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Abstract

The purpose of this work is to present three methods of analysis for elastic waves propagating in two dimensional, elastic nonhomogeneous
media. The first step, common to all methods, is a transformation of the governing equations of motion so that derivatives with respect to the
material parameters no longer appear in the differential operator. This procedure, however, restricts analysis to a very specific class of
nonhomogeneous media, namely those for which Poisson’s ratio is equal to 0.25 and the elastic parameters are quadratic functions of
position. Subsequently, fundamental solutions are evaluated by: (i) conformal mapping in conjunction with wave decomposition, which in
principle allows for both vertical and lateral heterogeneities; (ii) wave decomposition into pseudo-dilatational and pseudo-rotational
components, which results in an Euler-type equation for the transformed solution if medium heterogeneity is a function of one coordinate
only; and (iii) Fourier transformation followed by a first order differential equation system solution, where the final step involving inverse
transformation from the wavenumber domain is accomplished numerically. Finally, in the companion paper numerical examples serve to

illustrate the above methodologies and to delineate their range of applicability. © 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The importance of finding fundamental solutions for
wave motion problems in nonhomogeneous media has
been stressed elsewhere [1,2]. This is especially true for
seismic wave propagation in the earth’s upper layers
(near-field effects), given the high degree of complexity in
the geological structure of the ground where heterogeneity
is only one of many complications [3,4]. Of major impor-
tance in this context is the scalar wave equation with a
depth-dependent wavenumber [5], because it corresponds
to:

(i) sound waves where the acoustic medium density varia-
tion over the wavelength is important,

(ii) electromagnetic waves where the electric field is
polarised, and

(iti) horizontally (SH) and, under certain restrictions,
vertically (SV) polarised elastic shear waves in a continu-
ously nonhomogeneous medium.

* Corresponding author.

Although many wave propagation phenomena can be
explained through recourse to SH wave models, it is still
necessary to study the vector wave equation and especially
wave motions under two-dimensional conditions as a first
step, given the difficulties associated with modeling fully
three-dimensional configurations. This is especially true
for media where dependence of their material parameters
on position is arbitrary, because although the wave field can
be represented in terms of a position-dependent amplitude
and phase angle, it is not possible to uniquely divide it into
the sum of incident plus reflected waves due to continuous
scattering of the signal by the inhomogeneities. Thus, many
of the solution techniques developed for homogeneous
materials [6] (e.g., vector wave decomposition, use of
potentials) are no longer valid. The relatively few methods
applicable to nonhomogeneous media can be broadly clas-
sified as follows [4]: (i) asymptotic methods, which cover a
wide range of inhomogeneity and anisotropy but are
restricted to high frequencies and to isolated wavefronts,
(ii) mode expansions, which are effective when the
wavetrain is attributed to a small number of interfering
modes, and (iii) generalized ray expansions (e.g., double

0267-7261/99/% - see front matter © 1998 Elsevier Science Ltd. All rights reserved.

PIl: S0267-7261(98)00038-4



20 G.D. Manolis et al. / Soil Dynamics and Earthguake Engineering 18 (1999) 19-30

transform methods, Haskel-Thomson matrix formalism,
Cagniard—de Hoop inversion) which are effective for wave-
trains described in terms of interference patterns generated
by large numbers of rays.

The last two groups of methods are restricted to horizon-
tal layering and heterogeneity in the vertical direction.

Of major interest to seismology and earthquake engineer-
ing is wave amplification in multi-layered geological media.
Solutions for the one-dimensional representation of this
problem were provided by Thomson [7] and Haskel [8,9]
using transfer matrices which relate forces and displace-
ments between upper and lower interfaces of an individual
layer. The complete solution from bedrock to surface is
therefore obtained in a step-by-step approach by consider-
ing all intermediate layers. In more detail, e.g. Biot [10], the
dynamic equilibrium equations of an individual homoge-
neous layer are solved through decoupling of the wavefield
into distortional and dilatational components, followed by
an additional decomposition into symmetric and antisym-
metric deformation patterns. The final solution is achieved
in the form of 2 X 2 transfer matrices by establishing equili-
brium of forces and compatability of displacements across
both upper and lower boundaries of a layer. Furthermore,
viscoelastic material behavior can be captured by using
modified, frequency dependent material parameters [11].
More recently, Kausel and Roesset [12] introduced a finite
element type approach by synthesizing the individual trans-
fer matrices so as to obtain a dynamic stiffness matrix repre-
senting the entire layered structure. The practical
advantages of this route has provided an impetus for further
extension to wave amplification in two-dimensional depos-
its [ 13]. Various aspects of wave motion through unidimen-
sional layered media are being continuously explored, e.g.,
by Chen et al. [14] on regularization of the divergent series
which occur in ground motion deconvolution analyses. by
Bonnet and Heitz [15] on nonlinear seismic response of soft
layers filled with nonlinear materials using the perturbation
method. by Pires [16] on the nonlinear stress—strain beha-
vior of layered soil deposits subjected to random seismic
loads using equivalent linearization and by Safak |17] on
discrete time analysis of seismic site amplification using
upgoing and downgoing waves as auxiliary variables and
representing each layer by three basic parameters. Finally, a
comparison study on the various transfer matrix methods for
wave amplification through elastic layers can be found in
Urratia et al. [18].

Also of interest to seismology is the generation of
synthetic signals in layered media due to various point
sources. For instance, a computationally stable solution
for determining surface displacements due to buried dis-
location sources in a multi-layered elastic medium was
developed by Wang and Herrmann [19] based on Haskell’s
[8,9] work, who employed the Fourier transformation and
evaluated signal time histories for the elastic medium by
performing contour integration of Bessel functions in the
complex wavenumber plane. In general, solution procedures

for wave motions due to buried sources follow along two
lines, namely Laplace transform (or Cagniard—-de Hoop
technique [20]) and the Fourier transform [21]. The former
is also known as generalized ray method because the solu-
tion is constructed by tracking the individual seismic signal
arrivals ray-by-ray from source to receiver. It is valid at high
frequencies but not well suited for cases with many layers
and large source to receiver distances. In the latter techni-
que, the complete wave solution is expressed in terms of
double integral transformations over wavenumber and
frequency. The method can handle a large number of
plane layers, but requires considerable computational effort
at high frequencies. It is also possible to introduce numericel
techniques for carrying out the contour integrations [22] or
in evaluating the resulting analytical expressions [23].

With the exception of scalar waves [5], relatively little
work is available for wave motions in continuously nonho-
mogeneous media. Of course, approximate solutions can
always be generated, e.g., by decomposing the inhomoge-
neous medium into a stack of vertically varying layers and
representing the solution within a layer as a sum of
decoupled plane waves [24]. A very general numerical tech-
nique for investigating seismic wave propagation in aniso-
tropic and nonhomogeneous materials is presented in
Mikhailenko [25,26]. In particular, different families of
algorithms are presented based on an combination of finite
integral transforms with finite difference techniques for the
computation of complete seismograms in complex, three-
dimensional subsurface geometries. Of interest here are: (i)
the inhomogeneous isotropic 3D medium in which the elas-
tic parameters and the density are functions of depth, [25]
and (ii) SH wave propagation in a heterogeneous medium
where the wavespeed is a function of two spatial variables
[26].

In the former case, the equations of motion are described
in cylindrical coordinates and the methodology used is a
double Hankel integral transformation with respect to the
two spatial variables, followed by a finite difference solution
and inverse transformations. The latter case combines a
finite Fourier integral transformation in one spatial coordi-
nate with a finite difference scheme in the other coordinate.
All spatial derivatives encountered in the finite difference
method are approximated by Fourier series [27] for better
accuracy.

As far as analytical techniques are concerned, we mention
Acharya’s [28] method for determining the wavefield due to
a point source in an inhomogeneous medium satisfying
certain conditions (such as constant density or Poisson’s
ratio of 0.25 or a linear wavespeed gradient) which allow
for independent P and S equations of motion. By assuming
cylindrical symmetry and representing the pulse from the
point source as a superposition of harmonic waves, the total
field is obtained by summing over all plane waves with a
given set of direction cosines and then integrating the sum
over all values of the direction cosines. Thus, integral
expressions are obtained for the compressional and shear
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Fig. 1. Non-homogeneous material with depth-dependent material
propertics.

potentials that are convergent. Other analytical work addres-
sing wave motions in nonhomogeneous media is by Hook
[29] on the method of separtion of variables in order to
recast the vector wave equation with position-dependent
material parameters into a system of three linearly indepen-
dent solutions for the corresponding number of scalar poten-
tials, which in turn satisfy second order wave equations.
This can always be achieved for SH waves, while formula-
tions for SV and P wave are possible only for certain func-
tional forms of the material properties, such as power laws
for the shear modulus and the density and a fixed value of
Poisson’s ratio. Furthermore, the wave equations for the
latter two potentials are coupled, implying that P and SV
waves are no longer purely dilatational and rotational. It
therefore becomes necessary to impose furthers constraints
on the material parameters in order to achieve two
uncoupled P and SV wave equations. This approach was
generalized in a later publication [30] though introduction
of a linear transformation for the displacement vector in
order to produce a diagonal system matrix for the vector
wave equation which was reformulated using matrix nota-
tion. The method of separation of variables for nonhomo-
geneous media was then implemented for the axisymmetric
case (with plane strain being a special case) and the result-
ing constraints which dictate mathematically acceptable
material parameter variations with respect to a single spatial
coordinate appear in the form of a nonlinear, ordinary differ-
ential equation. Other work along the lines of separation of
the displacement vector in a nonhomogeneous medium into
P and S wave potentials is by Gupta [31], who obtained
reflection coefficients for a layer (where the elastic para-
meters are quadratic functions of the depth coordinate and
Poisson’s ratio is equal to 0.25) sandwiched between
two  elastic, homogeneous halfspaces. Furthermore,
Payton [32] solved the uni-dimensional wave equation
for a pulse travelling in a composite rod exhibiting a
constant wavespeed in one part and a quadratically
varying one in the other part by using the Laplace
transform technique. Finally, a general technique for
solving the vector wave equation in an arbitrary nonho-
mogeneous medium is by Karal and Keller {33], who

introduced an expansion of the solution in terms of
asymptotic series. This technique does not require separ-
ability in the sense previously discussed, but the calculations
required in order to obtain successive terms of the series are
very difficult.

In this work, seismic wave propagation in two dimen-
sional, unbounded heterogeneous continuous media is
examined, as shown in Fig. 1. More specifically, the
paper is structured as follows: First, the governing equa-
tions of motion are presented, followed by an algebraic
transformation of the displacement vector so that the
equilibrium equations attain a form which no longer
involves derivatives of the material parameters. This
process generates a number of constraints which dictate
a Poisson’s ratio of 0.25 and a quadratic variation with
respect to the depth coordinate of the elastic moduli.
Subsequently, three procedures are introduced for gener-
ating fundamental solutions for wave motions due to
point impulses or initial conditions, namely: (i) confor-
mal mapping followed by decomposition of the displace-
ment vector into dilatational and rotational components,
(ii) a pseudo-dilational and pseudo-rotational decomposi-
tion technique in conjunction with an algebraic transfor-
mation of the dependent variable, and finally (iii) Fourier
transformation followed by a first order differential equa-
tion system solution. In the first two cases, referring the
transformed solution back to the original displacement
vector is rather straightforward, while the last case
requires a numerical inverse transformation from the
wavenumber to the spatial domain. Furthermore, the
first technique cannot be extended to the general three-
dimensional situation, whereas the remaining two in prin-
ciple can. Finally, some numerical examples are
presented for specific types of heterogeneities in the
companion paper.

2. Governing equations of motion

The dynamic equilibrium equations, the kinematic rela-
tions and the constitutive law for a continuous, elastic
medium are

oy + o = pi;
& = %(u,_j + uj.,-) )]

In the above, u;, pf;, e, and o respectively are displace-
ments, body force per unit volume, strain and stress, while
A, p are the Lame elastic constants and p is the density.
Furthermore 6 = &y, = u;, is the dilatation. For 2D condi-
tions, the indices range from 1 to 2, while commas indicate
partial differentiation with respect to the spatial coordinates
x; and dots indicate partial derivatives with respect to time 7.
Finally, the summation convention is implied for repeated
indices and & is Kronecker’s delta.
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If the continuum is heterogeneous, then the material
parameters are position dependent (e.g., A = A(x), p =
w(x), and p = p(x) and the components of Eq. (1)
combine to give the governing equations of motion in
the form:

{AD g (x. 0O} (D) + (0
(2)

+ p(x)fi(x. 1) = p(X)idi(x. 1)

We note that unless variation of the material parameters
over a wavelength is small, there is coupling between pres-
sure and shear waves at every point of the continuum. Thus,
vector decomposition methods [6] which form the corner-
stone of techniques used for waves in homogeneous media
are no longer applicable.

In order to recast for the above dynamic equilibrium
equations in a more suitable form which does not involve
derivatives of the material parameters, the following trans-
formation [34] is established for the displacement vector
= {u, i)

u(x, 1) =T(xU(x.1) (3)

where the precise form of 7 has yet to be determined. Using
indical notation, the various derivatives of u; with respect to
the spatial coordinates are as follows:

il

TU ; + T, U;
iy = TU

iff

+2T, U + Ty U (4)
TUj+ Ty Uy + T Uy + Ty U

Substituting Egs. (3) and (4) in the equations of
dynamic equilibrium and collecting terms yields the
following equations in terms of the transformed displace-
ment vector U;:

{TA+ Tl + (T Uy + 2pT .+, THU

Jf
H{AT,; +uT,; +p, T}UN + (AT, +A,; T + uT,; }UL/

Ty g Ty YUs + AT + A, Ty + Ty + ey T YU

+of; = pTU;
(5)
If transformation 7 is chosen such that
2ul, +u; T =0 (6)
then
T =p " (N

By substituting the above expressions for T and for its
spatial derivatives in Eq. (5) and simplifying, we obtain the
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following equilibrium equation:
A
(At b Upyy + pUugy £ 705 2y #0500 1 Uy
A
+3-05—p,; —05u,; +A, U,
"

+ {0250 ey ey =050, YU, (8

A A
w? " :

05 o
T (A 4 )“'",I}Uj + pu'"f, = pU,

In order to remove all terms multiplying the lower order
derivatives, constraint equations are identified as follows:

N

A
(A().sf + 0‘5),*,, =0
"
A
(—0.5— - ()‘s)p.,- +A,=0
I
1
(o.zsﬁu,, e —().5,4,_,;,-) =0 - ©9)
A 1 A
0.75(—,— + ~)IJ~7; o’ ~().5(— + l),u,,-r
PRI L n Y

0.5
== (A oy = 0
M

J

The first constraint equation requires either a constant
(i.e., the trivial solution) or A = p, which corresponds to a
Poisson’s ratio of 0.25, a rather common value for igneous
materials [2]. The second constraint equation is automati-
cally satisfied if A = w, while the remaining two respec-
tively are:

0250 gty poy =05 pay = 0}

(10)
0.251 g py; =05, =0

If material parameters A and u (and consequently p) are
assumed to be functions of only one spatial coordinate
(depth y = x, for convenience), both of equations are
equivalent to:

(D)ay) = 2u(n)a w(v)ay* =0 (11a)
whose solution is:
#(y) = (coy + ¢1)° (11b)

where ¢y, ¢, are constants, i.e., we obtain a quadratic profile
of the shear modulus with respect to the depth coordinate.
By taking all the above constraints into account, the final
form of the dynamic equilibrium equations is therefore

Ui

b T 2U L+ CF = (U, (12a)
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where:
Fx,n) = w0 (x.0) (12b)

and

ay(v) = /p(y)uy) (12¢)

is the shear wave slowness, i.e., the inverse of the shear
wavespeed c(y). We note that for the particular type of
nonhomogeneous material examined herein, the pressure
wave slowness (inverse of pressure wavespeed p(v) is
an(y) = ax(_\-)/\/§. At this stage, the usual Helmholtz decom-
position of the displacement vector into dilational and rota-
tional components will still not work due to the presence of
the non-constant slowness a(y).

Finally, we assume time harmonic conditions for both
transformed displacement and forcing function vectors in
the form:

Uitx, 1) = Ui(x)expliwt) }
Fix, 1) = Fi(x)expliot)

(13)

where w is the circular frequency of vibration. Therefore,
the steady-state form of the governing equations of motion
1s:

Uy + 20U + 0’ &d0U; = —al(v)F, (14a)

LA

or, introducing vector notation,
VU +2VV.0 + o’ o (0)U = — e (y)F (14b)
In the above, V = (9/dx)i + (3/0x)j is the gradient vector

in two dimensions and {V}? = {V}.{V} is the Laplacian.
The transient response can then be recovered through

Fourier synthesis.

3. Conformal mapping technigue

A conformal mapping technique for solving the scalar
wave equation in a material with variable elastic parameters
and density has been presented by the authors elsewhere
[35]. In this section, the technique is generalized for two
dimensional elastic waves by introducing an intermediate
step involving decomposition of the transformed displace-
ment vector U(x) into dilatational (superscript d) and rota-
tional (superscript r) components. More specifically, we
define

U=U'+U
where (15)
VxU? =0, V.U =0

Upon substituting the above decomposition into govern-
ing equation Eq. (14b) and using vector identity
VU =V(V-U) - VX (VX U), we obtain:

WU+ VU + WU+ U = —alE + F)
(16)
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where forcing function F has also been decomposed in the
same manner as U.

The next step is to introduce a transformation between
two orthogonal coordinate systems (x,y) and (X,Y) based on
conformal mapping concepts [36] so that the Laplacian
operator transforms as follows:

VLU y) = J(, )Yy U(X, Y) (17)

In the above, Jacobian J (the determinant of Jacobi’s
matrix transforming derivatives between the two coordinate
systems) is given by [35]:

Jex,y) = e, )lad, (18)

with o = a, (x = y = 0) being a reference value for the
shear wave slowness. The possibility for defining material
parameters which are functions of two spatial variables
should be noticed, despite the fact that the algebraic trans-
formation procedure used in the previous section constrains
variability in terms of a single coordinate, namely depth v.
More details on conformal mapping are given later on.
Thus, by re-defining Eq. (16) in the (X,¥) coordinate system
we have that

ViU + U = — [ )W + U
+a FY + ) y)

=~ ol (U + U") — ol (F* + F')
(19)

Since we now have a vector wave equation with constant
coefficients, it is possible to define a new decomposition
involving U® = U%X, Y) and U" = U"(X, Y) as:

E(X,Y)=Vy-U' and QX,Y) = Vyy X U" (20a)
subject to constraints:
ViU =0and Vi x U =0 (20b)

where E and ) are the dilatation and rotation vectors,
respectively. Therefore, by first taking the divergence of
Eq. (19), we obtain the governing equation for the dilatation
in the (defaultX,defaultY) domain as:

VirE + 0 apyE = —aloFe 1)

where body force Fr = Vyy-F® and ap = op(x=y=0)=
a,/+/3 is the reference pressure wave slowness. Similarly,
the curl of Eq. (19) gives the governing equation for the
rotation vector as:

VirQ + o’ el = —adyFy (22)

where body force Fp = Vyy X F'. We observe that E and )
are associated with pressure and shear waves, respectively,
and that both obey the standard, second order time harmonic
wave equation. The solutions for freely propagating waves
(zero body forces) including both outgoing and incoming
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waves are well known [6], i.e.,

E(X, Y) = C].]()(kpoR) + CzY(](kp()R) (234)
and
Q.(X.Y) = C3Jo(kR) + CyYykoR) (23b)

where kjy = way and kg = way are the reference pressure
and shear wavenumbers, respectively, and R = vX> + Y2 is
a radial distance. Furthermore, J, and Y, are Bessel func-
tions of zero order, first and second kind, respectively while
constants C, through C; are determined through recourse to
the appropriate boundary conditions. In their most general
form, wavenumbers k,, and ky are complex quantities
whose imaginary part is a manifestation of viscoelastic
material behavior. Finally, only component (2, of rotation
vector {) is relevant in the context of Eq. (20a).

The solutions given by Egs. (23a) and (23b) however, are
not satisfactory. What we seek are fundamental solutions
that fulfil the following basic criteria [37]: (i) they are singu-
lar at the source, which is taken as the origin (X =0, ¥ = 0)
of coordinates, and (ii) at large distances from the source
where R — oo, the radiation condition is reproduced for
outgoing waves only. As things stand, J, and Y, have to
be rejected on account of the first and second criteria,
respectively. The Hankel functions H{" =J, + i¥, and
H(()z’ =Jy — 1Yy are more suitable candidates since they
are both singular as R — O and their principal
asymptotic forms for large arguments (with the term
expliot) included) are [38]:  HY(kR) explior) =
V2I 7R exp(ik(r + ¢t — m4k)) and H{ (kR) explion =
\/?n'kR exp(—ik(r — ct — m/4k)). Of the two Hankel
functions, the latter one corresponds to outgoing waves and
1s retained so that finally:

E(X.Y) = EgH (kR (24a)
and
0.(X,Y) = QoHP (kyR) (24b)

where constants £, and {), are the amount of initial strain
prescribed at the source.

The final task is to invert the above solutions to the origi-
nal (x.,y) domain, a process which involves: (i) computing
components Qd(R) and U'(R) through use of Egs. (20a) and
(20b), (ii) changing back to the original coordinate system
(x,v) from (X,Y) so as to synthesize U(r) = U%(r) + U"(r),
where r = /x> + y2, and (iii) invert the algebraic transfor-
mation of Eq. (3) so as to recover u(r) form U(r). It should
be noted at this point that the strain fundamental solutions
given by Eqgs. (24a) and (24b) correspond to a Dirac delta
forcing function at the source. The procedure outlined above
implies that the final displacement fundamental solution
will correspond to a Heaviside forcing function. In princi-
ple, it is possible to start with a Dirac delta for the forcing
function at the level of the vector wave equation, namely
Eq. (14a). It becomes difficult, however, to manipulate this

forcing function into a suitable form so that the final
scalar wave equations given by Egs. (21) and (22) are
solvable. It can be done, of course, for a homogeneous
medium by combining Helmholtz’s decomposition of
the body force with a volume integral representation
[38], but the presence of a position-dependent wave
slowness in Egs. (14a) and (14b) renders this technique
inapplicable. In sum, the solutions derived herein are
all classified as Green's function since they are
composed of a free space solution which contains the
basic singularity and a regular part which accounts for
any boundary conditions. Before we proceed with u,
however. it is necessary to elaborate on the second
step involving conformal mapping between two coordi-
nate systems, which also fixes the particular type of
heterogeneity manifested by the variable wave slowness
..
We define a conformal mapping of the type fiz) which
maps complex number z = x + iy into Z = X + iY,
i=+—1 If fiz) is an analytic function of z, then X(x,y)
and Y(x,y) are related through the Cauchy—Rieman condi-
tion [36], i.e.:
aX 4

axX aY
o= and —— = - — (25a)
dx dy dy ax

Since this conformal mapping can also be viewed as a
transformation between the two orthogonal coordinate
systems (x,y) and (X,Y), then the Jacobian a(X, Y)/d(x,y) is
given as:

J(x,y) = (3X/6x)" + (8X/ay)’ = (aY19x)* + (0¥/ay)* (25b)

which is non-dimensional if both coordinate systems
have the same units. The Laplacian operator defined
for two different coordinate systems is related through
the above Jacobian and was given in Eq. (17), while
Eq. (18) is the result of specifying a shear wave slowness
a(x,y) proportional to J(x,y) with the factor if propor-
tionality being a constant, reference-type value a. Thus.
the choice of mapping f(z) directly determines the parti-
cular form of «,.

A rather general choice for the mapping combines expo-
nential with polynomial terms in z, i.e.

f@Q=Z=cz+ce ™ — e (26)

where ¢y = 1, and ¢, = — ¢, = ¢ $0 as to assure a common
origin for both coordinate systems, while b and ¢ are
constants still to be specified. Reverting to the transforma-
tion, we have that

X =x+ cfe ™cosby — e cos2by}
27)

by — by
Y =y — cle Psinby — e sin2by)

We observe that both coordinate systems share (0,0) as



G.D. Manolis et al. / Soil Dynamics and Earthquake Engineering 18 (1999) 19-30 25

their origin. Radial distance R is defined as
RZ — XZ + Y2 — r2+C2{€—2bx + e*4hr}
+2ce P (xcosby — ysinby}

. 2[‘872’” {

xcos2by — ysin2by}
-2¢%e " (cosbycos2by + sinbysin2by) (28)
where -2 = x* + y%. Finally, the Jacobian is (see Eq. (25b)):
Jooy) =1+ Ehle 2 + 4
—(4h e + 2cbe " )cosby

+ 4cbe 72h‘*c052by (29a)

The above expressions are general enough to include both
horizontal (x) and vertical (v) variations for the wave slow-
ness o = afOJ(x, ¥). Since we are constrained by the alge-
braic transformation given earlier to vertical heterogeneity
only, it follows that:

af(y) = @y J(x = 0, y) = afn(l + 50267
—2cb(2ch + 1)cosby + 4cbeos2by) (29b)

Similarly, the radial distance R appearing in the argu-
ments of the fundamental solutions given by Egs. (23a)
and (23b) is also a function of y only, i.e.:

thy) = ,vz + 2(‘2(1 — cosby) — 2c¢y(sinby — sin2by) (29c¢)

Returning to the procedure for recovering u, we first focus
on Egs. (20a), (20b), (24a), (24b). It is necessary to adopt
polar coordinates (R.®) in the transformed coordinate
system (X,Y) so that the new definitions E(R)=
Vio-UY(R) and Q.(R) = Vi X U'(R) respectively yield:

R
Up(R) = J() E(R)dR

and (30a)
R
Uu(R) = _[ Q(R)dR
0
Furthermore, components Ug)(R) = Up(R) = 0 by impos-
ing the constraints given in Eq. (20b) in polar coordinates.
Performing the integrations gives: [39]
dopy (2) R (2)
Ug(R) = RHy (kyoR) + 5 {# o(kpoR)H 7 (ko R)
- A I(kpl)R)H(()Z)(kpUR)}
and

) TR
USR) = RH (koR) + 7{%'0(k5(,R)Hﬁl’(ksoR)

— A (ko RIH (kg R)) (30b)

where #, and #°| are Struve functions, while HED is the
Hankel function of first order and second kind.

Using the coordinate transformation summarized in Eq.
(29¢), components U;i(R) and Ug(R) are respectively iden-
tified with the pressure wave dilatation component U;'(|y|)
and the shear wave rotation component U%(|y|). The final
step is recovery of u from U = U% + U, ie.:

Uy U,
= = vy ' (31
‘ H’ N TR

This approach will be further illustrated through the use
of a numerical example in the companion paper.

4. Vector decomposition technique

In the vector decomposition technique, we define a dila-
tion e(x,y) and a rotation vector w(x,y) (not to be confused
with frequency w) as:

e=V.U
(32)
w=VxU

Upon substitution in the equation of motion Eq. (14b) and
neglecting the body force for simplicity, we obtain the
following two coupled wave equations after applying the
divergence and curl operators, respectively:

Ve + wzag(y)e + mZVag(y)-Q =0 }
(33)

Vi + wzaf(y)g) + wZVag(y)xQ =

In order to uncouple the above equations, we introduce a
transformation of the dependent variable in the form

Ulx,y) = Ala(y)V(x,y) (34)

along with a modified dilation £= V-V and a modified
rotation vector Q=VXV with V = (8/dx)i + (3/dy))
being the gradient operator in two dimensions. This type
of transformation is very versatile in conjunction with the
scalar wave equation and for heterogeneity along one spatial
coordinate [40], but has not been explored within the
context of elastic waves. The specific form of transforma-
tion A(y) will be determined later, as part of the solution of a
number of constraint-type equations.

Based on this redefinition of displacement vector U, the
original dilatation and rotation are expressed in terms of the

transformed quantities as follows:
e=AFE + VAV

(35)
w=A0+VAXV

Substituting the above in the wave equation for the
dilatation, the first component of Eq. (33), gives:

VAE + VAV + o’ @()IAE + VA-Y]

+0’Vai(y)-{AV} =0 (36)
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If we take into account the fact that the pressure wave
slowness a,(y) is a function of a single coordinate only, then
the various terms appearing in the above equation are as
follows:

) da oA
V2, AV} = “RAV, AE + VAV =AE + -V,
ay dy

9A 5 dA JIE
V’[AE + VA-Y] = AV’E + SV 2 E 3)
oy )

T oy dy
a’A IV, A
+,—7(E+2r -‘)+ —V,
ay :

; P
.\' ("‘/

Substituting the above in Eq. (36) and re-arranging terms

results in:
1 a%A 5 5
+ | — + w oy |E
(A ay? p)

16’4 5 of1aA 1 da
+d- L+ war| - — + =L |tV (38)
{A ay? @ CZp(/—‘i ay  ay dy )} Y

2 §°A 8V, 1 9A
42000 LSy =
A 3 8, Agy

> 2 0A OF
VE+ ————
A dy dv

In order to achieve uncoupling of the above equation so
that it pertains to the transformed dilatation £ only, we
impose the following four constraints:

V 2

VALV o]

A a,
V- (VA
J{_) —0

’ (39
V2A ~0

=
ViV, =0 J

where a, = a(v) and A = A(y). We observe that the equa-
tion governing dilatation £ = E(x.,y) is no longer a wave
equation, but a partial differential equation of the second
order with non-constant coefficients, i.e.:

1a’A

Tax T w~a§,(y))E =0 (40)

v 2 MOk (
A dy dy
A similar path is followed for the equation governing the
rotation vector, namely the second component of Eq. (33).
Upon substituting the expression for w given by the second
component of Eq. (35), the aforementioned equation
becomes

VIAQ + VA X V] + &’ a2()AQ + VA X V]

+0' V() X (AV) =0 (41)

Expanding the cross products gives:

2 1
dorg

— V. .k
ady

Val x {AV} = —A

AQ + VAXYV = (AQ: + jTAVx)k
¥

0A

Vi,
dy ’

VAQ + VAX V] = (szn: -

aA aQ. | FA 263A W,  PA L
ay ay ay? v ay oy )T

P

(42)

where (), and & respectively are the component of {2 and the
unit vector along the defaultz-direction. Substituting the
above expressions in Eq. (41) and imposing the same
constraints as with the dilatation defaultE (the only differ-
ence being that the first component of Eq. (39) holds true for
defaulta, replacing defaulta, and that the fourth component
of Eq. (39) is replaced by V’defaultV, = 0 so that VY =0
is the general constraint on V), we recover the following
equation governing the only non-zero component of the
rotation vector £}, i.e.:

1 >
+ (J%i + wza;)ﬂ. =0 (43
A 9y )

5 %) -
v 4+ 2 0A 0%
Aoy dy

We observe that both £ and (2, are governed by the same
type of differential equation with k, = wa, and k, = wa; as
their corresponding wavenumbers, respectively.

The next step is to examine constraint Eq (39) so as to
establish the precise form of wave slowness a and a, for
which the uncoupled equations governing dilation £ and
rotation {2, hold true. The first of the components of Eq
(39) is identically satisfied if:

¢
AY) = —5— 44

(v 20) (44
where ¢ (y) is either ag(y) or af (v) and c is a constant which
can be taken as equal to one. The second component of Eq.
(39) implies that ofz(y) is a polynomial up to the second
degree in y, i.e.:

a*(y) = (cy + ¢y + ey’ (45)

where ¢, ¢|, ¢, are constants to be determined. The solution
for the third component of Eq. (39) restricts the above poly-
nomial to the first degree in y, while the fourth component of
Eq. (39) simply states that the transformed vector ¥ must be
harmonic. In sum, our constraints yield:

AW) = a X)) =cy + ey (46)

where a(y) is either a,(y) or a,(y), with the former wave
slowness pertaining to £ and the latter to (Q,.

As previously mentioned, the equations governing dilata-
tion and rotation are essentially equivalent. We will focus
on the first one for E, since the same solution is applicable to
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Q, as well. By substituting Eq. (46) into Eq. (40) and
abandoning vector notation, we have that:
o°E N O°F + 2¢) _QE N w”

2

e E=0 (47a)
IS

oty dy ¢ty

Unfortunately, a classical separation of variables of the
form Eix,y) = E(x)Ex(y) will not work in conjunction with
the above equation because of the presence of non-constant
coefficients. If however we restrict the solution to the case
where clastic waves are propagating along the y direction
only (£ = E(x = 0,y) we have, upon normalization of Eq.
(47a) by introducing ¥ = ¢,y/cy, that

dE dE  o'cy

Dp= (47b
dy fa )

(I+¥

The final step is to reset the singularity of the above
second order, ordinary differential equation at zero by defin-
ing t = 1 + ¥. Thus, E = E(¢) is the solution of:

&#?FE  2dE b
—t —— 4+ —E=0 47¢
dr todr ! @7e)

where h = w’co/c}. The above equation has r = 0 as a
regular singular point and assumes a power series solution
[41]. More specifically, the associated indicial equation
r(r — 1) + 2r = 0 has two roots, ry = 0 and ry = — |
(which differ by an integer). The solution which fulfils the
criteria set forth in the previous section regarding singular
behavior at the origin and a decaying outgoing wave at large
distances is [39]

E(t) = E,H byt (48a)

In the above, Ej is the constant initial strain at the source.
while H(lz) is the Hankel function of first order and second
kind. The above solution can be verified through backsub-
stitution in Eq. (47c). Rotation £),(z) is also governed by the
same sequence of equations Eqs. (47a—c), except for the fact
that constants ¢y, ¢; will now have different values. Thus:

Q) = QHP b VI (48b)

where () is an initial strain and b’ = wt'(,]/(C;)z.

In order to return to the original displacement vector u(x),
the following steps are followed: (i) redefine E and ) in
terms of the original spatial variable y; (ii) integrate rela-
tions £=V.V and ) = VX V 50 as to obtain V = (V,, V)
in terms of the aforementioned modified dilatation and rota-
tion; (iii) evaluate U directly from Eq. (34) since the specific
form of A(y) used in the transformation between U and V is
known from Eq. (44); and (iv) use the algebraic scaling
given by Eq. (3) to express the original displacement vector
u in terms of U. We note again that the fundamental solu-
tions derived herein for the strains and their corresponding
displacements are due to a strain impulse at the source.
Finally, the constraint that V(y) must be harmonic can be
imposed by adjusting the integration constants that appear in
the expression for V.

The only step that needs elaboration is the second one
involving integration of the modified dilatation and rotation.
In particular, we have that

V(y) = L) E(y)dy
and (49a)
Vv = — Jn Q.(y)dy

After some algebra and taking into account the recursion
formulas for the derivatives of Bessel functions, [39] the
final results are given in terms of the physical coordinate y
as:

o= () (2

and

¢ 2w [
Vi(y) = _Qog{H(gz’( p ‘u +c 1")

I
2 ;
_H(()Z)( (/u "0)}
¢

Recapitulating, we note that the V, component corre-
sponds to a vertlcally propagating pressure wave travelling
at a wavespeed Ll,(v) =c¢g+ ey, while V, is a horizontally
polarized shear wave with ¢ (x) =yt Cl‘ as its wave-
speed. The final result is that:

i, X V.
u= { } = M(.V)”“A(y){ } (49¢)
u, Vv,

This procedure will be illustrated in the section on numer-
ical examples in Part II where the particular type of hetero-
geneity for which the above methodology is valid will also
be discussed.

(49b)

5. First order system solution with Fourier
transformation

The last method involves a Fourier transformation with
respect to the horizontal spatial coordinate x of the dynamic
equilibrium equation Eq. (14a) in order to recover a form
which contains derivatives with respect to the depth coordi-
nate only and is therefore amenable to solution via a first
order differential equation system formulation. The particu-
lar exponential Fourier transformation employed here is
defined as

F(h) = hik) = J h(x)exp(ikx)dx
e (50)
F'(h)y=h(x) = — j h(k)exp(—ikx)dk
27T — 00



28 G.D. Manolis et al. / Soil Dynamics and Earthquake Engineering 18 (1999) 19-30

where F and F~' respectively are direct and inverse trans-
formations and k is the wavenumber. We mention the opera-
tional property for the n-th derivative of function A(t) as:

F(h'")y = (—ik)"h(k) (51)

and the transform of the Dirac delta function 8(x) is
F(&) = 1.

Application of the aforementioned double Fourier trans-
forin to Eq. (14a) written in expanded form yields the
following system of equations:

da d

— U, = 2ik—0, + (=3k* + wzaf(y))[/x = —af(y)l:*‘
dy- - dy

P d - . .
ﬁ Oy =2tk U, + (K + o’ {0, = —ai(0)F,
3 )’ i

| e

3

o

(52)

where U = (U, U,). In order to reformulate Eq. (52) as a
system consisting of two first order, ordinary differential
Egs. [41], we introduce the following notation:

| e

_ - d -
Uiand W, = —U

W, = ,
x | Ch S

(53)

K=%
=

The next step is to combine Egs. (52), (53) and introduce
matrix notation. Thus, we obtain the following 4 X 4 first
order differential equation system

U, [0] 1]
d U] [ -gm 0 0 2ik
dv W‘ 2
’ 10 AR
0 0 GOV Sk 0
i (54)
7, 0
0,
x4 b —alv
W, F.3

where [0] and [/] are the null and unit submatrices, respec-
tively, and ¢i() = -3k + 0’ al(y), GO = -k +
w ot (y). Using symbolic notation, Eq. (54) can be written
as:

{(V} =[AmI V) + (B} (55)

in the wavenumber k domain. Since system matrix [A] is
non-constant, the usual solution methodology for first order
differential equation systems involving the eigensolution of
[A] is not applicable and special techniques (series expan-
sions, Picard iterations) must be sought [41,42].

The presence of the load vector { B} complicates the solu-
tion procedure so it becomes necessary to convert to equiva-
lent boundary conditions defined at y = 0. In particular, the

original load vector was:

F, 1
{F } = Fo(s({){ | } = Fy0(x)d(y)e (56a)

so that the Fourier transform with respect to the x-coordi-
nate yields:

F
_ o= Fod(ye (56bh)
F

.

From the theory of generalized functions [41], solution
E*(y) of the n-th order ordinary differential equation
D"{E*(y)} = 8(y) subject to zero initial conditions can be
written as E*(y) = H(y)E(v), where H(y) is the Heaviside
function and E(y) is the solution of the equivalent homoge-
neous equation D"{E(y)} = 0 subject to initial conditions
E"N0) =1, E"%(0) = ... = E(0) = E(0) = 0. Thus Eq.
(55) can be re-cast as:

%{V} = IAWIVL (Vo= 0)) = {v} (57a)

where the equivalent boundary condition vector is defined
as:

Y 5
{v} = —F,a%[0,0.1, 1/3] (57b)
with reference wave slowness ay = a, (y = 0).

The solution procedure for the above equation is based on
a series expansion of both system matrix and response, i.e..

VO)) = (Vg + (Vhy + (Vi + ...
and (58)
[AM] = [Aly + [A])y + [A)° + ...

where subscripts denote the expansion order. By substitut-
ing the above in Eq. (57a), matching powers of y and iden-
tifying the zeroth order solution with boundary conditions
{V} the first and higher order solutions are obtained as

(V) =14l {V} )

1 1 e ) .
{Vh = 5 (Al + 1AT{V) = [Blo (V)

=
Il

1 1 | o
5([‘”2 1AL AL + S TATlA] + EIAJS){V}

=[Cl{V} )
(59

The final response can then be reconstituted through
recourse to Eq. (58) as:

(VY = U]+ [Alpy + [Bloy” + [Cley” + ..){V) (60)

This type of approach favors a polynomial structure of the
wavespeed slowness a,(y). Thus, we specify the general
form:

a,(y) = (1 + ay) " (61)
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where n = 0, 1, 2 respectively correspond to the quadratic,
linear and constant density profiles, while constant a =
(/g — D)/L (which is the slope of «) results from a
quadratic variation of the shear modulus across layer thick-
ness L. For the more general case of n = 2, the expansion
terms are:

0 0 1 0
0 0 0 1
A=\ _, ., | ©2a)
3k — wag 0 0 2ik
[ o (K* — o’ag)3 2ik/3 0
-0 0 10
0 0 0 1
Ali=120%a2a 0 0 0 (62b)
2 5,
0 fw‘a;oa 0 0
L 3
and
0 0 10
0 0 0 1
[Al, = 5 (62c)
—3(waga) 0 0 0
0 —(waga)® 0 0

With the expansion terms of [A(y)] now available, Eqg.
(59) can be used to synthesize matrices [B], and [C].
while Eq. (60) gives the solution for { V'} in terms of bound-
ary conditions { V°}. The final step in this solution procedure
is a numerical inverse transformation of solution vector { V}
back to the spatial domain so as to recover displacement
components U, and U, corresponding to a forcing function
which is a point impulse in space and time harmonic. The
Fourier transformation software package given in Ref. [43]
can be employed for the inversion part. Finally, one last
scaling is required, as dictated by the algebraic transforma-
tion procedure and given by Eq. (3). Thus, we obtain a
solution vector u(x, w) = [u,u,] T for each of the two
point forces, which corresponds to a Green's function
gi{x.w), (ij = 1,2) for the time harmonic vector wave equa-
tion defined in a nonhomogeneous medium with Poisson’s
ratio of ().25, a quadratic shear modulus profile in depth and
constant density. In contrast with the two solutions
previously obtained, this is a fundamental solution which
corresponds to an initial displacement impulse at the source.

6. Conclusions

In this work, three different methodologies, namely
conformal mapping, vector decomposition into pseudo-dila-
tational and pseudo-rotational components and an integral
transformation in conjunction with first order differential
equation system solution are developed for constructing

fundamental solutions for wave propagation in two dimen-
sional nonhomogeneous media where the material para-
meters are functions of the depth coordinate. In particular,
constraints dictated by an algebraic transformation applied
to the governing equations of motion, which is a common
step for all three methods, produce a quadratic depth profile
for both elastic parameters plus a Poisson’s ratio of 0.25.
The density profile remains arbitrary and its particular form
depends on the method used. Finally, numerical examples
which serve to illustrate the above methodologies are
presented in the companion paper. Some improvements,
however, need to be introduced to the present methodolo-
gies, namely use of the method of images so as to reproduce
a traction-free horizontal surface and superposition of a
number of point sources (impulses) so as to reproduce the
effect of a finite-size source. These issues can be ulso
approached through use of discrete modelling techniques,
i.e., integral equation formulations employing the funda-
mental solutions derived herein as kernel functions.
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