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Abstract. It is well known that the near tip displacement field on a crack surface can be
represented in a power series in the variable

√
r, where r is the distance to the tip. It is shown herein

that the coefficients of the linear terms on the two sides of the crack are equal. Equivalently, the linear
term in the crack opening displacement vanishes. The proof is a completely general argument, valid
for an arbitrary (e.g., multiple, nonplanar) crack configuration and applied boundary conditions.
Moreover, the argument holds for other equations, such as Laplace. A limit procedure for calculating
the surface stress in the form of a hypersingular boundary integral equation is employed to enforce
the boundary conditions along the crack faces. Evaluation of the finite surface stress and examination
of potentially singular terms lead to the result. Inclusion of this constraint in numerical calculations
should result in a more accurate approximation of the displacement and stress fields in the tip region,
and thus a more accurate evaluation of stress intensity factors.
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1. Introduction. In the numerical modeling of fracture, a correct representation
of the local stress and displacement fields in the crack tip region is essential for accurate
evaluation of stress intensity factors (SIFs). The determination of these quantities is
a primary objective of computational fracture mechanics, as they are important for
the study of crack stability and propagation [42]. It is therefore not surprising that
the analytic form of these singular fields and the associated numerical interpolation
methods have received considerable attention.

For two-dimensional linear elasticity, Williams derived the form of the displace-
ment and stress fields in the vicinity of a corner [57] and, subsequently, the limiting
case of a crack tip [58]. For recent work on corner expansions, see [9] and references
therein. For a crack geometry, Williams’s result for the displacement u = {uk},
k = 1, 2, in the neighborhood of the tip is

uk(r, θ) = ak + bk(θ)r
1
2 + ck(θ)r +O

(
r

3
2

)
,(1)

where, as illustrated by Fig. 1, r is the distance to the crack tip and θ indicates a
direction emanating from the tip. In this figure, the mathematical crack results when
the interior angle occupied by the material is 2π (i.e., α = π) and the crack surfaces
correspond to θ = ± π. In both finite and boundary element formulations, attention
has appropriately focused on capturing the

√
r behavior (and the corresponding 1/

√
r

singularity in the stress field) in the approximation. The development of the “quarter
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FIG. 1. Definition of the coordinate systems (x1, x2) and (r, θ) for a notch or crack geometry.
The shaded portion represents the interior of the domain.

point” element [5, 30] superseded earlier work in this area (e.g., [55]), and this is
now the dominant technique employed. It is well established that use of special
elements at the crack tip significantly improves the accuracy of stress intensity factor
calculations [3, 8, 37, 49], and many refinements and extensions of the original quarter
point element technique have been developed [32, 36] (see also the extensive list of
references in [3]). Note that for boundary integral fracture analysis, whether using an
approach which combines the displacement and traction boundary integral equations
[22, 27, 31] or using the displacement discontinuity method [15, 16, 18, 47], only the
displacement on the crack surfaces, θ = ±π, is approximated in the calculation. The
near tip crack surface interpolation of the displacement is therefore crucial for accurate
SIF calculations using these methods.

The purpose of this paper is to establish a relationship between the displacement
functions on the top (θ = π) and bottom (θ = −π) of the crack. Specifically, it will
be shown that the coefficients of the linear terms in (1) are related by

ck(π) = ck(−π) .(2)

Note that this equation simply states that there is no linear term present in the
expansion of the crack opening displacements, ∆u(r) = u(r, π) − u(r,−π). Thus,
incorporating (2) into a computational algorithm should be an especially easy task
within the displacement discontinuity method [15, 47] or the recent combination of
the hypersingular equation method with a symmetric-Galerkin approximation [24].
In both approaches, ∆u(r) is dealt with directly.

Given the importance and interest in fracture mechanics, it is somewhat surpris-
ing that this simple analytical result, (2), should go unobserved for so long. The proof
is based upon the boundary integral formulation for elasticity and the evaluation of
the limiting value of the surface stress as the crack tip is approached. A direct compu-
tation of the hypersingular integrals, the onerous calculations enormously simplified
by employing symbolic manipulation, reveals a logarithmic singularity which vanishes
only if (2) holds. Before describing this method, it is useful to demonstrate that the re-
sult also follows quite simply from Williams’s eigenfunction expansion [57] (section 2).
We emphasize, however, that the eigenfunction analysis is restricted to a traction-free
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flat crack in an infinite plate, whereas the boundary integral derivation (section 3)
makes it clear that (2) holds for an arbitrary crack geometry and any two-dimensional
problem (e.g., potential theory, elastodynamics) for which a boundary integral equa-
tion can be constructed. The only assumption in this argument is that the displace-
ment can be represented by (1). The simplifying assumptions in the eigenfunction
expansion do yield more detailed information, specifically c2(π) = c2(−π) = 0. Crack
geometries are of considerable interest in potential theory; thus, section 3 begins with
an analysis of the simpler case of crack tip integrals for the Laplace equation. Not
surprisingly, the analysis and results for potential and elasticity theory follow along
the same lines. In section 4, the validity of (2) is examined for several crack problems
having known exact solutions. Section 5 contains some concluding remarks, and a
listing of the symbolic integration codes is included in the appendix.

The appearance of the condition in (2) and its derivation from a boundary inte-
gral formulation are not unexpected. The interpolation constraint and the method of
analysis are natural extensions, to the limiting case of a crack, of previous work deal-
ing with corner geometries [25, 26] (see also [45, 46]). In particular, the limit to the
boundary process used below to enforce the traction boundary conditions on the crack
faces is essentially the same as employed in [25]. In the gradient boundary integral
equation for a corner geometry, both integrals (e.g., potential (resp., displacement)
multiplying the hypersingular kernel and flux (traction) multiplying the singular ker-
nel in potential (elasticity) theory) contribute logarithmic terms as the interior point
approaches the corner. When the corner collapses to a crack, the logarithmic singu-
larity arises only from the hypersingular integral. Moreover, the integrals over the
two sides of the crack tip differ by at most a sign, due to the reversal of orientation;
thus, unlike the corner problem, there is only one surface integration to contend with.

2. Eigenfunction expansion method. This section presents a proof of the
constraint (2) for two-dimensional elasticity based upon the eigenfunction method.
This method is especially suitable for representing the elastostatic singularity in a
corner region (see Fig. 1) and has strong theoretical support. In particular, Gregory
[28] has proven that the Williams’s eigenfunctions are complete for the annular sector,
an issue of both computational and analytical importance. A general theory of bound-
ary value problems for elliptic equations in domains with angular/conical points has
been presented by Kondrat’ev [35]. The present analysis utilizes the real variables
theory and follows the general framework presented by Williams [57]. The elegant
complex variable formalism of Muskhelishvili [40] is also applicable (e.g., [19, 33, 56]),
but this technique does not extend directly to three dimensions, and therefore has not
been employed.

For the sake of clarity and completeness, a detailed analysis is presented. The
general solution of the eigenproblem, commonly presented in the literature, is not
valid for the eigenvalues λ = 0 and λ = ±1 [53, 56], and for the purposes of this
paper, it is the case λ = 1 which is of primary interest. Some authors regard λ = 1
as a trivial case representing rigid body motion (rotations) [1, p. 27], [34, p. 416];
however, such is not the case for a crack situation (α = π in Fig. 1). Thus, the
eigenfunctions associated with λ = 1 are of importance for analyzing the near crack
tip fields.

Stress analysis. Let Φ be the Airy stress function (e.g., [21, 40]) in polar coor-
dinates (r, θ). In the absence of body forces, the elasticity equations are satisfied if
the stresses are derived from Φ according to
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σrr(r, θ) =
1
r

∂Φ
∂r

+
1
r2

∂2Φ
∂θ2 ,

σθθ(r, θ) =
∂2Φ
∂r2 ,

σrθ(r, θ) = − ∂

∂r

(
1
r

∂Φ
∂θ

)
=

1
r2

∂Φ
∂θ
− 1
r

∂2Φ
∂r∂θ

,(3)

and Φ satisfies the biharmonic equation ∇2(∇2Φ) = 0. As usual, ∇2 denotes the
Laplacian

∇2 =
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 .(4)

For the reentrant corner configuration shown in Fig. 1, the Airy stress function can
be taken as

Φ = Φ(r, θ) = rλ+1F (θ) ,(5)

and substitution of (5) into the biharmonic equation yields (the primes denoting
differentiation with respect to θ)

F ′′′′(θ) + 2(λ2 + 1)F ′′(θ) + (λ− 1)2(λ+ 1)2F (θ) = 0.(6)

The general solution of this differential equation is, for λ 6= {0, 1,−1},

F (θ) = C1 sin(λ+ 1)θ + C2 cos(λ+ 1)θ + C3 sin(λ− 1)θ + C4 cos(λ− 1)θ.(7)

The solutions for the special cases are

F (θ) = C1 sin θ + C2θ sin θ + C3 cos θ + C4θ cos θ for λ = 0 ,(8)

F (θ) = C1 + C2θ + C3 sin 2θ + C4 cos 2θ for λ = ±1 .(9)

From (3) and (5) we arrive at the desired form for the stress,

σrr = rλ−1 [F ′′(θ) + (λ+ 1)F (θ)] ,
σθθ = rλ−1 [λ(λ+ 1)F (θ)] ,
σrθ = rλ−1 [−λF ′(θ)] .(10)

In general, the eigenvalues λ and the coefficients Ci (1 ≤ i ≤ 4) are complex, and
they are determined so that the boundary conditions on the faces of the corner are
satisfied. In this section, we are interested in traction-free boundary conditions on
the notch faces. Eigenequations for other boundary conditions for corner geometries
(clamped-clamped, clamped-free, and free-free) have been investigated by Williams
[57].

Eigenvalues. The traction-free boundary conditions on the notch faces (see
Fig. 1) are σθθ(r,±α) = 0 and σrθ(r,±α) = 0; thus from (10) it follows that
F (±α) = F ′(±α) = 0. Applying these conditions to the general solution for F ,
(7) results in a linear system of four equations in four unknowns, which is easily seen
to be equivalent to a pair of uncoupled systems,[

cos(λ+ 1)α cos(λ− 1)α
(λ+ 1) sin(λ+ 1)α (λ− 1) sin(λ− 1)α

]{
C2
C4

}
=
{

0
0

}
(11)
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and [
sin(λ+ 1)α sin(λ− 1)α

(λ+ 1) cos(λ+ 1)α (λ− 1) cos(λ− 1)α

]{
C1
C3

}
=
{

0
0

}
.(12)

A nontrivial solution exists if the corresponding determinants vanish. After sim-
plification, the resulting characteristic equations for the systems (11) and (12) are

λ sin 2α+ sin 2λα = 0,(13)

λ sin 2α− sin 2λα = 0 ,(14)

where the eigenequation (13) is associated with the symmetric part of the solu-
tion (opening mode or mode I), the eigenequation (14) is associated with the anti-
symmetric part (sliding mode or mode II), and the terminology for modes I and II
has been borrowed from the fracture mechanics literature. If λ is a solution of either
(13) or (14), then −λ is also a solution. However, the corresponding stress field has
finite strain energy only if <{λ} > 0 (<{·} denotes the real part of the argument);
thus only solutions satisfying this inequality need to be considered.

For a crack, α = π, and (13) or (14) simplify to

sin 2πλI = sin 2πλII = 0,(15)

where λI and λII refer to the mode I and mode II eigenvalues, resp. The solution of
(15) is

λIn = λIIn = λn =
n

2
, n = 0, 1, 2, 3, . . . ,(16)

where λn denotes the nth eigenvalue. As noted above, the cases λ = 0, 1 (or n = 0, 2)
are treated separately. In general, the eigenvalues λIn and λIIn cannot be obtained
in a simple form as in (16). A detailed investigation of the behavior of the roots
of the characteristic equations (13) and (14) has been presented by Rösel [44] and
Vasilopoulos [56].

Displacements. To establish (2), it is necessary to derive the form of the dis-
placements at the crack tip. The polar displacement components (ur, uθ) in the radial
and circumferential directions (see Fig. 1) can be expressed as

ur =
1

2µ

[
−∂Φ
∂r

+ (1− ς)r ∂Ψ
∂θ

]
,

uθ =
1

2µ

[
−1
r

∂Φ
∂θ

+ (1− ς)r2 ∂Ψ
∂r

]
,(17)

resp., where µ is the shear modulus, ς ≡ ν for plane strain, ς ≡ ν/(1 + ν) for plane
stress, and ν is the Poisson’s ratio. The function Ψ satisfies the Laplace equation
∇2Ψ = 0 and, in addition, is related to the biharmonic function Φ by [14, pages
166–168]

∇2Φ =
∂

∂r

(
r
∂Ψ
∂θ

)
.(18)
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Applying the eigenanalysis to Ψ,

Ψ = Ψ(r, θ) = rmG(θ).(19)

Substituting this into the Laplace equation it is seen that G(θ) satisfies the differential
equation

m2G(θ) +G′′(θ) = 0(20)

and is therefore of the form

G(θ) = A1 cosmθ +A2 sinmθ,(21)

where m is, in general, complex. Moreover, (18) provides a connection between the
expressions for G and F (7), and equating the powers of r and like trigonometric
terms yields

λ = m+ 1 , A1 = − 4
λ− 1

C3, and A2 =
4

λ− 1
C4.(22)

Substitution of these results into (21) leads to

G(θ) =
4

λ− 1
[−C3 cos(λ− 1)θ + C4 sin(λ− 1)θ] .(23)

Finally, combining (5), (19), and (17) yields the displacement components

2µur = rλ [−(λ+ 1)F (θ) + (1− ς)G′(θ)] ,
2µuθ = rλ [−F ′(θ) + (1− ς)(λ− 1)G(θ)] .(24)

Remarks. The eigenequations (13) and (14) have been derived from (7), which
is not valid for λ = 0, ± 1. As noted previously, these eigenvalues must be treated
separately. The case λ = −1 is not physically meaningful,while it follows from (9)
that λ = 0 represents the trivial case for which all the stresses are zero and the
displacements are rigid body translations.

It is interesting to note that the coefficients of the square root term, uk =
bk
√
r, k = 1, 2, on the top and bottom of the crack surfaces are related by

bk(π) = −bk(−π).(25)

This follows from the general form of the displacement with λ = λ1 = 1/2, (24), and
is a consequence of the symmetry of the domain and boundary conditions. The case
λ = 1 is directly related to the proposed constraint (2) and will now be investigated
in detail.

Linear mode. When λ = 1, the Airy stress function, (5), becomes

Φ = r2F (θ),(26)

where F (θ) is given by (9). Also, m = 0, and thus the form of the harmonic function
G(θ) is simply

Ψ = G(θ) = A1 +A2θ,(27)
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and from (18),

A2 = 4C1 and C2 = 0.(28)

Substitution of (26), (9), and (28) in (3) leads to the stress field

σrr = 2C1,

σθθ = 2 (C1 + C3 sin 2θ + C4 cos 2θ) ,
σrθ = −2 (C3 cos 2θ − C4 sin 2θ) ,(29)

from which the traction-free boundary conditions give

C1 + C4 cos 2α = 0, C3 sin 2α = 0,
C3 cos 2α = 0, C4 sin 2α = 0.(30)

Thus, C3 = 0, and specializing these results for a crack (α = π), C1 = −C4. Sub-
stituting these results for the Ci’s and (26) and (27) into (17), one obtains the polar
displacement components

ur = −r 1
2µ
C4 (κ− 1 + 2 cos 2θ) ,

uθ = r
1
µ
C4 sin 2θ,(31)

where κ ≡ 3 − 4ς. By (31) these represent mode I displacements. In Cartesian
coordinates, these displacement components are

u1 = −r 1
2µ
C4 (κ+ 1) cos θ,

u2 = −r 1
2µ
C4 (κ− 3) sin θ .(32)

These equations are of the form uk = ckr, k = 1, 2, and it is readily seen that the
coefficients on the top (θ = π) and bottom (θ = −π) of the crack surfaces are

c1(π) = c1(−π) =
1

2µ
C4(κ+ 1),

c2(π) = c2(−π) = 0 .(33)

Therefore, the proposed constraint on the crack faces, (2), is in agreement with the
results by the eigenfunction expansion, (33).

3. Boundary integral analysis. The proof of (2) which follows relies on direct
evaluation of the crack tip integral in the hypersingular boundary integral equation for
the surface derivatives. Note that the symmetry arguments, which underlie Williams’s
asymptotic expansion of the stress [20, (2)], are not required for this analysis. The
singular integrals are defined in terms of a limit process which is consistent with the
physics of the problem, namely that the limit to the crack tip be taken along the
crack surface (see Fig. 2). Whereas the boundary conditions demand that this value
remains finite as the boundary point approaches the tip, the calculation produces a
logarithmic singularity. This singularity only vanishes if (2) holds.

The limit analysis presented herein is similar to the work by Cruse [17] in estab-
lishing the form of the stress field ahead of the crack. His calculations evaluated the
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FIG. 2. Illustration of the double limit process.

stress in the interior of the domain, at a point ahead of and approaching the tip. As
indicated above, the limit process employed below also involves evaluating the stress
near the tip, but now on the crack surface.

As indicated in the introduction, this argument is not restricted to elasticity. The
simplest formulation (and integrations) are for the two-dimensional Laplace equation
∇2φ = 0, for which the potential φ and its normal derivative play the role of the
displacement and traction in elasticity. The boundary integral proof will therefore be
presented first in this simpler setting, and then for the linear theory of elasticity (i.e.,
linear elastic fracture mechanics).

In what follows, it is assumed that the potential or displacement on the crack
surface follows Williams’s result, (1), for an isolated traction-free crack in an infinite
medium. Specifically, the near tip behavior will be represented by the expansion

uk(r,± π) = ak + bk(± π)r
1
2 + ck(± π)r +O

(
r

3
2

)
.(34)

For our purposes, it is important that λ = 1/2 be the only exponent in this series in
the interval 0 < λ < 1. This is in fact the basis for employing stress intensity factors
as characterizing parameters for fracture analysis.

3.1. Potential theory. Aside from simplicity, there is another important rea-
son for examining the Laplace equation. While probably not studied as extensively
as linear elastic fracture mechanics, crack problems in potential theory are never-
theless of considerable interest [2]. Specific applications are in electroplating [12, 22],
wherein the crack is generally thin, insulated shielding, and in groundwater flow mod-
els containing either fractures [39, 48] or thin impermeable layers [52]. Moreover, the
antiplane shear crack problem in a linearly elastic solid is also governed by the (two-
dimensional) Laplacian operator (see, for example, [41]).

The boundary integral equation for two-dimensional potential theory can be writ-
ten as [25]

φ(P ) +
∫
∂B

φ(Q)
∂G

∂n
(P,Q) dQ =

∫
∂B

G(P,Q)
∂φ

∂n
dQ ,(35)
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where φ is the potential, n is the unit outward normal on the boundary ∂B, and
∂(·)/∂n denotes the normal derivative with respect to Q. The fundamental solution
or Green’s function will be taken as the point source potential

G(P,Q) = − 1
2π

log ‖Q− P‖ .(36)

Note that (35) holds for a point P ∈ B interior to the domain, and, defining the
singular integrals (which arise when P = Q) in terms of a limit to the boundary [22],
also for P ∈ ∂B [38].

Differentiating (35) with respect to P in the direction N = n(P ) results in a
corresponding equation for surface flux,

∂φ

∂N
(P ) +

∫
∂B

φ(Q)
∂2G

∂N∂n
(P,Q) dQ =

∫
∂B

∂G

∂N
(P,Q)

∂φ

∂n
(Q) dQ .(37)

Once again, this equation is valid for P ∈ ∂B by defining the singular integrals as a
limit from the interior of the domain [22]. The explicit form of the kernel functions is

∂G

∂N
(P,Q) =

1
2π

N•R
r2 ,

∂2G

∂N∂n
(P,Q) =

1
2π

(
n•N
r2 − 2

(n•R)(N•R)
r4

)
,(38)

where r = ‖R‖ = ‖Q− P‖.
The equation for surface flux, (37), will be employed to enforce the flux boundary

conditions along the crack faces. As illustrated in Fig. 2, this calculation is carried out
by means of a double limiting procedure. The crack lies along the negative x1-axis,
and the flux is calculated at an interior point P ∗,

P ∗ = ε(−1, 0) + δ(0, 1) .(39)

The limits δ → 0 and ε → 0 are then considered, in this order. Thus, P ∗ first
approaches the crack surface (y = 0+) a small distance ε from the tip, and then the
limit ε → 0 is considered. Since the flux is finite on the crack surface (the usual
boundary condition is zero flux), this limit procedure must produce a finite value. In
the derivation, only potentially singular terms will be of interest. As shown below, the
limiting value flux integral on the right-hand side in (37) is well behaved, and thus
this integral can be ignored. Similarly, the hypersingular integral only contributes
potentially singular terms for the integration over the crack tip region, the remainder
of the boundary producing a finite value as P ∗ → P0. Moreover, from (34), it also
suffices to consider the first three terms in an expansion for φ on the crack surface,

φ = a+ b
√
r + cr .(40)

For a flat crack, the evaluation of the corresponding three integrals over the crack tip
can be carried out analytically. This is most easily accomplished using a symbolic
manipulation program such as Maple [13]. The Maple scripts for the integrations
discussed below are listed in the appendix.

Although the use of these analytical integrations appears to limit the argument to
a flat crack, it should be emphasized that (2) nevertheless remains valid for any smooth
curved crack. A simple heuristic justification of this statement is that the proof relies
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solely on integrals over an arbitrarily small crack tip region, and any smooth surface is
locally flat. A rigorous argument can be based upon the techniques presented in [23],
which demonstrate that the difference between integrating (hyper)singular boundary
integrals over flat and curved surfaces is a completely regular integral (see also [24]).
Once again, only potentially singular contributions are of interest, and thus there is
no loss of generality in restricting consideration to a flat crack.

It is assumed that, as shown in Fig. 2, the domain of integration (crack tip
element) is [−ax, 0], ax > 0, parameterized as Q(x) = (axx, 0), −1 ≤ x ≤ 0. The
crack tip is P0 = (0, 0). The interior point P in (37) is taken as P ∗ = (−ε, δ). After
the integral is evaluated, the limit to the crack surface, δ → 0, is computed, and then
the approach to the crack tip, ε → 0, is considered. As noted above, this procedure
is easily carried out using symbolic computation. Note that the integrations over the
top y = 0+ and bottom y = 0− of the crack only differ by a sign, and thus it is
sufficient to integrate over the top surface. From (38), and with n = N = (0, 1) on
the top crack surface y = 0+, the integrals to be computed in (37) are

lim
ε→0

lim
δ→0

(
− 1

2π

)∫ 0

−1

(
a+ b

√
x+ cx

) 2axδ2 − ax
(

(axx+ ε)2 + δ2
)

(
(axx+ ε)2 + δ2

)2 dx ,

lim
ε→0

lim
δ→0

(
− 1

2π

)∫ 0

−1

−axδ
(axx+ ε)2 + δ2

dx .(41)

Note that in the expansion for ∂φ/∂n in the second integral above, only the constant
term has been considered, as this is the only term that can contribute potentially
singular terms in the limit process. The three terms involving the coefficients {a, b, c}
in the first integral, and the second integral in (41), are considered separately below.

Constant: φ = a. The integral over one side of the crack surface evaluates as

− a

2π

(
1
ε

+
1
ax

)
.(42)

The coefficient a is the same on both sides, and thus the singular ε−1 term cancels
(as does the finite contribution) with the integration over the second side. Note that
this term is not present in a displacement discontinuity approach [15], and thus the
canceling of this contribution is entirely reasonable.

Square root: φ = b
√

x . The integration of the square root term in (41) is
more involved and results in significantly longer and more complicated expressions.
Moreover, it is not immediately possible, as with the constant and linear terms, to
set δ = 0. As indicated by the Maple coding in the Appendix, this limit process is
partly simplified by means of the Taylor expansion at δ = 0 (note that δ goes to zero
before ε), √

ε2 + δ2 = ε+
δ2

2ε
+O

(
δ4) .(43)

Applying this expansion to the integration of the square root term results in

− b

2π

[
1
ax

+
1

4
√
axε

log (ax + 2
√
axε+ ε)

− 1
4
√
axε

log (ax − 2
√
axε+ ε)

]
.(44)
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FIG. 3. Limit process for determining the amplitude of the singular field.

The logarithmic terms, apparently singular in the ε = 0 limit, can be rewritten,
however, as

− b

8π
√
axε

log
(

1 + q

1− q

)
, q =

2
√
axε

ax + ε
,(45)

and employing the Taylor expansion at q = 0,

log
(

1 + q

1− q

)
= 2q +O

(
q3) ,(46)

now shows that this term is well behaved. Thus, no singular terms arise from the
√
x

term, and the result of the limit procedure is

− b

πax
.(47)

As a final comment, it is worth noting that the flux as P ∗ approaches the tip from
the interior of the domain (i.e., not along the crack surface (Fig. 3)) is, as expected,
singular. Taking P ∗ = (ε, 0) and evaluating the hypersingular integral, one obtains

−b
+ − b−

2π

 1
ax + ε

−
tan−1

(√
ax/ε

)
√
axε

→ −b+ − b−
2π

[
1
ax
− π

2
√
axε

]
,(48)

which gives the expected 1/
√
ε singularity. This particular limit process (Fig. 3) offers

the possibility of deriving an effective general method for computing stress intensity
factors in the context of linear elastic fracture mechanics. This technique is currently
under investigation.

Linear: φ =cx . The announced result, (2), follows from an examination of the
integrals for this linear term. Direct evaluation yields

− c

2π

(
− log(ε2)

2ax
+

log(a2
x)− 2

2ax

)
.(49)
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Thus, the integration over both sides of the crack produces a singular term of the
form

−
(
c+ − c−

) log( | ε | )
2πax

,(50)

where c+ and c− denote the linear coefficients on the two sides. As there are no other
singular terms which come out of evaluating the flux at the crack tip, the only way
to cancel the singularity in (50) is to have c+ = c−.

Flux integral. The most common boundary condition on a crack surface is zero
flux (zero traction in the case of elasticity). The “flux integral” in the hypersingular
equation (37) will therefore not contribute to the evaluation of the flux at the tip.
However, in some applications (e.g., pressurized crack) this boundary condition will
not be zero, and it is therefore necessary to check whether any singular terms arise
from this integration. This is not the case, as is easily seen from examining the lowest
order term, ∂φ/∂n = α0, where α0 is a constant. Evaluating this integral yields

−α0

2π
δ

|δ|

{
tan−1

(ε
δ

)
+ tan−1

(
ax − ε
δ

)}
.(51)

In the limit δ → 0, the tan−1 terms become π/2, and thus, as expected, this
expression reduces to the usual “interior angle” coefficient 1/2 for a smooth surface.

3.2. Elasticity theory. The boundary integral proof for elasticity mostly fol-
lows along the above lines, and thus only a brief description of the formulation and
the results will be given. As will be discussed below, the main difference involves the
square root term. The Maple codes for the elasticity integrations are also listed in
the Appendix.

The boundary integral equation for two-dimensional elasticity is given by [16, 43]

uk(P ) +
∫
∂B

Tkj(P,Q)uj(Q) dQ =
∫
∂B

Ukj(P,Q)τj(Q) dQ ,(52)

where u and τ denote displacement and traction, respectively. As customary, the
kernel functions Tkj(P,Q) and Ukj(P,Q) are given by the Kelvin solution for a point
load in an infinite medium. Eq. (52) holds for a point P ∈ B interior to the domain,
and, defining the singular integrals in terms of a limit to the boundary [38], also for
P ∈ ∂B. A corresponding equation for the stress can be obtained by differentiating
(52) with respect to P [27], resulting in

σlk(P ) +
∫
∂B

Slkm(P,Q)um(Q) dQ =
∫
∂B

Dlkm(P,Q)τm(Q) dQ .(53)

Once again, this equation is valid for P ∈ ∂B by defining the singular integrals as
a limit from the interior of the domain. The new kernels Dlkm(P,Q) (singular) and
Slkm(P,Q) (hypersingular) are given by [10, (5.69) and (5.70)]

Dlkm =
1

4π(1− ν)r
[(1− 2ν) {δlmr,k + δkmr,l − δlkr,m}+ 2r,lr,kr,m] ,

Slkm =
µ

2π(1− ν)r2

[
2
∂r

∂n
({1− 2ν} δlkr,m + ν (δkmr,l + δlmr,k)− 4r,lr,kr,m)

+ (1− 2ν) (2nmr,lr,k + nkδlm + nlδkm)

+ 2ν (nlr,kr,m + nkr,lr,m)− (1− 4ν)nmδlk

]
,(54)



440 L. J. GRAY AND G. H. PAULINO

where ν is Poisson’s ratio, µ is shear modulus, δij is the Kronecker delta, r,i = ∂r/∂qi,
and qi is the ith coordinate of the field point Q. As in potential theory, there is
no contribution, singular or otherwise, from the constant term u = u(P0) in the
hypersingular displacement integral. This value is the same on both sides of the crack,
and the singular integrals are continuous crossing the boundary. Thus, the opposite
orientation of the two crack tip elements ensures that the two integrals cancel, and
it suffices to examine the square root and linear coefficient terms. For the traction
integral, once again only the constant term is of interest. The integrals to be computed
are therefore

lim
ε→0

lim
δ→0

∫ 0

−1

(
bm
√
x+ cmx

)
Slkm (P ∗, Q(x)) dx,

lim
ε→0

lim
δ→0

∫ 0

−1
Dlkm (P ∗, Q(x)) dx .(55)

Square root: uk = bk
√

r . The analysis of this term differs from that in potential
theory in that the Taylor expansion, (43), must include an additional term,√

ε2 + δ2 = ε

(
1 +

δ2

2ε2 −
δ4

8ε4

)
+O

(
δ6) .(56)

Fortunately, all of the lengthy algebra which results is easily handled via symbolic
computation. For N = (0, 1), the traction vector on the crack surface is τ = (σ12, σ22)
and the calculation yields the simple result

τ = − µ

2π(1− ν)ax

{
b1
b2

}
.(57)

Thus, as in potential theory, elasticity does not impose any relationship between
the coefficients b+ and b−.

Linear: uk = ck r . The potentially singular terms which arise in the evaluation
of the crack tip limits are

τ1 = σ12 =
µ

π(1− ν)ax

(
c+1 − c−1

)
log( ε ),

τ2 = σ22 =
µ

π(1− ν)ax

(
c+2 − c−2

)
log( ε ) ,(58)

and a finite value at the tip therefore requires that (2) be satisfied.

Traction integral. Pressurized crack problems are of interest in various appli-
cations, such as pressure-induced fractures in oil and gas reservoirs [51], and thus the
effect of a non-zero boundary condition on the crack will now be investigated (see
Fig. 4). England [19] has verified that the crack tip stress singularity for a pressurized
crack (finite straight crack in an infinite medium) remains r−1/2. Thus, in this case,
the form of the displacement remains as in (1).

Evaluation of the constant term in the traction integral yields

σ12 =
1

4π(1− ν)

[
1
2

log(ε)
ax

− ν log(ε)
ax

− 1
2

log(a2
x)

ax
+
ν log(a2

x)
ax

]
α2,

σ22 =
1

4π(1− ν)

[
−1

2
log(ε)
ax

+
ν log(ε)
ax

+
1
2

log(a2
x)

ax
− ν log(a2

x)
ax

]
α1 ,(59)

where α+
1 = α−1 = α1 and α+

2 = α−2 = α2 are constants. Cancelation of the potentially
singular terms results from adding the contributions from the two sides of the crack.
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22σ

σ12

x

x2

1

FIG. 4. Loaded crack.

4. Exact solutions. In this section we examine several known exact solutions
from the well-known compilation of crack problems by Tada, Paris, and Irwin [54]
and verify that they satisfy (2). The motivation for doing this verification is that
the general boundary integral proof presented above depends upon the assumption
that (1) is valid. It will be demonstrated that (2) does in fact hold for a variety of
crack geometries and boundary conditions. Moreover, the form of the crack opening
∆u varies significantly, and thus these examples lend credence to the belief that (1)
and (2) are indeed valid. Nevertheless, keep in mind that since exact solutions exist,
all of the problems are necessarily relatively “simple” (e.g., flat cracks and generally
possessing some type of symmetry). In particular, see the comment below concerning
the coefficient of the r2 term.

Four example problems will be considered, and they will be identified by the
numbering scheme employed in reference [54]. Only the first example is discussed in
detail, as the analysis for the remaining three examples follows along the same lines.
Again, the required computations, in this case evaluating the second derivative of some
complicated functions, are easily accomplished by means of symbolic manipulation.
The Maple scripts are included in the appendix, section 6.3.

4.1. Eccentric load on the crack faces. Figure 5 shows an infinite plate
containing a straight crack (−ax ≤ x1 ≤ ax) with eccentric point loads (P ) on its
faces at (b, 0+) and (b, 0−). Note that this example demonstrates that (2) holds even
for a point load arbitrarily close to the tip. The crack opening displacement is given
by

∆u2(x1, 0) =
4P
πE∗

cosh−1
(
a2
x − b x1

ax|x1 − b|

)
,(60)

where E∗ ≡ E/(1− ν)2 for plane strain and E∗ ≡ E for plane stress.
To compute the coefficient of the linear term in the expansion at the crack tip

x1 = ax we first make the substitution r = ax − x1, r being the distance to the
crack tip, and since the leading term is

√
r, we further substitute s2 = r. The

desired coefficient of the linear term in r is therefore the coefficient of s2 in the Taylor
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FIG. 5. Example 5.10a from Tada, Paris, and Irwin [54].

expansion about s = 0 for the function

f(s) =
4P
πE∗

cosh−1
(

1 + β s2

1− α s2

)
,(61)

where α = 1/(ax − b) and β = b α/ax, and this coefficient is easily computed as
f ′′(0)/2. As indicated by the Maple code in the appendix, f ′′(s) is written in the form
A(s)/B(s), and employing Taylor expansions for both numerator and denominator
yields

f ′′(s) ≈ − 16P
πE∗

(β2 − 4β α− 5α2 ) s
( 3β s2 + 4− 11α s2 )

√
2β + 2α

,(62)

and as desired, f ′′(0) = 0. Moreover, evaluation of the leading terms shows that

∆u2(r) =
4P
πE∗

( √
2

√
ax

√
a2
x − b2

ax − b
r1/2

2
5α4 + 14βα3 + 12β2α2 + 2β3α− β4

3(2β + 2α)5/2 r3/2 +O
(
r

5
2

))
,(63)

and as the mode I stress intensity factor KI is
√
πE∗/4

√
2 times the coefficient of

r1/2 (see Appendix B in [54]), KI (ax) = (P/
√
πax)

√
a2
x − b2 / (ax − b) . This agrees

with the result reported in [54]. Note too that, as is the case for all four examples,
the coefficient of r2 is also zero.

The analysis for the crack tip at x1 = −ax proceeds in much the same fashion,
only now r = ax + x1, and

f(s) =
4P
πE∗

cosh−1
(

1− β∗ s2

1− α∗ s2

)
,(64)
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FIG. 6. Example 7.1a from Tada, Paris, and Irwin [54].

α∗ = 1/(ax + b), and β∗ = b α∗/ax. Finally, note that an arbitrary traction boundary
condition on the crack surface can be represented as a continuous distribution of point
sources, and thus the r coefficient should be zero in this case as well. This can be
directly observed from the exact solution obtained by Sneddon and Elliott [50].

4.2. Strip with edge cracks remotely loaded. Figure 6 shows an infinite
strip (width = W ) with edge cracks subjected to remote tension loading (σ∞). Note
that, due to the boundary conditions, the crack opening displacement for the crack on
the left (∆u2(x1, 0), 0 ≤ x1 ≤ ax) is the same as the crack opening displacement for
the right-half part of a central crack of length 2ax in an infinite strip subjected to the
same remote loading [54]. As the parameters ax and W are arbitrary, this problem
provides a surface crack example where the crack tip is close to the outer boundary
and/or close to another crack. The crack opening displacement is

∆u2(x1, 0) =
4σ∞W
πE∗

cosh−1
(

cos (π x1/W )
cos (π ax/W )

)
,(65)

and the symbolic code in the appendix shows that the coefficient of the linear term
of the Taylor expansion of this function at x1 = ax is zero.

4.3. Strip with central crack and concentric loads. Figure 7 shows an
infinite strip (width = W ) containing a straight crack (−ax ≤ x1 ≤ ax) with concentric
point loads (P ) located at x2 = ±y0. Again, of primary interest is that the parameters
{ax, W , y0} are arbitrary, and thus for ax ≈ W/2, the crack tips strongly interact
with the outer boundary. The crack opening displacement is

∆u2(x1, 0) =
4P
πE∗

(
1− αy0

∂

∂y0

)

× tanh−1

[ 1−
(
cos ( ax π/W )

/
cos (π x1/W )

)2
1−

(
cos ( ax π/W )

/
cosh (π y0/W )

)2
] 1

2
 ,(66)
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FIG. 7. Example 7.4a from Tada, Paris, and Irwin [54].

and, again, the symbolic code in the appendix shows that the coefficient of the linear
term of the Taylor expansion of this function at x1 = ax is zero. By symmetry, the
results for the expansions at x1 = ax and x1 = −ax are the same.

4.4. Parallel cracks remotely loaded in antiplane shear. Figure 8 shows
an infinite plate containing parallel straight cracks (−ax ≤ x1 ≤ ax) separated by
the distance H and subjected to remote antiplane shear loading (σ32). In addition to
providing an example involving multiple interacting cracks, this problem involves the
tearing rather than the opening mode. The crack tearing displacement is

∆u3(x, 0) =
σ32H

Gπ
cos−1

(
cosh(π x1/H )
cosh(π ax/H )

)
,(67)

and the same methods employed above show that the coefficient of the linear term of
the Taylor expansion of this function at x1 = ax does vanish (see the Maple code in
section 6.3). By symmetry, the results for the expansions at x1 = ax and x1 = −ax
are the same.

5. Conclusions. For two-dimensional problems, a relationship, (2), between the
expansions of the primary variable (potential or displacement) on the two sides of a
crack tip has been derived. In particular, it has been shown that in the expansion
of the crack opening displacement as a function of distance from the tip, there is no
linear term present. For fracture mechanics, it should be profitable to exploit this
information in either finite or boundary element analyses, improving the accuracy of
the near tip fields and, consequently, the stress intensity factors.

While (2) follows from the eigenfunction expansion method, an argument based
upon this approach is limited to a traction-free flat crack in an infinite plate. How-
ever, the proof based upon a boundary integral representation shows that this result
holds for an arbitrary crack geometry (i.e., multiple, nonplanar) and equations other
than elasticity. In the case of linear elastic fracture mechanics, this is associated with
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FIG. 8. Example 14.1a from Tada, Paris, and Irwin [54].

the concept of crack tip autonomy (see Barenblatt [4] and Broberg [11]). This argu-
ment is based upon examining the potentially singular terms that arise in evaluating
the integral expression for the surface stress near the crack tip. Thus, as in [25],
this work illustrates that, rather than ignoring these terms, the potentially singular
contributions carry important information and should be examined. Note that the
higher-order terms rn/2, n ≥ 3, in the expansion for u or φ yield completely regular
integrals, and thus the indication is that no other results along these lines can be
expected.

The one assumption employed in the boundary integral argument is that the near
tip displacement behavior on the crack surface includes only a square root and a
linear term, (34). Note, however, that even if more complicated boundary conditions
or geometry (multiple, interacting cracks) should produce a term of the form rλ,
0 < λ < 1 (λ 6= 1/2), it is unlikely that integration of this term will contribute a
logarithmic singularity (i.e., (58)) in the expression for the near tip traction. The
argument leading to (2) would therefore remain unaltered.

It is likely that the arguments presented here can be carried over to three-
dimensional crack problems. The eigenfunction expansion method has been extended
to three dimensions by Benthem [6, 7] and Hartranft and Sih [29], and these re-
sults should be applicable. For the more general boundary integral approach, the
three-dimensional computations will necessarily be more involved, but based upon
the previous analysis of a corner geometry [25], the extension of the limit procedure
argument should be more or less straightforward. Work in this direction is currently
being pursued. This study will hopefully lead to accurate evaluation of stress inten-
sity factors, and also contribute to a better understanding of the three-dimensional
character of the stress distribution in the neighborhood of the crack front.

6. Appendix. The following codes were run with Maple V, release 3. Only a
few basic Maple operations, integration and substitution, are employed, and thus it is
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likely that, with relatively minor changes, these scripts would work with other sym-
bolic computation systems. The naming of variables follows the notation in this pa-
per fairly closely, and it is therefore hoped that the codes are mostly self-explanatory.
However, a few comment lines, which begin with the pound sign (#), are also included.
As in section 3, the Laplace equation integrations will be considered first.

6.1. Laplace equation. All of the calculations share a common piece of coding
which set up the geometry and the components of the Green’s function. Note that
the −(2π)−1 factor in (36) is omitted.
# geometry
r1 := ax*x + eps;
r2 := - del;
rh2 := r1**2 + r2**2;
N1 := 0;
N2 := 1;
n1 := 0;
n2 := 1;
jn1 := 0;
jn2 := ax;
# kernel
jnr := jn1*r1 + jn2*r2;
jnN := jn1*N1 + jn2*N2;
rN := r1*N1 + r2*N2;
num1 := -jnN;
num2 := expand(2*jnr*rN);
kernel := num1/rh2 + num2/rh2^2;

6.1.1. φ Integrals. The additional coding to calculate the constant and linear
terms is
t0int := int(kernel,x=-1..0);
s0 := subs(del=0,t0int);
s0 := subs(ax-eps=ax,s0);
s0 := subs(ax*eps=0,s0);
s0 := subs(eps^2=0,s0);
and
t1 := expand(kernel*x);
t1int := int(t1,x=-1..0);
s1 := subs(del=0,t1int);
s1 := subs(ax*eps=0,s1);
s1 := subs(ax^2+eps^2=ax^2,s1);
s1 := subs(ln(ax^2)*eps^2=0,s1);
s1 := subs(-2*ln(ax^2)*ax*eps=0,s1);
s1 := subs(2*eps^2=0,s1);

As might be expected, somewhat more work is involved for the square root term.
To assist Maple in computing this integral, the variable q is introduced to simplify
the expressions in the kernel denominators.
#
# q = x + eps/ax
#
rh2 := expand(subs(x=q-eps/ax,rh2));
#
kernel := num1/rh2 + num2/rh2^2;



CRACK TIP INTERPOLATION 447

##
## Square root term sqrt(-x) -1 < x < 0
##
t0 := sqrt(eps/ax-q)*kernel:
t0int := int(t0,q):
t1 := subs(q=eps/ax,t0int):
t2 := - subs(q=-1+eps/ax,t0int):
t1 := expand(t1):
t2 := expand(t2):
tsq := t1 + t2;
tsq := subs(sqrt(ax^2)=ax,tsq):
tsq := subs(1/sqrt(ax^2)=1/ax,tsq):
# beta = sqrt(eps^2+del^2)
tsq := subs(sqrt(ax^2*(eps^2+del^2))=ax*beta,tsq):
tsq := subs(1/sqrt(ax^2*(eps^2+del^2))=1/(ax*beta),tsq):
tsq := subs(sqrt(ax^2*eps^2+del^2*ax^2)=ax*beta,tsq):
tsq := subs(sqrt(eps^2+del^2)=beta,tsq):
tsq := subs(1/sqrt(eps^2+del^2)=1/beta,tsq):
# Taylor expansion for beta
tsq := subs(2*ax*beta=2*ax*eps+ax*del^2/eps,tsq):
tsq := subs((ax*del^2/eps)^(-3/2)=

eps^(3/2)/(adel*del^2*ax^(3/2)),tsq):
tsq := subs(1/sqrt(ax*del^2/eps)=

sqrt(eps)/(adel*sqrt(ax)),tsq):
tsq := subs(4*eps*ax+ax*del^2/eps=4*eps*ax,tsq):
tsq := subs(sqrt(eps*ax)=sqrt(ax)*sqrt(eps),tsq):
tsq := subs(1/sqrt(eps*ax)=1/(sqrt(ax)*sqrt(eps)),tsq):
tsq := subs(beta=eps,tsq):
tsq := subs(del^2=0,tsq):
tsq := subs(4^(1/2)=2,tsq):
tsq := subs(1/(ax+2*ax^(1/2)*eps^(1/2)+eps)=1/ax,tsq):
tsq := subs(1/(ax-2*ax^(1/2)*eps^(1/2)+eps)=1/ax,tsq);

6.1.2. Flux integral. The coding for the relatively simple flux integral is
JNR := ax*(N1*r1 + N2*r2);
i1 := - JNR/rh2;
a0 := int(i1,x=-1..0);
a0 := subs(1/sqrt(ax^2*del^2)=1/ax*1/adel,a0);

6.2. Elasticity. The Maple codes for elasticity basically follow the same pro-
cedures as for the Laplace equation. However, the code for the square root term
is somewhat more complicated, as computing the limit requires keeping additional
terms in the Taylor expansions, (56). The linear and square root calculations for the
displacement integral, and the constant term for the traction integral, all share the
common piece of coding listed below.
rc := array(1..2);
n := array(1..2);
a := array(1..2);
b := array(1..2);
c := array(1..2);
sigma := array(1..2,1..2);
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drdx := array(1..2);
p := array(1..2,1..2,1..2);
s := array(1..2,1..2,1..2);
d := array(1..2,1..2);
#
ay := 0;
d[1,1] := 1;
d[1,2] := 0;
d[2,1] := 0;
d[2,2] := 1;
#
rc[1] := x*ax + eps;
rc[2] := x*ay - del;
##
r := (rc[1]^2 + rc[2]^2)**(1/2);
drdx[1] := rc[1]/r;
drdx[2] := rc[2]/r;
## includes jacobian
n[1] := 0;
n[2] := ax;
drdn := ax*rc[2]/r;

6.2.1. Linear: uk = ck r .
for l from 1 to 2 do
for k from 1 to 2 do
for m from 1 to 2 do

p[l,k,m] := (2*drdn*((1-2*nu)*d[l,k]*drdx[m] +
nu*(d[k,m]*drdx[l] + d[l,m]*drdx[k])
- 4*drdx[l]*drdx[k]*drdx[m]) +
2*nu*(n[l]*drdx[k]*drdx[m]+n[k]*drdx[l]*drdx[m])
+(1-2*nu)*(2*n[m]*drdx[l]*drdx[k]+n[k]*d[l,m]+n[l]*d[k,m])
-(1-4*nu)*n[m]*d[l,k])/(r*r);
##
i1 := x*p[l,k,m];
i1 := expand(i1);
a1 := int(i1,x=-1..0):
a1 := subs(arctan(ax*eps/sqrt(ax^2*del^2))=pi/2,a1);
a1 := subs(arctan(ax*(ax-eps)/sqrt(ax^2*del^2))=pi/2,a1);
a1 := subs(sqrt(ax^2*del^2)=ax*del,a1);
a1 := subs(1/sqrt(ax^2*del^2)=1/(ax*del),a1);
a1 := expand(a1);
a1 := subs(del=0,a1);
a1 := subs(ln(eps)=loge,a1);
a1 := subs(ln(eps^2)=2*loge,a1);
a1 := subs(eps=0,a1);
## singular terms
a1 := collect(a1,loge);
a1 := coeff(a1,loge,1);
a1 := a1*ln(epsilon);
p[l,k,m] := a1;
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od;
od;
od;
## stress
## c[1] is the linear coefficient from u_1
sigma[1,2] := p[1,2,1]*c[1] + p[1,2,2]*c[2]:
sigma[2,2] := p[2,2,1]*c[1] + p[2,2,2]*c[2]:
sigma[1,2] := subs(sqrt(eps)=0,sigma[1,2]);
sigma[2,2] := subs(sqrt(eps)=0,sigma[2,2]);
sigma[1,2] := subs(1/(ax+4^(1/2)*sqrt(eps*ax)+eps)=

1/ax,sigma[1,2]);
sigma[2,2] := subs(1/(ax+4^(1/2)*sqrt(eps*ax)+eps)=

1/ax,sigma[2,2]);
sigma[1,2] := subs(1/(ax-4^(1/2)*sqrt(eps*ax)+eps)=

1/ax,sigma[1,2]);
sigma[2,2] := subs(1/(ax-4^(1/2)*sqrt(eps*ax)+eps)=

1/ax,sigma[2,2]);

6.2.2. Square root: uk = bk r1/2.
for l from 1 to 2 do
for k from 1 to 2 do
for m from 1 to 2 do

p[l,k,m] := (2*drdn*((1-2*nu)*d[l,k]*drdx[m] +
nu*(d[k,m]*drdx[l]+d[l,m]*drdx[k])-4*drdx[l]*drdx[k]*drdx[m])
+ 2*nu*(n[l]*drdx[k]*drdx[m]+n[k]*drdx[l]*drdx[m])
+(1-2*nu)*(2*n[m]*drdx[l]*drdx[k]+n[k]*d[l,m]+n[l]*d[k,m])
-(1-4*nu)*n[m]*d[l,k])/(r*r);
p[l,k,m] := expand(subs(x=q-eps/ax,p[l,k,m]));
##
i1 := sqrt(eps/ax-q)*p[l,k,m];
i1 := expand(i1);
t1 := int(i1,q):
b1 := ( subs(q=eps/ax,t1) - subs(q=-1+eps/ax,t1) );
b1 := subs(sqrt(ax^2)=ax,b1):
b1 := subs(1/sqrt(ax^2)=1/ax,b1):
# beta = sqrt(eps^2+del^2)
b1 := subs(eps^2+del^2=beta^2,b1);
b1 := expand(b1):
b1 := subs((ax^2*beta^2)^(1/2)=ax*beta,b1):
b1 := subs((beta^2)^(1/2)=beta,b1):
b1 := subs((beta^2)^(-1/2)=1/beta,b1):
b1 := subs((beta^2)^(3/2)=beta^3,b1):
b1 := subs((beta^2)^(-3/2)=1/beta^3,b1):
b1 := subs((beta^2)^(5/2)=beta^5,b1):
b1 := subs((beta^2)^(-5/2)=1/beta^5,b1):
b1 := expand(b1):
b1 := subs((ax*del^2/eps)^(-1/2)=eps^(1/2)/(adel*ax^(1/2)),b1):
b1 := subs((ax*del^2/eps)^(-3/2)=

eps^(3/2)/(adel*del^2*ax^(3/2)),b1):
b1 := subs((ax*del^2/eps)^(-5/2)=

eps^(5/2)/(adel*del^4*ax^(5/2)),b1):
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b1 := subs(2*ax*beta+2*eps*ax=4*eps*ax*(1+del^2/eps^2/4),b1);
# Taylor expansion for beta = eps*sqrt(1+del^2/eps^2)
b1 := subs(2*ax*beta-2*eps*ax=ax*del^2/eps,b1);
b1 := expand(b1):
b1 := subs((ax*del^2/eps)^(-1/2)=eps^(1/2)/(adel*ax^(1/2)),b1):
b1 := subs((ax*del^2/eps)^(-3/2)=

eps^(3/2)/(adel*del^2*ax^(3/2)),b1):
b1 := subs((ax*del^2/eps)^(-5/2)=

eps^(5/2)/(adel*del^4*ax^(5/2)),b1);
b1 := subs((ax^2)^(3/2)=ax^3,b1);
b1 := subs((eps*ax)^(-3/2)=eps^(-3/2)*ax^(-3/2),b1);
b1 := subs((eps*ax)^(-1/2)=eps^(-1/2)*ax^(-1/2),b1);
b1 := subs(beta=eps*(1+del^2/eps^2/2),b1);
p[l,k,m] := b1;

od;
od;
od;
##
## stress
## b[1] is the sqrt coefficient from u_1
##
sigma[1,2] := p[1,2,1]*b[1] + p[1,2,2]*b[2]:
sigma[2,2] := p[2,2,1]*b[1] + p[2,2,2]*b[2]:
##
for j from 1 to 2 do
sigma[j,2] := subs( 4^(1/2)=2,sigma[j,2]):
sigma[j,2] := subs(ax*del^2/eps=tc1,sigma[j,2]):
sigma[j,2] := subs(eps*ax*(1+del^2/(4*eps^2))=tc2,sigma[j,2]):
sigma[j,2] := subs(arctan( (2*ax+2*sqrt(tc2))/sqrt(tc1))=
pi/2,sigma[j,2]):
sigma[j,2] := subs(arctan( (2*ax-2*sqrt(tc2))/sqrt(tc1))=
pi/2,sigma[j,2]):
sigma[j,2] := normal(sigma[j,2]):
sigma[j,2] :=
subs( ln((2*ax*eps+2*sqrt(ax*(4*eps^2+del^2)/eps)*eps+

2*eps^2+del^2)/(2*eps))=ln(ax)+1+2*sqrt(ax/eps),sigma[j,2]):
sigma[j,2] :=
subs( ln((2*ax*eps-2*sqrt(ax*(4*eps^2+del^2)/eps)*eps+
2*eps^2+del^2)/(2*eps))=ln(ax)+1-2*sqrt(ax/eps),sigma[j,2]):
#
sigma[j,2] := subs( (-ax*del^2*(-4*eps^2+del^2)/eps^3)^(-5/2)=
ax^(-5/2)*del^(-5)*(4*eps^2-del^2)^(-5/2)*eps^(15/2),sigma[j,2]):
sigma[j,2] := subs( (ax*del^2*(4*eps^2-del^2)/eps^3)^(-5/2)=
ax^(-5/2)*del^(-5)*(4*eps^2-del^2)^(-5/2)*eps^(15/2),sigma[j,2]):
sigma[j,2] := subs( (ax*(4*eps^2+del^2)/eps)^(-5/2)=
ax^(-5/2)*(4*eps^2+del^2)^(-5/2)*eps^(5/2),sigma[j,2]):
sigma[j,2] := subs( (-4*eps^2+del^2)^(-2)=

(4*eps^2-del^2)^(-2),sigma[j,2]):
sigma[j,2] := subs( (4*eps^2+del^2)^(-9/2)=
(16*eps^4-del^4)^(-9/2)/(4*eps^2-del^2)^(-9/2),sigma[j,2]):
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#
sigma[j,2] := subs(
(2*eps*ax-2*sqrt(ax*(4*eps^2+del^2)/eps)*eps+2*eps^2+del^2)^(-2)
=2^(-2)*eps^(-2)*(sqrt(ax)-sqrt(eps))^(-2),sigma[j,2]):
sigma[j,2] := subs(
(2*eps*ax+2*sqrt(ax*(4*eps^2+del^2)/eps)*eps+2*eps^2+del^2)^(-2)
=2^(-2)*eps^(-2)*(sqrt(ax)+sqrt(eps))^(-2),sigma[j,2]):
sigma[j,2] := subs((sqrt(ax)+sqrt(eps))^(-2)=
(ax-eps)^(-2)/(sqrt(ax)-sqrt(eps))^(-2),sigma[j,2]):
sigma[j,2] := subs( (2*eps^2+del^2)^(-5)=
(1-5*del^2/eps^2/2)*2^(-5)*eps^(-10),sigma[j,2]):
sigma[j,2] := subs( (16*eps^4-del^4)^(-9/2)=
(1+9*del^4/eps^4/32)*16^(-9/2)*eps^(-18),sigma[j,2]):
sigma[j,2] := subs( 16^(1/2)=4,sigma[j,2]):
sigma[j,2] := subs( (ax-eps)^(-2)=ax^(-2),sigma[j,2]):
sigma[j,2] := expand(sigma[j,2]):
#
sigma[j,2] := subs( (4*eps*ax+ax*del^2/eps)^(9/2) =
4^(9/2)*eps^(9/2)*ax^(9/2)*(1+9*del^2/eps^2/8),sigma[j,2]):
sigma[j,2] := subs( (4*eps*ax+ax*del^2/eps)^(7/2) =
4^(7/2)*eps^(7/2)*ax^(7/2)*(1+7*del^2/eps^2/8),sigma[j,2]):
sigma[j,2] := subs( (4*eps*ax+ax*del^2/eps)^(5/2) =
4^(5/2)*eps^(5/2)*ax^(5/2)*(1+5*del^2/eps^2/8),sigma[j,2]):
sigma[j,2] := subs( (4*eps*ax+ax*del^2/eps)^(3/2) =
4^(3/2)*eps^(3/2)*ax^(3/2)*(1+3*del^2/eps^2/8),sigma[j,2]):
sigma[j,2] := subs( (4*eps*ax+ax*del^2/eps)^(1/2) =
4^(1/2)*eps^(1/2)*ax^(1/2)*(1+del^2/eps^2/8),sigma[j,2]):
#
sigma[j,2] := subs( (4*ax*del^2/eps-ax*del^4/eps^3)^(9/2)=
(1+9*del^2/eps^2/8)*ax^(9/2)*del^9*(4/eps)^(9/2),sigma[j,2]):
sigma[j,2] := subs( (4*ax*del^2/eps-ax*del^4/eps^3)^(7/2)=
(1+7*del^2/eps^2/8)*ax^(7/2)*del^7*(4/eps)^(7/2),sigma[j,2]):
sigma[j,2] := subs( (4*ax*del^2/eps-ax*del^4/eps^3)^(5/2)=
(1+5*del^2/eps^2/8)*ax^(5/2)*del^5*(4/eps)^(5/2),sigma[j,2]):
sigma[j,2] := subs( (4*ax*del^2/eps-ax*del^4/eps^3)^(3/2)=
(1+3*del^2/eps^2/8)*ax^(3/2)*del^3*(4/eps)^(3/2),sigma[j,2]):
sigma[j,2] := expand(sigma[j,2]):
sigma[j,2] := subs(del=0,sigma[j,2]):
sigma[j,2] := subs( (1/eps)^(5/2)=eps^(-5/2),sigma[j,2]):
sigma[j,2] := normal(sigma[j,2]):
sigma[j,2] := subs(eps=0,sigma[j,2]):
od;
#
sigma[1,2];
sigma[2,2];

6.2.3. Traction integral.
for l from 1 to 2 do
for k from 1 to 2 do
for m from 1 to 2 do
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s[l,k,m] := ( (1-2*nu)*(drdx[k]*d[l,m] + drdx[l]*d[k,m] -
drdx[m]*d[l,k]) + 2*drdx[l]*drdx[k]*drdx[m] )/r;
##
i1 := s[l,k,m];
i1 := expand(i1);
t1 := int(i1,x=-1..0):
t1 := subs((ax^2*del^2)^(-1/2)=1/(ax*adel),t1);
t1 := subs((ax^2*del^2)^(-1/2)=1/(ax*adel),t1);
t1 := subs(arctan(eps/adel)=pi/2,t1);
t1 := subs(arctan((ax-eps)/adel)=pi/2,t1);
t1 := expand(t1);
s[l,k,m] := t1;

od;
od;
od;
##
## stress
## a[1] is the constant coefficient from tau_1
##
sigma[1,2] := s[1,2,1]*a[1] + s[1,2,2]*a[2];
sigma[2,2] := s[2,2,1]*a[1] + s[2,2,2]*a[2];
sigma[1,2] := subs(del=0,sigma[1,2]);
sigma[2,2] := subs(del=0,sigma[2,2]);
sigma[1,2] := subs(log(eps^2)=loge,sigma[1,2]);
sigma[2,2] := subs(log(eps^2)=loge,sigma[2,2]);
sigma[1,2] := subs(eps=0,sigma[1,2]);
sigma[2,2] := subs(eps=0,sigma[2,2]);

6.3. Exact solutions. Listed below is the coding employed to evaluate the lin-
ear term coefficient for the four examples in section 4.

##
## Example 5.10 from Tada et al. (1985)
## aa = 1/(a-b) bb = b/(a*(a-b))
##
#f := arccosh((1+bb*s^2)/(1-aa*s^2));
##
## Example 7.1a from Tada et al. (1985)
##
#f := arccosh(cos(pi*(ax-s^2)/w)/cos(pi*ax/w));
##
## Example 7.4a from Tada et al. (1985)
## pw = pi/w
##
#g1 := 1 - (cos(a*pw)/cos(pw*(a-s^2)))^2;
#g2 := 1 - (cos(a*pw)/cosh(pw*y0))^2;
#g := sqrt(g1/g2);
#f1 := arctanh(g);
#f2 := diff(f1,y0);
#f := f1 - alpha*y0*f2;
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##
## Example 14.1a from Tada et al. (1985)
## ph = pi/H
##
#g1 := cosh((a-s^2)*ph);
#g2 := cosh(a*ph);
#g := g1/g2;
#f := arccos(g);
##
## This is the common piece of coding for all four problems
##
d1 := diff(f,s);
d2 := diff(d1,s);
d2 := normal(d2);
num := numer(d2);
den := denom(d2);
#### Extra statements for Example 14.1a
#num := subs(cosh(a*ph)=(exp(a*ph)+exp(-a*ph))/2,num);
#num := subs(sinh(a*ph)=(exp(a*ph)-exp(-a*ph))/2,num);
#num := expand(num);
#den := subs(cosh(a*ph)=(exp(a*ph)+exp(-a*ph))/2,den);
#den := subs(sinh(a*ph)=(exp(a*ph)-exp(-a*ph))/2,den);
#den := expand(den);
####
num := series(num,s=0,8):
num := convert(num,polynom):
num := expand(num);
den := series(den,s=0,9):
den := convert(den,polynom):
den := expand(den);
d2 := normal(num/den);
d2 := subs(s=0,d2);
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