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ABSTRACT

Accurately analyzing wave–structure interactions is crucial for the design and operational safety of ships and marine structures. This paper
presents a fully nonlinear potential-flow approach for simulating wave–structure interactions using the newly proposed spectral coupled
boundary element method (SCBEM). The SCBEM efficiently models an extensive water body that encompasses structures by establishing a
boundary element method (BEM) computational domain solely around the object of interest while accurately simulating the far-field broad
water by a spectral layer. To further improve efficiency, graphics processing unit acceleration is hired during iterative solving of the boundary
value problem in the already small-sized interior BEM domain. Simulations are conducted to validate the accuracy of the method on cases
with strong nonlinear phenomena, including wave run-up on a single cylinder, diffraction of a four-cylinder array, near-trapped modes for
closely spaced columns, and gap resonance that occurred in side-by-side offloading. The wave run-up, diffraction wave pattern, near-trapped
mode, and gap resonance frequency obtained by the proposed method are in good agreement with data from experiments and published lit-
erature. The quite good accuracy and the exceptional computational efficiency of the SCBEM demonstrate its promising potential for more
application in practical marine problems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151990

I. INTRODUCTION

The study of wave–structure interaction is crucial in marine engi-
neering owing to the harsh oceanic environments that ships and floating
structures endure during their lifespan. While model tests are usually
considered reliable, they are time-consuming and expensive due to
lengthy model fabrication and costly wave tank rental. Alternatively,
thanks to the advancement of computer capabilities, numerical wave
tanks (NWTs) have become popular as a cost and time-efficient alterna-
tive. Researchers can use NWT to conduct numerical experiments at
any time using only a computer, eliminating the need for physical wave
tanks and model fabrication.

Computational Fluid Dynamics (CFD)-based NWTs, which
solve the Navier–Stokes (N–S) equations with spatial-based methods
such as the finite volume method (FVM) and the finite difference
method (FDM), are the most popular type of NWT.1–3 However,
accurate wave simulation with CFD-based NWTs requires an
extremely dense mesh and a precise time discretization scheme to

avoid numerical dissipation.4,5 Accurate wave simulation necessitates
dozens of grids along the wavelength direction and at least ten grids
along the wave height direction. Moreover, similar to physical wave
tanks, if the computational domain is too small, these NWTs may suf-
fer from sidewall effects, wave reflections, and other issues.6,7

Therefore, only a skilled user can achieve the balance between simula-
tion efficiency and accuracy. For CFD-based NWTs, single-machine
simulations typically require millions of grids and take several days.

In contrast to CFD-based NWTs, potential-based NWTs
(PNWTs) neglect fluid viscosity and use Laplace’s equation as the gov-
erning equation.8–12 Ocean engineering typically involves high
Reynolds numbers, which results in a flow around marine structures
that can be divided into a thin boundary layer near the solid surface
and an external flow beyond it.13 This means that even with the sim-
plification of Navier–Stokes equations to Laplace’s equation, the
potential-flow theory can still accurately simulate the flow fields where
there is no flow separation. Given that only Laplace’s equation needs
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to be solved, the potential-flow theory generally offers a higher compu-
tational efficiency than CFD-based NWTs. As a result, linearized
potential-flow methods have been extensively used in various engi-
neering applications. Chen et al. proposed a semi-analytical approach
that employs the null-field integral formulation with degenerate ker-
nels to solve problems of surface-piercing porous cylinders and inves-
tigated the near-trapped mode phenomenon.14 Fu et al. introduced a
meshless generalized finite difference method (GFDM) based on linear
potential-flow theory and employed GFDM to study the near-trapped
mode of cylinder arrays with porous walls.15 Gharechae and Ketabdari
put forward the concept of Energy Transmission Index and examined
the scattering waves and wave forces of permeable barriers and circular
cylinders.16 Wang et al. studied the hydrodynamic performance of a
dual-oscillating water column device.17 Sarkar and Chanda,18 and
Chanda et al.,19 investigated the scattering problem of a compound
porous cylinder on a porous seabed. Li and Liu conducted research on
the motion of a wave energy converter under the influence of coastal
reflection.20

However, despite being studied as early as the 1970s,21 fully non-
linear potential-flow methods have only recently been applied to
investigate the hydrodynamics of real marine structures with complex
geometries.22–25 The difficulties in implementation may lie in the
treatment of instantaneous free surface and wetted body surface.

The first challenge posed by the instantaneous free surface is
computational cost. Most potential-flow methods use the boundary
element method (BEM) to solve Laplace’s equation, which solves a
dense coefficient matrix. Unlike the sparse matrices generated by
spatial-based methods such as FVM, even with iterative algorithms
like the generalized minimal residual method (GMRES), the computa-
tional cost for solving BEMmatrix remains OðN2Þ. Additionally, since
the instantaneous free surface varies with time, BEM must construct
and solve a new coefficient matrix at each time step, offsetting its
advantage of using fewer grids than spatial-based methods by only dis-
cretizing the boundaries. Therefore, reducing the computational cost
of solving BEM’s coefficient matrix has been a major focus of research-
ers. Various methods have been proposed, including the use of the fast
multipole method,26–28 the Barnes–Hut algorithm,22,25 or the pre-
corrected fast Fourier transform (p-FFT) method29–31 to decrease the
time required for computing the BEM coefficient matrix product.
Another effective approach is partitioning the BEM computation
domain into adjacent subdomains, which transforms the dense BEM
matrix into a block-diagonal matrix, which significantly reduces the
computational complexity and makes it easier to solve.32–34 Several
researchers have opted not to use BEM and have instead employed
other numerical methods to solve Laplace’s equation. For example,
Fructus and Clamond developed an iterative algorithm that processes
the Dirichlet to Neumann operator.8,9 Ducrozet et al. proposed a non-
linear wave tank without obstacles using the high-order spectral
(HOS) method.11 Engsig-Karup et al. used FDM to solve Laplace’s
equation and accelerated computations with graphics processing units
(GPUs).35 Shao and Faltinsen proposed a spatial-based harmonic
polynomial cell (HPC) method by regarding velocity potential in each
cell as a sum of basis functions.36

The instantaneous wetted body surface poses another challenge
related to mesh discretization. During fully nonlinear potential-flow
simulation, the surface mesh needs to be constantly reconstructed in
order to accurately model the instantaneous wetted surface. Feng and

Bai used a structured eight-node high-order element to model the wet
surface of a cylinder.37 However, this method is only suitable for
simple geometries. Another commonly adopted approach involves
treating the nodes of the solid mesh as connected by virtual springs,
which are compressed or extended as the waterline position changes,
enabling automatic formation of a high-quality wetted surface
mesh.23,24 SHIPFLOW’s MOTIONS module discretizes the entire ship
mesh and refines it near the waterline. During the simulation, the
mesh relative to the solid body remains fixed.22 Harris et al. used a
cubic B-spline to represent the wet surface, which shows potential for
handling complex geometries.28 However, these methods require the
body surface to be transformed into a specialized mesh format prior to
simulation, resulting in increased barriers to usage.

As mentioned earlier, current methods for simulating nonlinear
wave–structure interactions are quite time-consuming. CFD-based
NWTs typically take days to carry out simulations, while potential-
based methods require several hours to accomplish a simple case.
Neither of these methods can simulate exceedingly large computa-
tional domains, and considerable effort is required to prepare meshes
for numerical simulation. In view of these limitations, this paper devel-
ops a novel fully nonlinear potential-flow approach for simulating
wave–structure interactions. The proposed method can perform simu-
lation within minutes, while modeling a computational domain that is
tens of times larger than conventional NWTs. Moreover, it only neces-
sitates triangular body surface meshes. By adopting the proposed spec-
tral coupled boundary element method (SCBEM), the entire
computational domain is partitioned into a small BEM domain that
tightly encloses the object of interest and a broad spectral layer outside
the BEM domain. The near-field flow in the BEM domain is described
using unstructured scattered points. The wetted surface mesh is then
determined by directly cutting the complete surface mesh with the
water surface. To further improve efficiency, the GMRES method is
employed to solve the BEM domain equation, and GPU is utilized to
accelerate the computation of the matrix–vector product in GMRES.

For validation, wave run-up on a single cylinder, diffraction of a
four-cylinder array, and the near-trapped modes are simulated. The
results are compared with experimental data and other numerical
methods in published literature. The proposed method achieves simu-
lation accuracy comparable to CFD-based NWTs while being signifi-
cantly faster. Furthermore, long-term white-noise spectrum
simulations of gap resonance due to side-by-side offloading are per-
formed. Results verify the proposed method in simulating irregular
wave responses. For such a scenario where viscous effects are signifi-
cant, the proposed method can provide flow field characteristics under
an inviscid perspective for comparison with experimental or viscous
CFD simulations to gain further insight into the role of viscosity in the
underlying physics.

II. MATHEMATICAL MODEL AND NUMERICAL
IMPLEMENTATION
A. Mathematical model

1. Governing equations in the open sea

Assuming that the fluid is homogeneous, incompressible, and
inviscid, the flow is irrotational, and using a Cartesian coordinate sys-
tem established with the z-axis oriented vertically upward and the ori-
gin located at the calm water surface, according to the potential-flow
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theory, there exists a velocity potential function / that satisfies
Laplace’s equation; the velocity in the flow field is equal to the gradient
of the velocity potential function /,

r2/ðx; zÞ ¼ 0; (1)

ðu; v;wÞ ¼ r/; (2)

wherer2 represents the Laplace operator, x � ðx; yÞ denotes the hori-
zontal coordinates, and (u, v, w) are the velocities in three dimensions
of the flow field.

The free surface must satisfy the following kinematic and
dynamic conditions:

@f
@t

¼ @/
@z

�rx/ � rxf

@/
@t

¼ �gf� ðr/Þ2
2

on Sf ; (3)

where Sf represents the instantaneous free surface, f denotes the wave
elevation, g is the gravitational acceleration, and rx � ð@=@x; @=@yÞ
stands for the spatial derivative in the horizontal direction.

The dynamic nature of the free surface, which continuously
changes over time, poses challenges for numerical simulations. To
address this issue, Zakharov proposed treating the velocity potential
on the free surface as a single-valued function in the horizontal direc-
tion and introduced the surface potential /SðxÞ ¼ /ðx; fðxÞÞ. Then,
the free surface condition can be expressed as:38

@f
@t

¼ 1þ rxfð Þ2
� � @/

@z
�rx/

S � rxf

@/S

@t
¼ 1þ rxfð Þ2

2
@/
@z

� �2

� gf� rx/
S

� �2
2

on Sf : (4)

In addition, the flow field must satisfy the no-penetration condi-
tion at the body surface Sb, written as

@/
@n

¼ ðU þX� rÞ � n on Sb; (5)

where n is the normal vector to the solid surface and @=@n denotes the
derivative in the direction normal to the surface. U and X represent
the translational and angular velocities of the body, respectively.

Finally, the flow must satisfy the bottom boundary condition of
infinite depth, written as

@/
@z

¼ 0 as z ! �1: (6)

2. Wave generation and absorption

Assume a large computational domain with a marine structure
located at the center, where incident waves interact with the structure
and generate scattered waves. The total velocity potential in the com-
putational domain can be denoted as /total , and the incident velocity
potential without any structures presents as /incident . The scattered
velocity potential /scatter induced by the incident waves can then be
calculated by subtracting /incident from /total ,

/scatter ¼ /total � /incident : (7)

Scattered waves generated by the structure propagate outward to
infinity. However, when simulating an unbounded ocean environment

using a finite computational domain, it is necessary to prevent unreal-
istic wave reflections at the domain boundaries that can interfere with
accurate calculations. We introduce an artificial dissipation term in the
dynamic condition given by Eq. (4) to absorb scattered waves near the
domain boundary,

@/S

@t
¼ 1þ rxfð Þ2

2
@/
@z

� �2

� gf� rx/
S

� �2
2

� l/S
absorb: (8)

Here, /S
absorb ¼ /scatterðx; fðxÞÞ represents the velocity potential to be

absorbed on the free surface. l is an artificial dissipation function that
dissipates wave kinetic energy. The regions where l takes non-zero
values are referred to as a damping zone, which are arranged at the
inner margin of the computational domain. To guarantee adequate
damping, the width of the damping zone must exceed the characteris-
tic wavelength.39 In this study, the width of the damping zone for scat-
tered waves is one-fourth of the total length of the computational
domain, gradually increasing from 0 to 0.05.

To obtain the incident potential that satisfies the nonlinear free
surface conditions, we perform a separate numerical simulation with-
out the structure and refer to it as the incident wave domain. The size
of this domain is the same as that of the computational domain con-
taining the marine structure. To generate the target incident waves, we
set up a wave-making zone upstream in the incident wave domain,

fincident ¼ ð1� RðxÞÞfincident þ RðxÞftarget ;
/S
incident ¼ ð1� RðxÞÞ/S

incident þ RðxÞ/S
target :

(9)

In Eq. (9), ftarget and/
S
target are the artificially defined target wave func-

tions, which can be obtained using theoretical formulas such as the
fifth-order Stokes wave for generating regular waves.40 The ramping
function R(x) is non-zero only within the wave-making zone and zero
elsewhere. A wave-damping zone downstream is also arranged based
on Eq. (8). For the incident wave domain, /S

absorb ¼ /targetðx; fðxÞÞ.
Figure 1 shows the wave-making ramping function and artificial
damping function used in the incident wave domain, where Lx repre-
sents the total length of the domain along the x-axis. The incident
waves are generated in the wave-making zone and propagate forward
until they dissipate in the wave-damping zone. Since the waves at both
ends of the domain are zero, the incident velocity potential designed in
this way also satisfies periodic boundary conditions.

B. Spectral coupled boundary element method

1. Discretization of the computational domain

To solve the boundary conditions described in Sec. IIA, we adopt
a combination of a background mesh and local node refinement to

FIG. 1. Wave-making ramp function and artificial damping function for the incident
wave computational domain.
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discretize the free surface, as illustrated in Fig. 2. The background
mesh provides a coarse grid for the entire computational domain,
while the local node refinement technique involves the refined colloca-
tion points in areas where the flow field undergoes significant changes
near the structure. This approach enables higher mesh resolution to be
achieved where it is needed while minimizing computational costs
in areas far from the structure where the waves are relatively mild.
Figure 2 also depicts a virtual free surface inside the solid body, even
though there is no actual free surface, and no collocation points are
used for numerical discretization. The virtual free surface is obtained
by applying radial basis function (RBF) interpolation to refined scat-
tered points and plays an important role in the SCBEM.

As shown in Fig. 3, a triangular mesh is employed to discretize
the initial complete solid surface. Once the virtual free surface is
known, it can be used to readily cut the complete solid surface and
generate the instantaneous wet surface mesh. The triangular mesh is
supported by almost all mesh generation software and can represent
any geometry, making it widely applicable. However, this approach
also leads to increased discretization quantities and inconsistencies in
the number of wet surface meshes involved in the computation at each
time step. Therefore, it is necessary to apply an appropriate solution
method, which will be discussed later in this paper.

If the surface potential /S and wave elevation f are known at a
certain time for both the background mesh and locally refined points,
along with the body’s velocity (which is zero in the cases discussed in
this paper), Eq. (4) can be solved to obtain the time derivative of /S

and f. The temporal integration is performed using the fourth-order
Runge–Kutta method. Equation (4) involves known quantities fðxÞ
and /SðxÞ, whose horizontal derivatives can be easily computed using
numerical methods like finite difference. The only variable that cannot
be directly calculated is the vertical velocity on the free surface,
@/=@z. To obtain this value, the following Dirichlet–Neumann
boundary value problem (BVP) must be solved at each time step,

/ðx; zÞ ¼ /S on Sf ;

@/ðx; zÞ
@n

¼ ðU þX� rÞ � n on Sb;

@/
@z

¼ 0 as z ! �1:

8>>>>><
>>>>>:

(10)

2. Domain decomposition strategy

Solving the BVP in Eq. (10) is the most time-consuming part of
the fully nonlinear potential-flow approach. As previously stated, using
only BEM leads to a sharp increase in computation time with OðN2Þ
complexity as the discretization quantity rises. This limitation often
confines fully nonlinear potential-flow simulations to small calculation
domains. To simulate a larger calculation domain with minimal com-
putational cost, this paper utilizes a domain decomposition strategy.
By exploiting the linearity property of Laplace’s equation, the SCBEM
divides the original BVP in Eq. (10) into two parts: a spectral part and
a BEM part. The BVP for the spectral layer is given by

/H ¼ T/S on Sf �;

@/H

@z
¼ 0 as z ! �1:

8><
>: (11)

where /H denotes the velocity potential for the spectral layer, Sf � is
the virtual free surface, and T is the transition function.

The remaining BVP is solved by BEM as follows:

/R ¼ ð1� TÞ/S on Sf ;

@/R

@n
¼ � @/H

@n
þ ðU þX� rÞ � n on Sb;

@/R

@z
¼ 0 as z ! �1;

8>>>>>><
>>>>>>:

(12)

where /R denotes the velocity potential for the BEM domain.
The total vertical velocity of the computational domain on the

free surface is obtained by adding the contributions from the spectral
layer and the BEM domain,

@/ðx; fÞ
@z

¼ @/Hðx; fÞ
@z

þ @/Rðx; fÞ
@z

: (13)

Although the number of BVPs to be solved has increased from one
to two, the use of a transition function T can significantly reduce the dif-
ficulty of solving the problem. As shown in Fig. 4, the transition function
is a smooth function that is 0 near the body surface and 1 at far-field. By
dividing the original BVP into a spectral part and a BEM part using the
transition function, the near-field Dirichlet condition for the spectral
layer is 0, and the far-field Dirichlet condition for the BEM domain is
also 0. We define the region where T is not equal to 1 as the BEM
domain, with the area where T¼ 0 as the inner BEM zone, and the area
with 0 < T < 1 as the transition zone. The expression for T is given by

T ¼
0 in the inner BEMzone;

1� TxTy in the transition zone;

1 outside the BEMdomain;

8><
>: (14)

where

FIG. 2. Numerical discretization of the free surface.

FIG. 3. Discretization of the initial complete solid surface and the instantaneous
wet surface.
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Tx ¼ 1
2

erf 2� 4dx
lx

� �
þ 1

� �
;

Ty ¼ 1
2

erf 2� 4dy
ly

 !
þ 1

 !
:

(15)

As shown in Fig. 4, the BEM domain is a rectangular area with
length LRx and width L

R
y . In Eq. (15), lx and ly are the widths of the tran-

sition zone, while dx and dy are the distances from any point within
the BEM domain to the nearest boundary along x-axis and y-axis,
respectively. Generally, a wider transition zone can achieve better cou-
pling effects. Shi et al. used SCBEM to simulate various types of non-
linear waves, and the results show that when the width of the
transition zone is greater than half the wavelength of the simulated
wave, the accuracy of the wave simulation can be ensured.41

To solve the BVP in the spectral layer, we start by interpolating
the virtual free surface f and velocity potential /S into an equidistant
mesh. Then, we use the high-order spectral (HOS) method to effi-
ciently compute the vertical velocity on the virtual free surface with a
time complexity of OðN logNÞ. Due to space limitations, this paper
only presents the relevant calculation formulas, and more details on
numerical implementation can be found in Refs. 42 and 43.

As a pseudo-spectral method, the HOS method views the total
velocity potential as a superposition of modal functions that satisfy the
Laplace’s equation and infinite depth condition,

/Hðx; zÞ ¼ Re
X

j
Aj exp ðjkjjz þ ikj � xÞ

� �
; (16)

where k � ðkx; kyÞ denotes the wavenumber vector and Aj represents
the amplitude of the velocity potential component corresponding to kj.

Through the use of perturbation and Taylor expansions, the total
velocity potential /H can be decomposed into a series of velocity
potentials /ðiÞ at various orders. The values of each order’s velocity
potential at the z¼ 0 are then calculated using the following equations:

/ð1Þðx; 0Þ ¼ /S;

/ðmÞðx; 0Þ ¼ �
Xm�1

k¼1

fk

k!
@k

@zk
/ðm�kÞðx; 0Þ
� �

; m > 1:
(17)

Since an equidistant grid is used for discretization, the amplitude
of each modal function can be efficiently obtained using the fast
Fourier transform (FFT) once their values at z¼ 0 are known. The ver-
tical velocity of the free surface @/H=@z can then be calculated by

@/Hðx; fÞ
@z

¼
XM
k¼1

fk�1

ðk� 1Þ!
@k

@zk
XM�kþ1

m¼1

/ðmÞðx; 0Þ
 !

; (18)

where M denotes the truncation order. Since the spectral layer in the
SCBEM is only used to model the far-field velocity potential and does
not have a significant wave slope, we setM¼ 3 in this paper.

C. BEM equation solution with GPU acceleration

1. Desingularized Rankine panel method

Building on the SCBEM given in Sec. II B, the far-field Dirichlet
condition for the BEM domain is simplified to zero. In this paper, we
solve the BVP in the BEM domain within the framework of the desin-
gularized Rankine panel (DRP) method,44 which is an indirect bound-
ary element method (also known as the method of fundamental
solutions). The DRP method involves placing constant panels on the
body surface and desingularized point sources above the free surface
collocation points. Both panel source and point source satisfy
Laplace’s equation and the infinite depth boundary condition.

The velocity potential induced by the desingularized point source
i located at niðn; g; fÞ is written as

Gpt
i ðx; y; zÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � nÞ2 þ ð y � gÞ2 þ ðz � fÞ2

q : (19)

The velocity potential induced by the constant panel element
located on Si is written as

Gpan
i ðx; y; zÞ ¼

ð ð
Si

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � nÞ2 þ ðy � gÞ2 þ ðz � fÞ2

q dS: (20)

The source strength distribution satisfies the Dirichlet condition
on the free surface collocation points,

FIG. 4. Domain decomposition of the boundary value problem (colors indicate the boundary value).
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XNpt

i¼1

rpti G
pt
i ðxj; yj; zjÞ þ

XNpan

i¼1

rpani Gpan
i ðxj; yj; zjÞ

¼ /Rðxj; yj; zjÞ ðxj; yj; zjÞ 2 Sf ; (21)

and the Neumann condition at the center of the panel elements

XNpt

i¼1

rpti
@

@nj
Gpt
i ðxj; yj; zjÞ þ

XNpan

i¼1

rpani
@

@nj
Gpan
i ðxj; yj; zjÞ

¼ @

@nj
/Rðxj; yj; zjÞ ðxj; yj; zjÞ 2 Sb; (22)

where Npt and Npan denote the number of point sources and panel ele-
ments, respectively, while rpti and rpani represent the unknown source
strengths. Dirichlet conditions must be satisfied on the Npt collocation
points located below the point sources, and Neumann conditions
must be satisfied at the Npan locations corresponding to the center of
each panel element. Thus, the equations are closed. Once the source
strength distribution is obtained, the vertical velocity of the free surface
can be calculated using the following equation:

@/R

@z
¼
XNpt

i¼1

rpti
@

@z
Gpt
i þ

XNpan

i¼1

rpani
@

@z
Gpan
i : (23)

In numerical implementation, sources are selectively placed
only in the rectangular BEM domain where the transition function is
T 6¼ 1 for the SCBEM. The decay in velocity potential induced by the
sources in the DRP method at increasing distances leads us to assume
that the far-field Dirichlet condition /Rðx; fðxÞÞ ¼ 0 is automatically
satisfied outside the BEM domain. Consequently, regardless of the size
of the total computational domain, the SCBEM requires only a small
BEM domain established surrounding the body surface, resulting in
significant savings of computational resources.

2. Lyness quadrature rule

In the DRP method, the desingularized point sources are placed
above the collocation points, which eliminates the need to deal with
singularity when evaluating the velocity potential on the free surface.
However, when calculating the velocity potential induced by the
body surface, the field point may lie on the panel element, resulting
in a weak singularity in the integral. To ensure accuracy, this study
employs the analytical integration method proposed by Hess and
Smith45 to evaluate the induced velocity potential when the source
panel is close to the field point. However, when the source panel is
far from the field point, the Lyness three-point quadrature rule46 can
be adopted to simplify the calculation of the velocity potential, writ-
ten as

GpanðPÞ � A
3

1
jjPQ1jj2

þ 1
jjPQ2jj2

þ 1
jjPQ3jj2

� �
; (24)

where P ¼ ðx; y; zÞ is the field point located far from the source
panel, A denotes the area of the source panel, and Q1, Q2, and Q3

represent the midpoints of the three sides of the triangular source
panel. The Euclidean distance between two points is denoted by
jjPQijj2.

3. Computation of source strength distribution

At each time step, the BEM domain requires solving the equation
Ax ¼ b to find a suitable source strength distribution x that satisfies
the boundary conditions. However, direct matrix solution incurs com-
putational costs on the order of OðN3Þ, rendering it impractical. In
this study, the GMRES method is employed to iteratively solve the
equation, achieving desired accuracy after tens to hundreds of itera-
tions. The primary computational expense during the iterative process
arises from the repeated calculation of the product Ax between the
coefficient matrix and the source distribution vector. Thus, this section
focuses on investigating fast methods to compute Ax.

As previously discussed, the Lyness quadrature rule can approxi-
mate the velocity potential induced by the source panel when it is far
from the field point. Moreover, if the Lyness quadrature rule is used
when the source panel is close to the field point, the panel can be
completely replaced with its three side midpoints. This approach
results in a linear operator denoted as ALyn, and the coefficient matrix
can be decomposed as follows:

Ax ¼ ALynx þ APatchx: (25)

Here, APatch denotes the sparse patch matrix. If the distance between
the source panel and the field point is large, the Lyness quadrature can
provide accurate results without requiring any correction. Therefore,
APatch is only non-zero when the source panel is close to the field
point. Due to its sparsity, the computational cost of APatchx is O(N),
which is insignificant compared to that of ALynx.

The Lyness term ALynx represents the impact of a series of point
sources on field points. Such computations are common in N-body
simulations, and their direct calculation has a time complexity of
OðN2Þ. However, this complexity can be reduced to O(N) by using the
fast multiple method (FMM) or other tree algorithms. To determine
the most suitable computational approach, N source points andN field
points are generated randomly, and FMM and direct methods are
employed to compute the velocity potential and velocity at all field
points. The process is repeated multiple times to obtain the averaged
computation time. All calculations in this paper are performed on a
PC with an AMD 3700X CPU, Nvidia RTX2060 GPU, and 16GB
memory, using single-precision floating-point numbers. The FMM
program used for comparison employs the miniFMM open-source
code,47 while the program for direct methods is developed in-house
and implemented on the OpenCL platform for GPU acceleration.

Figure 5 shows the computation time for different methods
applied to compute interactions. The direct methods exhibit three
curves with a slope of approximately 2 when the number of nodes N is
large, while the FMM exhibits three curves with a slope of approxi-
mately 1. These slopes are consistent with the theoretical time com-
plexities of OðN2Þ and O(N) for the two methods, respectively.
Remarkably, for N � 104, the direct method on GPU displays signifi-
cantly superior efficiency compared to other computational
approaches, with a computation time of only approximately 1.5ms.
With the implementation of SCBEM, the BEM domain only needs to
be arranged near the structure, resulting in a number of unknowns on
the order of 104. This makes the GPU-accelerated direct method the
optimal choice in terms of computational performance. Consequently,
we select the GPU-based direct method as the kernel for computing
ALynx, achieving the highest computational efficiency.
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Figure 6 illustrates the process of SCBEM for each sub-time step
during the integration of flow field using the Runge–Kutta method.
Initially, given the free surface elevation f and free surface potential
/S, the holes caused by the presence of solid surfaces are patched to
obtain the virtual free surface f�. Subsequently, the instantaneous wet-
ted surface mesh is generated by cutting the complete surface mesh.
The BVP /Hðx; f�Þ ¼ T/S is solved by means of the HOS method,
and the HOS contribution is subtracted from the original BVP to
obtain the BVP in Eq. (12), which is then solved iteratively using the
BEM presented in this section. Finally, combining the contributions of
both the HOS part and the BEM part provides the total vertical

velocity of the free surface, i.e., @/ðx; fÞ=@z, which is substituted into
Eq. (4) to determine the temporal derivatives of f and /S.

D. Other numerical implementations

1. Radial basis function interpolation

The free surface near the solid surface is discretized as scattered
points, without any structured background grid. As a result, it is chal-
lenging to compute horizontal derivatives and perform interpolation. To
address this issue, we utilize the RBF method to construct a surface from
these scattered points, enabling more efficient and accurate calculations
of interpolation and derivative values. As shown in Fig. 7, for scattered
points on the near-field free surface, we first search for nearby points
within a radius of 3.5 grid lengths. We then use thin plate spline (TPS) as
the radial basis function to construct a linear equation system and obtain
interpolation coefficients. The resulting surface is constructed based on
these thin plate spline functions and can be expressed as

f ðxÞ ¼
Xn
i¼1

ciuðjjx � xijj2Þ; (26)

where xi is the center location of the TPS basis, operator jj jj2 denotes
the ‘2 norm of the vector, and uðrÞ is the TPS function, defined as
uðrÞ ¼ r2 log r. The interpolation coefficients ci are obtained by solv-
ing the following equation system:

uðr11Þ þ s � � � uðr1nÞ
..
. ..

.

uðrn1Þ � � � uðrnnÞ þ s

2
664

3
775

c1

..

.

cn

2
664

3
775 ¼

f ðx1Þ
..
.

f ðxnÞ

2
664

3
775: (27)

Here, rij ¼ jjxi � xjjj2 and s is the smoothing factor added to the diag-
onal of the RBF matrix. The inclusion of the smoothing factor can
reduce the condition number of the matrix and also result in a
smoother surface. Furthermore, it can filter out high-frequency wave
components to suppress the sawtooth instability in time-domain simu-
lations. Due to the adoption of RBF, it is not necessary to maintain
consistent discretization schemes for the computational domain at
each time step. After each time step, RBF interpolations are performed
to obtain the wave height f and velocity potential /S at the newly dis-
cretized points for the next time step.

2. Pre-breaking wave treatment

During the simulation of highly nonlinear conditions, wave over-
turning and breaking may occur. To ensure the stability of the

FIG. 5. Time consumption for different methods.

FIG. 6. Flowchart for computing temporal derivatives of the flow field using
SCBEM.

FIG. 7. Basis search and surface reconstruction with the Radial Basis Function
method.
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potential-flow simulation and prevent any collapse due to wave break-
ing, a pre-breaking wave treatment is introduced into the simulation
process. This treatment is designed to detect steep waves with the
potential for breaking and thereby reduce their kinetic and potential
energy in advance, thus preventing any future wave breaking.

After constructing the RBF surface for the discretized points on
the free surface, we calculate the mean curvature of each point as
shown in Fig. 8. If the mean curvature exceeds a certain threshold e, it
indicates that the wave is excessively steep at that location and may
experience wave-breaking. In this case, we exclude the breaking point
and reconstruct the RBF surface. We then perform an interpolation to
obtain the wave height and velocity potential values at the breaking
position, which are used as the corrected flow field information in sub-
sequent time-domain simulation.

In this study, we set the breaking threshold to e ¼ 1:8. It is
important to note that this pre-breaking wave treatment is only a
numerical trick to ensure the stability of the potential-flow simulation
and does not simulate real breaking waves. This limitation is one of
the drawbacks of the method. In the future, more physically realistic
three-dimensional wave-breaking models can be applied to improve
the wave-breaking treatment.

III. NUMERICAL VALIDATION
A. Wave run-up on a single cylinder

1. Numerical setup

To validate the accuracy of our fully nonlinear PNWT, this sec-
tion performs numerical simulations that reproduce the benchmark
experiment organized by the Ocean Engineering Committee at the
27th International Towing Tank Conference (ITTC).48 The numerical
results are compared against experimental data and published litera-
ture. The experiment involves a cylindrical column with a radius of
8m and a depth of 24m in prototype scale, conducted at MOERI
wave tank in South Korea. Several wave probes are arranged around
the cylinder to measure wave height, as shown in Fig. 9. Probes
WPB1–WPB5 are uniformly spaced at 45� intervals near the cylinder
wall, with a distance of 8.2063m from the cylinder center. Probes
WPO1–WPO5 are uniformly distributed on the outer side, at a dis-
tance of 16m from the center. For the numerical simulations pre-
sented in this subsection, regular waves with a wave period T¼ 9 s are
generated as an incident wave, and the wave parameters for each sce-
nario are presented in Table I.

The computational domain parameters for the SCBEM are pre-
sented in Table II. The numerical simulations utilize a background
mesh spacing of 5m and 250 000 background nodes, constructed into
a large computational domain size of 2560� 2560m2, which is 20
times the wavelength of the incident wave. A BEM domain with a size

of 400� 400m2 is centered on the background mesh, which is only
three times the wavelength of the incident wave. To ensure adequate
coupling between the BEM domain and the spectral layer, a transition
zone with a width of 120m, roughly comparable to the wavelength of
the incident wave, is included. Figure 10 shows an overview of the
computational domain used in the PNWT, demonstrating that our
approach can simulate a fairly wide free surface area, closer to the
physical reality of an unbounded ocean.

2. Convergence analysis

To ensure that the simulation results of the fully nonlinear
PNWT are not influenced by simulation parameters, such as time step
and mesh resolution, convergence analysis is conducted. Three sets of
meshes with different resolutions are established, with varying num-
bers of panel elements and locally refined nodes, as presented in Table
III. The distribution of nodes near the water surface and the cylinder
surface panel elements for the three grids are illustrated in Figs. 11 and
12, respectively.

Timestep convergence analysis is first conducted on mesh B
using the T09S130 incident wave with a period of T¼ 9 s and wave
steepness of H=L ¼ 1=30. Numerical simulations are performed with

FIG. 8. Detection and reconstruction of wave breaking points.

FIG. 9. Probes layout for wave run-up experiments on a single cylinder (in proto-
type scale).

TABLE I. Incident wave parameters for wave run-up experiments on a single cylin-
der (in prototype scale).

Name Period T (s) Steepness H/L Height H (m)

T09S130 9 1/30 4.262
T09S116 9 1/16 8.215

TABLE II. Parameters of the computational domain for SCBEM simulation of wave
run-up on a single cylinder.

Parameter Value

Background mesh spacing 5m
Transition zone width 120m
Size of the entire computational domain 2560� 2560m2

Size of the BEM domain 400� 400m2

Size of the inner BEM zone 160� 160m2
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time steps of Dt ¼ 0:05; 0:1; and 0:2 s. The wave elevation time his-
tory at probes WPB1 and WPO5 is shown in Fig. 13. The wave eleva-
tions at these two probes for the three different time steps are nearly
identical, irrespective of whether the measurement point is near the
cylinder (WPB1) or downstream (WPO5). These results indicate that
the present method converges with sufficiently small time steps.

Wave run-up simulations are performed for meshes A, B, and C
with sufficiently small time steps under the T09S130 incident wave, as
shown in Fig. 14. The wave elevations at probes for meshes B and C
are nearly identical, whereas some minor differences can be observed
at WPB1 for mesh A, which may be attributed to its relatively low
mesh density. The convergence analysis confirms that the present
method converges with increasing mesh resolution. Considering the
accuracy provided by mesh B, we will employ it for subsequent
numerical simulations.

Table IV shows the simulation timesteps and average wall time
per wave period for meshes A, B, and C under T09S130. The results
illustrate that our method is highly computationally efficient. The total

FIG. 10. Overview of the computational domain.

TABLE III. Mesh parameters for the convergence analysis.

Name
Panel
number

Refined node
spacing

Refined node
number

Mesh A 528 4.5m 168
Mesh B 1272 3.0m 396
Mesh C 2436 2.0m 952

FIG. 11. Distributions of nodes near the
waterline.

FIG. 12. Panel elements for different
meshes.

FIG. 13. Time history of wave elevation with different timesteps. (a) WPB1 and (b)
WPO5.
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number of nodes used in our simulations is 260 000, which is much
higher than the typical number of unknowns employed in other
PNWTs. If only the BEM method were employed, the computation
time would be prohibitively long. However, we reduce the BEM com-
putation domain to near the cylinder surface using the SCBEM, result-
ing in only approximately 10 000 discretized unknowns for the BEM
domain. The GMRES solver along with GPU-accelerated matrix

product calculation effectively exploits the advantages of GPU com-
puting, enabling simulation times of just a few tens of seconds per
wave period. Compared to CFD-based NWTs that take several hours
per wave period for simulation, the proposed PNWT utilizing SCBEM
demonstrates impressive efficiency advantages.

3. Analysis of numerical results

Figure 15 compares the wave elevation time histories at different
probes under the T09S116 scenario obtained using various methods.
The figure presents simulation results from our SCBEM simulation,
experimental data from the MOERI wave tank,48 numerical results
from Sun et al. using OpenFOAM, and results from the DIFFRACT
program based on the frequency domain second-order potential-flow
theory.49 In the OpenFOAM simulation, a laminar model is used to
solve the N–S equations. The results show that, except for WPB4,
SCBEM results are in good agreement with the experimental and
OpenFOAM results and outperform the predictions from DIFFRACT.
Specifically, DIFFRACT significantly underestimates the wave trough
values at WPB3 and WPB4, whereas our method and OpenFOAM
accurately predict these wave troughs, demonstrating that our PNWT
more accurately accounts for the effects of high-order nonlinearity
than DIFFRACT.

Figure 16 draws the wave pattern before and after a wave crest
passes through the cylinder. The figure clearly illustrates the Type-1
scattered waves radiating outward from the cylinder center and the
Type-2 scattered waves that are symmetrically distributed along the
incident direction but do not have the cylinder as the center, consistent
with the experimental findings of Swan and Sheikh.50 These scattered
waves are often characterized by high steepness and strong nonlinear-
ity. During the time of Figs. 16(b) and 16(d), the proposed PWNT
detected extremely high local steepness exceeding the breaking limit
and triggered the pre-breaking treatment. The wave height and veloc-
ity potential at the breaking position were significantly reduced after

FIG. 14. Time history of wave elevation with different meshes. (a) WPB1 and (b)
WPO5.

TABLE IV. Time consumption with different meshes for the simulation of wave run-
up.

Name Timestep (s) Time consumption per period (s)

Mesh A 0.20 18.5
Mesh B 0.20 19.2
Mesh C 0.15 35.1

FIG. 15. Time history of surface elevation at wave probes (T09S130).
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the pre-breaking treatment, which may have caused slightly lower
wave heights at WPB4 than in the experimental and CFD simulation
results shown in Fig. 15(c).

The wave elevation time histories at different probes are analyzed
under various conditions using FFT. The response amplitude operator
(RAO) curves for the first-order harmonics of wave run-ups are plotted
in Figs. 17 and 18 and compared with experimental data as well as
numerical predictions by Sun et al. using OpenFOAM and DIFFRACT.49

For the low steepness case (T09S130), all three numerical methods
achieve satisfactory accuracy. However, for the higher steepness scenario
(T09S116) where nonlinear effects are more prominent, results from
DIFFRACT show some deviations from the experimental results at the
probes near the wall (WPB1–WPB5). In T09S116, our PNWT still

achieves high accuracy in predicting the RAOs at the weather side probes
(WPB1–WPB3), but slightly lower than the experimental data at the lee
side probes (WPB4 andWPB5) due to the pre-breaking treatment in our
method. Future improvements can be made by incorporating more phys-
ically realistic breaking models into the approach.

B. Diffraction of a four-cylinder array

1. Numerical setup

In this subsection, numerical simulations are conducted to repli-
cate the benchmark experiment on four-cylinder diffraction organized
by the Ocean Engineering Committee at the 27th ITTC.48 The experi-
ments were performed in the MARINTEK wave tank. As shown in

FIG. 16. Scattered wave pattern near the cylinder at different times (T09S130). (a) t¼ 1.3, (b) t¼ 2.5, (c) t¼ 3.6, and (d) t¼ 4.2 s.

FIG. 17. First harmonic components of
surface elevations at wave probes around
the cylinder (T09S130). (a) Probes WPB1
–WPB5 and (b) probes WPO1–WPO5.

FIG. 18. First harmonic components of
surface elevations at wave probes around
the cylinder (T09S116). (a) Probes WPB1
–WPB5 and (b) probes WPO1–WPO5.
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Fig. 19, the four cylinders have a radius of 8m and a draft of 24m,
with a spacing of 34m between their centers. Probes are arranged
around the rearward cylinder along the wave direction at 90�; 135�,
and 180�, denoted as a1–a4, b1–b4, and c1–c4, respectively. The dis-
tances of these probes from the center of the rearward cylinder are
8.05, 9.47, 12.75, and 16.00m.

Regular waves with various steepness and periods are employed
as incident waves. The parameters of the simulated waves for each sce-
nario in this study are listed in Table V.

The simulations conducted in this subsection utilize the same
computational domain as in Sec. IIIA (see Table II). Figure 20 shows
the node placement near the cylinders, with local node refinement
applied around each cylinder. A total of 5088 surface panels and 1144
locally refined nodes are used in the simulations. The numerical simu-
lations are conducted with a sufficiently small time step to ensure con-
vergence. For T09S130 scenario, simulating one wave period after
reaching a steady state takes approximately 94 s.

2. Analysis of numerical results

Figure 21 presents the time histories of normalized wave eleva-
tions at probes a1–a4 after the simulations reached steady state. For an
incident wave with a period of T¼ 9 s, the differences in the normal-
ized wave height among the a-series probes under different steepness
are minimal, as both exhibit similar crest and trough values. The time
histories for both steepness scenarios demonstrate significant nonlin-
ear characteristics, where the wave surface rises rapidly to reach the
crest before gradually falling at a slower rate. When the steepness is
H=L ¼ 1=16, the higher-order wave components become more pro-
nounced in the time history. Among the four wave probes (a1–a4), a4

exhibits the highest wave crest, which can reach up to 1.5 times the
amplitude of the incident wave.

The time histories of wave elevation are analyzed using FFT, and
first harmonics (RAOs) and second harmonics (QTFs) at different
wave probes are presented in Figs. 22–25. In these figures, e1 and e2
represent scenarios with small steepness (H=L ¼ 1=30) and large
steepness (H=L ¼ 1=16), respectively. Experimental and CFD results
from ITTC Ocean Engineering Committee report48 are included for
comparison. In figures, CFD-A refers to the numerical results simu-
lated by CD-Adapco using the STAR-CCMþ software, while CFD-F
refers to the numerical results simulated by Shanghai Jiao Tong
University using OpenFOAM.

The RAO data in Fig. 22 indicate that our SCBEM simulation
achieves prediction accuracy comparable to CFD-based NWTs.
However, all numerical predictions underestimate the RAO compared
to experimental results, with the RAO at probes b1 and c1 being
underestimated by approximately 25% in particular. Compared to
CFD predictions, our method yields slightly higher amplitudes, which
may result from the potential-flow approach not accounting for vis-
cosity effects. Among the wave probes, the weather side probes in the
c-series exhibit the largest predicted RAOs, where the predicted RAO
at c1 can reach 1.3, while the probes in the a-series have the smallest

FIG. 19. Placement of four truncated cylinders (in prototype scale).

TABLE V. Wave parameters for four truncated cylinders.

Name Period T (s) Steepness H/L Height H (m)

T07S130 7 1/30 2.578
T07S116 7 1/16 4.969
T09S130 9 1/30 4.262
T09S116 9 1/16 8.215

FIG. 20. Numerical discrete schematic diagram of four-cylinder diffraction
simulation.

FIG. 21. Time history of probes a1–a4 after steady state for four-cylinder diffraction
simulation (T¼ 9 s). Sublabels (a)–(d), respectively, represent the time history of
probes a1–a4.
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predicted RAOs, generally around 1. When the incident wave steep-
ness is high, the nonlinearity of waves causes a slight increase in the
RAOs at probes b1–b4 and c1–c4.

Figure 23 reveals significant differences in second harmonics for
varying wave steepness, indicating the limitations of second-order
potential-flow theory in predicting diffraction waves in a column

array. The present simulations achieve prediction accuracy compara-
ble to CFD methods when compared against experimental results.
Moreover, our method generally yields higher values at probes a1, b1,
and c1 than the other two CFD-based NWTs. As the distance from
the cylinder increases, the QTF at probes b1–b4 and c1–c4 decreases,
while the value at probes a1–a4 slightly increases.

FIG. 22. First harmonic components of surface elevations for four truncated cylinders (T¼ 9 s). (a) Probes a1–a4, (b) probes b1–b4, and (c) probes c1–c4.

FIG. 23. Second harmonic components of surface elevations for four truncated cylinders (T¼ 9 s). (a) Probes a1–a4, (b) probes b1–b4, and (c) probes c1–c4.

FIG. 24. First harmonic components of surface elevations for four truncated cylinders (T¼ 7 s). (a) Probes a1–a4, (b) probes b1–b4, and (c) probes c1–c4.

FIG. 25. Second harmonic components of surface elevations for four truncated cylinders (T¼ 7 s). (a) Probes a1–a4, (b) probes b1–b4, and (c) probes c1–c4.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 057121 (2023); doi: 10.1063/5.0151990 35, 057121-13

Published under an exclusive license by AIP Publishing

 13 August 2023 00:59:22

pubs.aip.org/aip/phf


Figures 24 and 25, respectively, present the first and second har-
monics of wave elevation for an incident wave with a period of T¼ 7
s. As the incident wavelength is nearly equal to the distance between
the cylinders, the T¼ 7 s wave induces more pronounced nonlinear
effects, also resulting in significantly larger harmonic components
than those obtained under T¼ 9 s wave conditions. The numerical
predictions of different methods for RAO and QTF trends across vary-
ing wave steepness are consistent with experimental data. Notably, in
the experiment, probe c1 exhibits RAO values over two times higher
than that of other probes, with our PNWT predicting an RAO of 1.7
at this location, indicating significant wave run-up.

Figure 26 presents the instantaneous wave pattern for T¼ 7 s,
depicting strong interference between the cylinders and complex dif-
fraction wave patterns. Figure 26(b) shows significant wave run-up on
the weather side of the two forward cylinders after encountering the
wave crest. In Fig. 26(c), there is substantial wave accumulation on the
lee side of the cylinders after the wave crest passes, also with extremely
steep waves appearing between the two cylinders. Figure 26(a) shows
the wave pattern at probe c1 before reaching its peak wave height,
exhibiting highly nonlinear waves with extreme steepness ahead of the
rear cylinder. This wave may break before reaching c1 at the time
depicted in Fig. 26(b), potentially explaining why the PNWT results in
Fig. 24(c) are lower than those obtained using CFD-F.

C. Near-trapped modes for closely spaced columns

1. Numerical setup

When a vertical column array encounters incident waves at a cer-
tain angle and frequency, scattered waves may become trapped
between the columns. These scattered waves are continuously reflected
between the columns but cannot escape from the structure, resulting
in what is known as near-trapped modes. Due to extremely low energy
dissipation, scattered waves under near-trapped modes accumulate
energy continuously, resulting in significant wave run-up and wave
excitation forces on the columns. Chen et al.14 and Fu et al.15 investi-
gated the near-trapped modes of a four-column array using the linear-
ized potential-flow method and proposed that the use of permeable
columns can reduce wave run-up and wave forces under near-trapped

modes. Gharechae further introduced the concept of Energy
Transmission Index and conducted an in-depth study on the near-
trapped modes of permeable barriers and circular cylinders.16

This section employs the proposed fully nonlinear method to
simulate the case studied by Fu et al.,15 where columns are arranged as
illustrated in Fig. 27. The incident waves are obliquely angled at 45� as
shown in the figure. The radius of each column is r ¼ 6m, with a
spacing ratio of r=b ¼ 0:7. The draft of the columns is d ¼ 10r, and
with respect to the incident wave conditions discussed in this section,
it can be considered as deep water. In the numerical simulation, simu-
lating one wave period after reaching a steady state takes approxi-
mately 71 s.

2. Analysis of numerical results

Regular waves with a wave steepness of kA¼ 0.01 are utilized as
incident waves in numerical simulations. After the time-domain simu-
lations reach steady state, the first harmonic components of the hori-
zontal force on four columns are examined, producing the curve
presented in Fig. 28. Here, c1–c4 denotes the columns in Fig. 27.
Symmetry dictates that the horizontal force acting on column c4 is
identical to that on column c2, and, therefore, not shown in the figure.

FIG. 26. Instantaneous wave pattern of four-cylinder diffraction simulation (T07S116). (a) t¼ 1.9, (b) t¼ 2.6, (c) t¼ 5.4, and (d) t¼ 6.3 s.

FIG. 27. Configuration for numerical simulation of near-trapped modes in a four-
cylinder array.
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Within the range of wavenumbers where near-trapped modes do not
occur, the SCBEM predicts the same amplitude of horizontal force as
the linear method of Fu et al.,15 as shown in Fig. 28. Near the wave-
numbers where near-trapped modes occur, our method successfully
captures the near-trapped modes with the predicted horizontal force
displaying a sudden increase concerning nearby wavenumbers. The
maximum horizontal force observed through our method happened at
kr¼ 3.035, with an error of less than 1% for the value of 3.048 pre-
dicted by Fu et al. based on linear theory.

Figure 29 presents the time histories of the horizontal force on
column c1 for incident waves with wavenumbers kr¼ 2.750 and
kr¼ 3.035. Figure 30 displays the frequency components of the hori-
zontal force after steady state. In the case of near-trapped modes
(kr¼ 3.035), the dimensionless horizontal force rapidly increases to
approximately 0.15 in a short time upon encountering the incident
wave and then slowly rises at an extremely low rate, taking several
hundred wave periods to reach a steady state. Notably, even if the
steepness of the incident wave is minimal, a significant second-order
harmonic component exists in the force response depicted in Fig. 30,

thereby imparting asymmetry to the time history of the horizontal
force at kr¼ 3.035. This observation highlights the significant role of
nonlinearity in near-trapped modes. For kr¼ 2.750 which do not trig-
ger near-trapped modes, the force on the column soon reaches a
steady state. The force envelope for kr¼ 2.750 exhibits fluctuations
during the early stage of the time history. This phenomenon arises
because the column array generates scattered wave components of the
near-trapped mode frequency when excited by precursor waves.
Furthermore, the energy associated with this near-trapped component
requires a substantial duration to dissipate. It can be observed from
Fig. 30 that the horizontal force at kr¼ 2.750 is primarily comprised of
first-order harmonic, and nonlinear effects are not prominent.

Figure 31 illustrates the time-domain wave pattern of the near-
trapped mode after reaching the steady state. Waves are trapped
between the columns, resulting in a significant wave elevation alterna-
tion between two pairs of columns, as shown in Figs. 31(b) and 31(e).
The maximum wave run-ups of the four columns are relatively consis-
tent, with each being approximately seven times the incident wave
amplitude. Columns c1 and c3 reach their maximum wave run-ups at
the same moment, while columns c2 and c4 reach their maximum
run-ups precisely half a wave period later.

FIG. 28. Horizontal force amplitude of each column with different wavenumbers kr.

FIG. 29. Time histories of the horizontal
force on column c1 under different inci-
dent waves. (a) kr¼ 2.750, kA¼ 0.01 and
(b) kr¼ 3.035, kA¼ 0.01.

FIG. 30. Frequency components of the horizontal force on column c1 in steady
state with different wavenumbers kr (incident wave steepness kA¼ 0.01).
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D. Narrow gap oscillations during side-by-side
offloading

1. Numerical setup

In marine engineering, side-by-side offloading of oil between two
FPSOs/FLNGs is a common practice, where the narrow gap between
the vessels can experience significant wave resonance under incident
waves, posing a risk to production safety. To explore the capability of
our proposed fully nonlinear potential-flow approach, this subsection
presents numerical simulations based on experiments conducted by
Zhao et al.51 In the experiments, rectangular boxes with a length of
3.33m, a width of 0.767m, and a draft of 0.185m are arranged side by
side with a spacing of 0.132m, and the hull of the rectangular body
has a chamfer with a radius of 0.083m. Scaling up these dimensions,
the setup can be considered as two large vessels with a length of 200m,
a width of 46m, and a gap of 4m side-by-side. The two floating bodies
are rigidly fixed, and waves incident from the ship’s side (wave angle
of 90�). A probe is placed at the center of the gap to monitor the gap
resonance. Figure 32 provides a discrete schematic of the numerical
simulation. The PNWT is conducted using a background mesh with

512� 512 nodes, and the computational domain parameters are listed
in Table VI. The grid spacing is set to 0.1m, with a total of 4128
refined nodes near the bodies. For regular waves, the simulation time
per wave period is 68.6 s.

Simulating the gap resonance RAO in the time domain presents
significant technical challenges. This is not only due to the unique struc-
ture of the problem, which requires a large number of meshes, but also
because the process of gradually inputting energy from incident waves
into the gap until it reaches steady state is extremely time-consuming
and can take tens of wave periods.37 Conducting numerous numerical
tests for regular waves to obtain RAO is clearly inefficient in this case.
Hence, this section adopts an approach similar to that used in the experi-
ments, which utilizes white noise to obtain RAO in bulk through numer-
ical simulation. In the PNWT, two white-noise spectra with significant
wave heights of Hs ¼ 3:8 and 37mm and a frequency range between
3.77 and 8.80 rad/s are generated as incident waves, and the gap response
is simulated for a sufficiently long period to calculate the RAO.

2. Analysis of numerical results

Figure 33 shows a time history segment of the wave elevation
measured at the center of the gap between two floating bodies for

FIG. 31. Instantaneous wave pattern after steady state under an incident wave with kr¼ 3.035 and kA¼ 0.01. (a)–(f) Six different moments within one wave period T. Among
them, (b) and (e) exhibit the maximum wave run-ups.

FIG. 32. Discrete schematic of numerical simulation for gap resonance.

TABLE VI. Parameters of the computational domain for SCBEM simulation of gap
resonance.

Parameter Value

Background mesh spacing 0.1m
Transition zone width 3m
Size of the entire computational domain 51:2� 51:2m2

Size of the BEM domain 7:5� 7:5m2

Size of the inner BEM zone 4:5� 4:5m2

Number of panel elements 4128
Number of refined nodes 1285
Refined node spacing 0.06m
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Hs¼ 38mm. Figure 33(a) is the incident wave time history at this
position when there are no structures present in the computational
domain, while Fig. 33(b) shows the wave elevation response induced
by the same incident wave with two bodies present, although the inci-
dent wave has a small amplitude, with a maximum wave height of
only about 30mm. However, the wave elevation response in the gap
exceeds 100mm, indicating significant wave resonance and nonlinear-
ity. This large oscillation in the gap could result in considerable
changes in the instantaneous wetted surface and may exhibit strong
nonlinear characteristics.

Taking the time history after t > 100 s, the power spectrum is
drawn in Fig. 34. Figure 34(a) displays the incident wave power spec-
trum measured at the probe in the absence of structures, indicating
good agreement between the measured wave spectrum and the target
white-noise spectrum. Figure 34(b) shows the wave elevation power
spectrum at the gap with two side-by-side structures present, showing
four distinct resonance peaks. Dividing the response spectrum by the
wave spectrum and taking the square root give the RAO of the gap reso-
nance, as shown in Fig. 35, where the experimental and WADAM
results are extracted from the study by Zhao et al.51 The experimental
RAO is obtained based on the white-noise response, and the WADAM
result is computed using the linearized potential-flow theory.

The two sets of numerical experiments conducted in this study,
along with the WADAM frequency domain calculation, successfully

predict the gap resonance peaks, validating the accuracy of the pro-
posed method for simulating long-term irregular waves. Nonlinear
factors show little effect on the resonance amplitude, as seen in the fig-
ure where the resonance amplitude for Hs ¼ 3:8 mm is similar to that
for Hs ¼ 3:8 mm. However, compared to the RAO at Hs ¼ 3:8 mm,
the gap resonance peak for Hs¼ 38mm shifts slightly toward higher
frequencies. This suggests that nonlinear factors other than viscosity
may mainly increase the resonance frequency, while viscosity may
play a role in controlling both the resonance frequency and amplitude.
These findings are consistent with the conclusions drawn by Feng and
Bai.37

IV. CONCLUSION

This paper presents a fully nonlinear potential-flow approach for
simulating wave-body interactions that is highly efficient, suitable for
large computation domains, and easy to implement. The proposed
SCBEM involves splitting the hydrodynamic problem of wave–struc-
ture interaction into far-field and near-field problems, with the former
efficiently modeled by a HOS solver, and the latter modeled via the
BEM, resulting in significant computational cost reduction. For discre-
tizing the BEM domain, unstructured scattering points and triangular
meshes are employed, along with the RBF method facilitating informa-
tion migration between time steps. To further enhance efficiency,
GMRES is used for solving the source strength distribution in the

FIG. 33. Time history of wave elevation
for numerical simulation of gap resonance
(Hs¼ 38 mm). (a) Wave elevation for inci-
dent wave and (b) wave elevation for gap
resonance.

FIG. 34. Power spectrum of wave eleva-
tion for numerical simulation of gap reso-
nance (Hs¼ 38 mm). (a) Power spectrum
for incident wave and (b) power spectrum
for gap resonance.
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BEM domain, and the coefficient matrix product is directly computed
using GPUs. By employing these methods, an efficient fully nonlinear
PNWT has been developed.

To verify the accuracy of the SCBEM and evaluate its ability to
simulate nonlinear problems, numerical simulations of some typical
scenarios are conducted, including single-cylinder wave run-up and
four-cylinder diffraction simulation. Convergence study of the single-
cylinder case demonstrates that the proposed method can achieve con-
vergence with respect to both time step and mesh resolution.
Comparison with experimental and other numerical results confirms
that the proposed SCBEM can accurately simulate strong nonlinear
phenomena and achieve prediction accuracy comparable to CFD-
based NWTs. Furthermore, white-noise numerical experiments are
performed to simulate gap resonance. The numerical results show that
the present PNWT can successfully perform long-term simulation of
irregular waves. In various operating conditions, our PNWT exhibits
high computational efficiency, requiring only 20 s per wave period for
single-cylinder cases. Despite containing over 4000 surface panels and
tens of thousands of free surface nodes in the BEM domain, four-
cylinder and gap resonance cases can be simulated within two minutes
per wave period using our PNWT, significantly faster than CFD.

Despite many promising features, the proposed method still has
inherent limitations. For example, it cannot simulate wave breaking
well and cannot accurately predict the amplitude of resonance peaks
for gap resonance. This is mainly due to the inherent deficiency of
potential-flow theory in accounting for viscosity. Since ships and
marine structures often operate at high Reynolds numbers where vis-
cosity can be neglected and other nonlinear effects may play a more
important role, we believe that the proposed method can be an attrac-
tive option for researchers and engineers seeking to simulate wave-
structure interactions. Moreover, the method can also provide a
perspective on the flow field without viscosity, which can be used to
study the role of viscosity by comparing with experimental or other
viscous simulations.
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