.5931 31881.0316 74099.4366
14 47.4138 355.1791 2602.0174 10969.5931 31881.0316 74101.3371
15 47.4138 355.1791 2602.0174 10969.5931 31881.0316 74101.3566
16 47.4138 355.1791 2602.0174 10969.5931 31881.0316 74101.3568
17 47.4138 355.1791 2602.0174 10969.5931 31881.0316 74101.3568
18 47.4138 355.1791 2602.0174 10969.5931 31881.0316 74101.3568

In this example, there is a pinned beam as described in case 3, whose right end X = 1 is connected to a translational
spring and a rotational spring. Similarly, we assume that βRR = 0, βTR = 25, and ε = 0.0001. The algorithm presented
in case 3 is implemented in a Matlab program (Appendix B) in order to obtain the eigenvalues Pi, which are displayed in
Table 2.
In this problem, the first estimated eigenvalue P1 is obtained in the sixth iteration and the second one P2 is obtained in

the seventh iteration. Following the same approach, the remaining eigenvalues are obtained, and these are listed in Table 2.
These results are the same as those obtained from the ADMmethod (see Table 3 of Ref. [7]). Hence, the natural frequencies
andmode shapes for the pinned–free beam can be obtained on the basis of these eigenvalues. The detailed solution approach
is presented in [7].

5. Conclusion

The two numerical examples verify that the vibration problem for the Euler–Bernoulli beam can be solved by using He’s
variational iterationmethod, accurately and efficiently. The eigenvalues of the Euler–Bernoulli beam calculated in this study
are in good agreement with the results obtained from the ADM method. Although both He’s variational iteration method
and the ADMmethod are efficient and powerful methods for solving the Euler–Bernoulli beam problem, He’s method leads
to fewer calculations compared to the ADM method. As shown in the examples, each iteration step of He’s method gives
a direct approximate solution to the problem, whereas each iteration step of the ADM method only gives components of
the approximate solution. These components need to be summed together to obtain the approximate solution. Therefore,
in using the ADM method, the summation of those components is required after each iteration step in order to attest to
the accuracy of that step. Both examples presented in this paper require 17 iterations to get the sixth eigenvalue with a
precision of 0.0001 by using either He’s variational iteration method or the ADMmethod. This means that the ADMmethod
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requires 17 summations additionally for the iterations while He’s variational method only needs one more calculation to
find the Lagrange multiplier λ (Eq. (21)) to start the iterations. This therefore verifies that He’s variational method takes less
computational work than the ADMmethod.

Appendix A. Matlab program for Example 1

syms c d a b p x t b1 b2 f f11 f12 f21 f22 pe ps;

y(1)=a+b*x+c/2*x^2+d/6*x^3;

for i=1:18

ya(i)=subs(y(i),x,t);

y(i+1)=y(i)+int((t-x)^3/6*(diff(ya(i),t,4)-p*ya(i)),t,0,x);

z0(i)=y(i+1);z1(i)=diff(z0(i));z2(i)=diff(z1(i));z3(i)=diff(z2(i));

i1(i)=simplify(b1*subs(z1(i),{x,a,b},{1,0,0})+subs(z2(i),{x,a,b},{1,
0,0}));

i2(i)=simplify(-

b2*subs(z0(i),{x,a,b},{1,0,0})+subs(z3(i),{x,a,b},{1,0,0}));

f=coeffs(i1(i),c);f11(i)=f(2);

f=coeffs(i1(i),d);f12(i)=f(2);

f=coeffs(i2(i),c);f21(i)=f(2);

f=coeffs(i2(i),d);f22(i)=f(2);

pe(i)=vpa(simplify(subs(f11(i)*f22(i)-

f12(i)*f21(i),{b1,b2},{1,1})),10);

end

Appendix B. Matlab program for Example 2

syms c d a b p x t b1 b2 f f11 f12 f21 f22 pe ps;

y(1)=a+b*x+c/2*x^2+d/6*x^3;

for i=1:18

ya(i)=subs(y(i),x,t);

y(i+1)=y(i)+int((t-x)^3/6*(diff(ya(i),t,4)-p*ya(i)),t,0,x);

z0(i)=y(i+1);z1(i)=diff(z0(i));z2(i)=diff(z1(i));z3(i)=diff(z2(i));

i1(i)=simplify(b1*subs(z1(i),{x,a,c},{1,0,0})+subs(z2(i),{x,a,c},{1,
0,0}));

i2(i)=simplify(-

b2*subs(z0(i),{x,a,c},{1,0,0})+subs(z3(i),{x,a,c},{1,0,0}));

f=coeffs(i1(i),b);f11(i)=f(2);
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f=coeffs(i1(i),d);f12(i)=f(2);

f=coeffs(i2(i),b);f21(i)=f(2);

f=coeffs(i2(i),d);f22(i)=f(2);

pe(i)=vpa(simplify(subs(f11(i)*f22(i)-

f12(i)*f21(i),{b1,b2},{0,25})),10);

end
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